Sample Pages

Robust Plastic Product Design: A Holistic Approach
Vikram Bhargava

For further information and order see
www.hanserpublications.com (in the Americas)
www.hanser-fachbuch.de (outside the Americas)

© Carl Hanser Verlag, München
Acknowledgments .. VII

Preface .. IX

About the Author ... XI

Foreword by Glenn Beall .. XIII

Foreword by Louis Maresca XV

Foreword by Joe McFadden XIX

1 Introduction .. 1
 1.1 Causes of Plastics Failure 1
 1.2 The Holistic Approach 2
 1.2.1 The Four Wheels 4
 1.2.1.1 Material 4
 1.2.1.2 Design ... 5
 1.2.1.3 Processing 5
 1.2.1.4 Tooling .. 6
 1.2.2 Assembly and Secondary Operations 6
 1.3 References ... 6

2 Plastic Materials .. 7
 2.1 Introduction .. 7
 2.2 Polymer Fundamentals 7
 2.2.1 Polymer .. 8
 2.2.2 Polymer Chain 8
 2.2.3 Thermoplastics and Thermosets 9
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3.1</td>
<td>Thermoplastic Types—Amorphous and Semicrystalline</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3.2</td>
<td>Thermosets</td>
<td>10</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Thermoplastic Molecular Arrangements</td>
<td>12</td>
</tr>
<tr>
<td>2.2.4.1</td>
<td>Blends, Alloys, and Copolymers</td>
<td>13</td>
</tr>
<tr>
<td>2.2.4.2</td>
<td>Commercial Plastics—Not Just Polymers</td>
<td>13</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Average Molecular Weight of Plastic Resins</td>
<td>14</td>
</tr>
<tr>
<td>2.2.5.1</td>
<td>Molecular Weight</td>
<td>14</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Molecular Weight and Mechanical Properties</td>
<td>16</td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>Molecular Weight and Viscosity</td>
<td>17</td>
</tr>
<tr>
<td>2.2.5.4</td>
<td>Melt Flow Rate</td>
<td>18</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Injection Molding of Thermoplastic Materials</td>
<td>19</td>
</tr>
<tr>
<td>2.2.6.1</td>
<td>Heating Amorphous and Semicrystalline Materials</td>
<td>19</td>
</tr>
<tr>
<td>2.2.6.2</td>
<td>All Materials Are Amorphous During Injection</td>
<td>20</td>
</tr>
<tr>
<td>2.2.6.3</td>
<td>Degradation</td>
<td>20</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Plastic Properties</td>
<td>21</td>
</tr>
<tr>
<td>2.2.7.1</td>
<td>A Word of Caution about Using MFI to Predict Flow</td>
<td>21</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Color Fundamentals</td>
<td>23</td>
</tr>
<tr>
<td>2.2.8.1</td>
<td>Color Measurement</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>“Plastics Are Not Metals”</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Color, Gloss, and Aesthetics</td>
<td>30</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Long Term Stress</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Plastics and Chemical Resistance</td>
<td>34</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Physical Effect</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Chemical Resistance</td>
<td>36</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Physical Properties—Plastics vs. Metals</td>
<td>38</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Temperature Dependent Behavior of Plastics vs. Metals</td>
<td>39</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Latent Defects</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Choosing the Right Plastic for Your Application</td>
<td>41</td>
</tr>
<tr>
<td>2.4.1</td>
<td>The Commercial Plastics Family</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Material Selection Process</td>
<td>42</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Morphology</td>
<td>44</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Thermal and Mechanical Properties</td>
<td>45</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>Special Properties</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Thermoplastic Elastomers and Overmolding</td>
<td>48</td>
</tr>
<tr>
<td>2.5.1</td>
<td>TPE Family</td>
<td>48</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Compatible Materials</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>References</td>
<td>50</td>
</tr>
</tbody>
</table>
3 Design ... 53
 3.1 Introduction .. 53
 3.2 Robust Design .. 54
 3.2.1 Cost .. 54
 3.2.1.1 Legitimate Costs 54
 3.2.1.2 Avoidable Costs 55
 3.2.1.3 Beyond Avoidable Costs 55
 3.2.2 Performance, Manufacturability, and Costs 57
 3.2.3 Purely Physical Requirements 58
 3.2.4 Chemical and Environmental Requirements 58
 3.2.5 Agency and Regulatory Requirements 59
 3.2.6 Tooling and Molding Related Requirements 59
 3.2.6.1 Wall Thickness 59
 3.2.6.2 Knit or Weld Lines 76
 3.2.6.3 Boss and Rib Height Considerations 80
 3.3 Plastics Structural Calculations 83
 3.3.1 Stress or Strain? ... 83
 3.3.2 Long Term Strains 87
 3.3.2.1 Warpage ... 89
 3.3.2.2 Plastic Screws 89
 3.3.2.3 Force Fit Assemblies 91
 3.3.2.4 Tolerance Stack Up Issues 92
 3.3.3 Change in Physical Properties with Rate of Loading 95
 3.3.4 Metal Inserts .. 95
 3.3.5 Draft ... 101
 3.3.6 Gate Location and Effect of Location 103
 3.3.7 Orientation ... 105
 3.3.8 Wear of Plastics ... 108
 3.4 Thin Walls, Structural Foam, and Gas Assisted Molding 109
 3.4.1 Thin Wall Molding 109
 3.4.1.1 Wall Thickness Variation 111
 3.4.1.2 Rib Thickness 112
 3.4.2 Structural Foam Molding 112
 3.4.3 Gas Assisted Molding 113
 3.5 References ... 113
4 Tooling Considerations 115

4.1 Introduction .. 115

4.2 Injection Molding Tool Family 115
4.2.1 Two Plate Molds .. 116
4.2.2 Three Plate Molds 118

4.3 Mold Elements ... 120
4.3.1 Steel Selection ... 120
4.3.2 The Feed and Vent System 123
4.3.2.1 Sprue and Sprue Bushing 123
4.3.2.2 Runner ... 123
4.3.2.3 Gates ... 132
4.3.2.4 Vents ... 136
4.3.3 Creating Undercuts 140
4.3.3.1 By Pass Shut Off 140
4.3.3.2 Angle Pin or Finger Cam 141
4.3.3.3 Hydraulic Cylinders or Solenoids 142
4.3.3.4 Floating “A” Plate 142
4.3.3.5 Collapsible Core 143
4.3.3.6 Lifters ... 143
4.3.3.7 Loose Piece Insert 144
4.3.3.8 General Notes on Side Action 144
4.3.4 The Ejector System 145
4.3.4.1 Ejector Pins and Blades 145
4.3.4.2 Ejector Sleeves 146
4.3.4.3 Stripper Plate Ejection 147
4.3.4.4 Air Poppet Valve 147
4.3.4.5 Factors Influencing Ease of Ejection 148
4.3.4.6 Guided Ejection 148
4.3.5 Special Case: Reverse Mold 149
4.3.6 Thermal Management 150
4.3.6.1 Cooling Insert and Baffles 152
4.3.6.2 Bubblers ... 152
4.3.6.3 Thermal Pin .. 153
4.3.6.4 Coolant Flow Requirements 154

4.4 Steel Safe Condition ... 156

4.5 Reviewing Mold Designs 156
4.5.1 Information Needed 156
4.5.2 Title Block .. 157
4.5.3 Core Plan View .. 157
4.5.4 Cavity Plan View .. 157
4.5.5 3D Rendering of Part 159
4.5.6 Mold Design Checklist 159

4.6 References ... 159

5 Processing ... 161

5.1 The Molding Machine .. 161
 5.1.1 Injection Molding Machine Components 162
 5.1.2 The Feed System ... 162
 5.1.2.1 Screw Details 164
 5.1.2.2 Clamp Tonnage and Capacity 165
 5.1.2.3 Intensification Ratio 166

5.2 The Injection Molding Cycle 167
 5.2.1 Filling or Velocity Stage 168
 5.2.2 Packing .. 168
 5.2.3 Cooling and Ejection 168

5.3 Process Capability ... 169

5.4 Basic Controls in Injection Molding 169
 5.4.1 Drying Time, Temperature, and Drying of Air 169
 5.4.1.1 Background 169
 5.4.1.2 The Drying Process 171
 5.4.1.3 Control of Drying Time 173
 5.4.1.4 Control of Dryness 173
 5.4.2 Melt Temperature .. 174
 5.4.3 Mold Temperature 175
 5.4.4 Fill Time and Shear Rate 176
 5.4.5 Packing Pressure and Time 177
 5.4.6 Gate Freeze Time .. 178
 5.4.7 Cooling Time .. 178
 5.4.8 Residence Time ... 178

5.5 Common Processing Issues 180
 5.5.1 Poor Drying ... 181
 5.5.2 Hesitation .. 181
 5.5.3 Knit Line Strength and Appearance 184
 5.5.3.1 Venting .. 185
 5.5.3.2 Melt Temperature 186
 5.5.3.3 Injection Speed 186
 5.5.3.4 Packing Pressure 186
 5.5.3.5 Mold Temperature 187
 5.5.3.6 Mold Surface 187
 5.5.3.7 Material ... 187
 5.5.3.8 Putting It All Together through a DOE 187
5.5.4 Jetting ... 190
5.5.5 Poor Venting .. 192
5.5.6 Poorly Designed Gates, Runners, and Sprue 193
5.5.7 Mold Heating ... 196
 5.5.7.1 Ignorance .. 196
 5.5.7.2 Poor Controls and Monitoring 197
 5.5.7.3 Intentional Overriding of Established Process Parameters 197
 5.5.7.4 Effects of Running the Mold Too Hot 197
 5.5.7.5 Effects of Running the Mold Too Cold 198
5.5.8 Gate Blush .. 200
5.5.9 Flow Marks, Gloss, and Texture Variation 202
5.5.10 Record Grooving ... 204
5.5.11 Warping .. 205
 5.5.11.1 Non-Uniform Shrinkage 205
 5.5.11.2 Poor Ejection 206
5.5.12 Flashing and Short Shots 206
5.5.13 Sink Marks ... 207
5.5.14 Scuffing .. 207
5.5.15 Read Through and Shadows 208
5.5.16 Unequal Shrinkage in Cross Direction 208
5.5.17 Use of Shrink Fixture 209
5.6 Scientific Molding ... 209
 5.6.1 Traditional Molding vs. Scientific Molding 209
5.6.2 Details of the Process 210
5.6.3 Establishing the Optimum Process 212
 5.6.3.1 Step 1: The Viscosity Curve and the Injection Speed ... 212
 5.6.3.2 Step 2: Balancing the Cavities 213
 5.6.3.3 Step 3: Pressure Drop Study 214
 5.6.3.4 Step 4: Setting the Pack and Hold Pressures 215
 5.6.3.5 Step 5: Setting the Hold Time 216
 5.6.3.6 Step 6: Setting the Cooling Time 217
5.7 Putting It All Together—Processing Parameters Recording 218
 5.7.1 Proper Recording of the Process 218
 5.7.2 Ongoing Control of the Process 220
 5.7.3 Allowable Changes to the Processing Parameters 224
5.8 References ... 224
6 Secondary Operations ... 225
6.1 Introduction .. 225
6.2 Ultrasonic Assembly ... 226
 6.2.1 Theory .. 226
 6.2.1.1 Hysteresis Heating 226
 6.2.1.2 Energy for Ultrasonic Welding 227
 6.2.2 Generation of Vibration 228
 6.2.3 Ultrasonic Welding System Components 229
 6.2.3.1 Control of Power and Total Energy Provided to the
 Welded Surface 230
 6.2.3.2 Details of the Subcomponents 231
 6.2.4 Types of Ultrasonic Welding 235
 6.2.5 Welding Polymers 236
 6.2.5.1 Other Factors Affecting Ease of Welding 238
 6.2.6 Design Factors .. 239
 6.2.6.1 Joint Types 239
 6.2.6.2 Part Design 241
 6.2.6.3 Fixture Design 244
 6.2.6.4 Important Welding Parameters 245
 6.3 Heat Staking .. 250
 6.3.1 Heat Staking Machines 252
 6.3.2 Insert Height and Required Torque 255
 6.4 References .. 256

7 Part and Tool Costs ... 257
7.1 Introduction .. 257
7.2 Part and Assembly Costs 257
 7.2.1 Elements of a Plastic Part Cost 257
 7.2.1.1 Cost of Molded Parts 258
 7.2.1.2 Cost of Bought Parts 258
 7.2.1.3 Secondary Operations 258
 7.2.1.4 Profit ... 258
 7.2.2 Overall Cost to Customer 259
 7.2.3 Determination of Shop Rates, Overhead Costs on Resin and
 Bought Parts, and Margin 260
 7.2.4 Determination of Cycle Times 260
 7.2.5 Putting It All Together 261
7.3 Tool Costs .. 263
 7.3.1 Tool Specifications 263
 7.3.2 Tool Costing Sheet 264
8 Six Sigma Techniques in Plastics .. 267
 8.1 Introduction .. 267
 8.2 Brief History .. 268
 8.3 Evolution of Six Sigma .. 268
 8.4 DMAIC ... 270
 8.4.1 Define .. 271
 8.4.2 Measure .. 271
 8.4.3 Analyze ... 271
 8.4.4 Improve ... 271
 8.4.5 Control .. 272
 8.5 Design for Six Sigma and DMADV 272
 8.5.1 Define .. 272
 8.5.2 Measure .. 274
 8.5.3 Analyze ... 275
 8.5.4 Design ... 275
 8.5.4.1 Failure Mode and Effects Analysis (FMEA) 275
 8.5.4.2 Poka Yoke .. 277
 8.5.4.3 Conventional Tools Used in Design Phase: Simulation . 277
 8.5.4.4 Some Common Poka Yoke Tools for the Design Process .. 279
 8.5.4.5 Some Other Commonly Used Tools 280
 8.5.5 Verify .. 283
 8.6 Going Beyond Just Making Good Products 283
 8.6.1 Kano Analysis ... 283
 8.6.2 Breaking the Paradigm 285
 8.6.3 BHAGS (Pronounced “Be Hags”): Big Hairy Audacious GoalS 286
 8.7 References ... 288

9 Further Reading and Reference Material 289
 9.1 Introduction .. 289
 9.2 Materials ... 289
 9.2.1 Step 1: Search across Suppliers 290
 9.2.2 Step 2: Search within Suppliers 291
 9.2.3 RoHS, REACH, UL, and Other Standards 292
 9.2.3.1 RoHS ... 292
 9.2.3.2 REACH ... 292
 9.2.3.3 UL 94 Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances 293
 9.3 Design ... 293
 9.3.1 Structural Calculations Including Snaps and Gears 293
Over the years, my colleagues and coworkers have both appreciated and derided me for my “Vikisms” (a term they coined). One of the ones that I am not embarrassed about is:

“Knowledge is knowing that one does not know.”

Unfortunately, when I graduated with a Mechanical Engineering degree (albeit from a prestigious institution) I did not have this “knowledge” in the field of plastics. I thought that I could create successful plastic parts by using the assumptions and structural calculations that worked almost without fail for metal components. In addition, I knew little about the complexity of polymeric materials and the effect of tooling and processing on the cost and performance of parts made from them.

I remember the first miniature switch housing I designed for a major U.S. leading technology corporation.

The material chosen was polycarbonate. Poor choice for this application, as will be shown later. The main wall was about 0.5 mm. The internal ribs were about 2 mm. When the part was molded, there were huge sink marks under the ribs and the part had extreme distortion because of the resultant uneven rate of cooling.

I was also responsible for the tooling. I located the gate at the thin wall, for I did not know any better. The part became very hard to fill.

As the molding supervisor, I raised the temperature of the mold and the melt to fill it more fully. Strange—that made the sinks and distortion even worse! Over the course of several days, I tried tens of combinations of mold and melt temperatures and pressures, with little success. Finally, through trial and error I was able to keep the part somewhat flat and with less obvious sinks by running the mold very cold and keeping the material very hot.

The switch was designed to be used in an automotive shop, among other environments. It developed major cracks the first time it was handled by an operator with grease on his hands, due to the internal stresses caused by the poor choice of molding parameters. (Even if the part had been well designed and processed, it was doomed for ultimate failure in this environment because of the poor chemical resistance of the material to grease.)
Seem implausible?
Just look at some of the examples in the book, including the failure of an automotive windshield wiper lever. The failure of this lever during a downpour could easily have caused death and destruction! The part was probably designed by an engineer who had been designing successful machined or forged metal parts all his/her life.

Over my working life, I have learned much about plastics. Some of this from making mistakes. Other aspects from attending conferences, seminars, reading books, working with resin suppliers, toolmakers, and molders. But mostly from creating and conducting training seminars. There is no better way to learn than to teach. In my initial years (and even now, occasionally) I was (am) asked questions that I did (do) not have answers for. Going back and finding answers for these questions has been the best teacher for me.

What is the ultimate role of an engineer? To help the business become more profitable by creating products that the customers love and that are manufactured in the most efficient and cost-effective way. I have been fortunate in having worked for Motorola, the company that came up with the Six Sigma methodology. I also have had the opportunity to use this methodology for the overall improvement of not only the products but also all those who were involved in the development and manufacturing of the same. It is my hope that the brief chapter on Six Sigma will generate enough interest in the readers’ minds to explore it more.

Finally, to paraphrase an old cliché, this book is written by an engineer, for an engineer. I have worked in the trenches long enough to realize what a pressure cooker environment an engineer works in, with the breakneck pace and competitive nature of businesses today.

There are many books on plastics written by scholars much more knowledgeable than me. However, a good many of them are either highly compartmentalized into polymers, design, tooling, molding, etc., or are too complex for everyday need. This book is intended to provide just enough information for the engineer working under the unrealistic deadlines of today to get the product right the first time, every time.

No more, no less.

The other unique feature of this book is its holistic approach. No more compartmentalization.

I owe much to many for helping me live out my assumed productive engineering career. The dedication and acknowledgment sections detail all the helping hands along the way.

Vikram Bhargava
Somerset, NJ, U.S.A.
August 2017
The industrialized countries of the world depend on manufacturing to provide jobs, grow their economies, and generate tax revenue. Manufacturers can only produce what engineers design. Engineers need to know how to design new products. If there is no design, there is nothing to manufacture, jobs are not created, and there is no profit to be taxed. New product design is important to the world’s economy.

Plastic is the third largest manufacturing industry in the U.S.A. In spite of that, the majority of those receiving technical degrees are taught little or no plastics technology. Even fewer receive instruction on plastic product design. Despite that failing, there is a steady stream or flood of new plastic products entering the stream of commerce. How did those engineers learn to design those plastic products?

They learn by attending technical conferences and expositions. Others learn by joining technical societies such as the Society of Plastics Engineers (SPE). Some learn in the school of hard knocks by the expensive and time-consuming process of trial and error. They also learn from the internet, technical journals, and books. And that brings me to the purpose of these comments.

I started designing and developing plastic products in 1958. The word “plastic” was not spoken at my University. I learned from all of the above sources. As a college graduate I was accustomed to learning from published literature and books. Fortunately, I had some excellent mentors who knew the difference between textbook theory and real life.

Over the years I have read every English-language book I could find with the words design and plastic in the title. I just recently read the galley proofs of Vikram Bhargava’s “Robust Plastic Product Design” book. I was pleasantly surprised to discover that it is not just another rewriting of the already published “Plastic Product Design Technology.” All book authors, myself included, absorb what is already known and add what we have learned in the course of our careers. If those careers are long and rich with actual experiences, the resulting book will benefit those with less experience. “Robust Plastic Design” is that type of book.

Vik has had a long and rich career. He joined the plastics industry in 1968. His first job after receiving his degree included being an injection molding machine
operator at an original equipment manufacturers captive molding shop. It is a rare graduate design engineer who possesses that valuable hands-on experience.

Following 43 years spent working in large corporations, he formed his own plastic product design and failure analysis consulting business, which is still active today. He has now been designing and developing plastic products and parts for 46 years. Much of what he learned from all of those projects is included in this book.

I met Vik in 1990 when he joined a small select group of designers who were forming SPE’s Product Design and Development Division. He served on the Technical Program and Newsletter committees before being elected Chairman of the Division for the 2005–2006 term.

Many years of contact with design engineers sensitized Vik to the general lack of plastic product design knowledge in the industry. That realization resulted in his creating and teaching product design and failure analysis seminars, starting in 1995. The old adage that the best way to learn is to teach is very true. Vik’s teaching has added to his understanding of the type of problems faced by the product design community. That understanding also resulted in his book, which is another way of teaching.

Vik’s book covers all of the usual product design subjects without getting bogged down with the scientific mumbo jumbo surrounding polymer science and molecular structure or the nuances of the increasingly complex scientific injection molding processes. He then goes on to discuss other less frequently included subjects, such as design related consideration for secondary operations, assembly, part and tooling cost, quality control analysis, improvements and part failure, cause analysis, and a brief but good review of coloring plastic materials. All of these subjects are backed up with the most comprehensive list of reference and websites that I have ever seen. This extended list of plastic product design related subjects accounts for the book’s “a holistic approach” subtitle.

“Robust Plastic Product Design” is a little different from the design books I am familiar with. It covers more than the basic plastic product design subjects, which is good. In my opinion, this book will be useful to anyone who designs plastic products and parts or who interfaces with plastic product design engineers.

Glenn L. Beall
Libertyville, Illinois, 2017

Glenn Beall, an engineer, consultant, educator, and editor, has been addressed as “a one-man education crusade” by Plastics News. He has taught over 30,000 people at more than 770 seminars and has 35 patents. Beall received the award for outstanding achievement in plastics education from the Society of Plastics Engineers (SPE), which cited his work as an instructor on design and other aspects of technology. In 1997, he was inducted into the Plastics Hall of Fame in recognition for his outstanding contributions to the plastics industry.
Vikram Bhargava’s new book, entitled “Robust Plastic Product Design: A Holistic Approach,” is not only well written, informative, and practical but comes at a critical time, as the United States gears up to regain its position as the preeminent manufacturer in the world. The United States has long thrived on its ability to manufacture things and sell them in global markets. However, in recent years China has surpassed the United States as the leading manufacturing country in the world, a title the United States had held for over 100 years. This has led to serious concerns about our economic future.

1. Manufacturing is essential to providing a strong foundation for economic growth. It provides the opportunity for high quality and good paying jobs for American workers. The impact of a healthy manufacturing sector also has a ripple effect on the economy. On average, each manufacturing job supports 2.5 jobs in other sectors and, on the upper end, each high-tech manufacturing job supports 16 others.

2. Manufacturing also serves as an engine for innovation and knowledge production. Historically, the manufacturing sector has been tightly linked with the nation’s R&D activities, and a strong manufacturing sector that adapts to and develops new technologies is vital to ensure U.S. leadership in innovation.

3. Domestic manufacturing capabilities using advanced technologies and techniques are also vital to national defense and homeland security.

One of the areas most affected by the U.S.’s outsourcing of manufactured goods is the plastics industry. In the past, the U.S. was the leader in the technology and art for the design and production of plastic parts. However, as the manufacturing base moved offshore, so did the know-how. Today, most plastic parts are built in Asia, where much of the technology now resides. Since plastic part design and manufacturing is as much an art as a technology, rebuilding its base in the U.S. is not a simple task. Production of quality plastic parts is a complex process that requires a fundamental understanding of material properties and processing, part design, and customer needs from both an application and a costs perspective. Bhargava’s
new book addresses these components to provide a holistic approach to design high quality parts that can be manufactured quickly the first time.

In my 35 year career in the plastic industry, I have witnessed many examples where overlooking even the smallest component of the plastic part manufacturing process has led to the failure to commercialize and even the loss of an important customer. For example, a very large customer requested the development of a material that met certain properties parameters, including a strict requirement on impact strength. A product was quickly designed, which in the laboratory was a perfect match for the customer’s needs. However, the first major customer production run of actual parts was a total failure. While impact strength was an important component for the longevity of the part in its application, compressive strength, which was not an initial design parameter, was critical to the success of the final assembly process. Fortunately, the product could be quickly modified to meet both the impact and the compressive strength requirements for the material and was commercialized in a timely fashion. However, if we had taken a more holistic view of the product requirements, a major crisis could have been avoided.

A holistic design approach greatly improves not only the probability of commercialization but also that of manufacturing it right the first time. I do not know how many times a tooling design flaw has led to the inability to produce completely filled parts meeting property and dimensional requirements and stability while being totally void of blemishes or stress cracks. In these instances, a holistic approach for better designing the tool could have avoided the rejected parts and the costly time and effort of revising the tool design. Getting it right the first time is especially critical today, as shorter product life cycles and customization have also led to the need to quickly modify existing tools or build new tools that meet the demands of a rapidly changing marketplace. Speed is also essential in the maintenance and repair of tools to limit unproductive downtime and loss of production capacity. If tools are properly designed using the holistic approach described in Bhargava’s book, companies can create a competitive advantage for themselves and flourish in the marketplace.

I highly recommend Bhargava’s book for anyone whose company wants to increase its new product commercialization success rate but especially companies in the U.S. who are struggling to regenerate the knowledge base that made it a world leader in plastic parts manufacturing.

Dr. Louis Maresca
Somerset, NJ 08873, September 2017
Dr. Maresca has over 35 years of experience in the plastic industry and has held executive level positions with global P&L, operations, and technology leadership responsibility. Dr. Maresca has a PhD in Organic Chemistry from Columbia University and an MBA from the Weatherhead School of Management at Case Western Reserve University. He is an inventor on 62 U.S. patents in plastics. Among the various executive positions he has held are General Manager of Technology at GE Plastics, Vice President of Technology at BF Goodrich, President of the Specialty Chemicals Division of Great Lakes Chemical Corporation, Vice President of Operations at GLS Corporation, and President and COO at Argosoy International, Inc.
More than 10 years ago, working as an independent consultant, not looking for life in the corporate world, I was presented with the opportunity of being part of a small engineering team within Symbol Technologies. The opportunity came to me through a good friend and longtime colleague, George Nelson, of Stonel Associates. After meeting the Director of this team, Vik Bhargava, and seeing his passion for the sciences and endless energy coupled with his thirst for knowledge, I knew I had found a place where I could continue to grow intellectually and utilize my skill sets in an effort to prevent or analyze the root causes of product failure.

One of the many things that impressed me regarding Vik was that he was a true working manager. His deep knowledge and hands-on experience within the plastics industry was not something he would brag about. Instead, his passion was to share all his hard-fought knowledge. Vik, I found, was a natural educator.

Vik’s team was comprised of subject matter experts covering key aspects of the plastics industry. He developed and promoted his concept of holistic design, solving complex engineering problems by being able to step back, look at the whole picture, then focus in on a solution.

As an educator, Vik conducted many internal and external seminars sharing his knowledge, which impressed and aided both young and seasoned engineers.

A tell-tale sign of Vik’s efficacy while at Motorola is when I today hear the language of holistic design being spoken and put to practice every day. His legacy is that both the engineer and the product benefited from his tenure.

It is my great pleasure and honor to write this foreword, knowing that this book provides what I see as often missing within the engineering world—appreciation of the big picture. I am sure it will help the reader, no matter what level he or she is at within the industry, to have a better understanding and ability to both prevent and understand root cause issues that are often faced.

Joseph P. McFadden Sr.
Stratford, CT, September 2017
Joe currently heads the Mechanical Engineering Analysis and Services organization at Zebra Technologies (previously Motorola) in Holtsville, NY. He oversees the work of hundreds of mechanical engineers internationally and makes sure their designs meet the rigorous standards of Zebra, known for its robust products. He has a Master’s Degree in Mechanical Engineering from the University of Bridgeport and continues to teach graduate students, courses on strength of materials and fracture mechanics, on a part time basis at Fairfield University. As an expert witness, he has won life-and-death litigations involving the failure of plastic products.
2.3 “Plastics Are Not Metals”

2.3.1 Color, Gloss, and Aesthetics

Now that we have covered the basics of polymeric materials, let us look at how they are different from metals. Most of the engineers and designers come from the metals world. Therefore, most of us make assumptions on the predicted performance of plastic properties based on our metals background.

I started with a discussion on color and appearance because this knowledge is extremely important in the case of plastics. Most plastic parts have dual functions—aesthetics and physical performance. This is due to the fact that very few of them need to be painted or otherwise decorated if designed and manufactured with due diligence.

On the other hand, even if we are designing the most aesthetically critical metal components such as exterior automotive parts, we mostly choose the metals and alloys based on the physical properties, weight, and cost. The aesthetics are left to the paint specialist, who will in most cases find a paint system (primer, paint, and application method) that will meet the cost, durability, and the cosmetic requirements. In other words, aesthetics and physical properties are quite independent of each other. A vast majority of metal parts meet their aesthetic and environmental requirements just by getting plated, getting chromate conversion coated, or being anodized.

Plastic parts not only need to meet the short term color and appearance requirements, they also need to be resistant to long term color shift and fading.

In Figure 2.30, the first set of pictures is of air conditioning ABS vents in my own house. Some of them turned from white to various shades of yellow to brown in a matter of months when exposed to the normal sunlight entering the house. The others retained the original white color.

Both covers for the TV are made of ABS. One remained the original white and the other turned yellow.

The middle picture is one of my neighbor's PVC mailbox, a few months after installation. In this case the plasticizer from the PVC completely evaporated, leaving the mailbox very dull and also brittle. (For those old enough, remember the cracks across the speaker grills in the PVC dashboards of the cars of the seventies and eighties?)

The bottom picture shows a very similar mailbox before exposure to the environment.
The long term properties of plastic resins are carefully modified by adding UV stabilizers and antioxidants by the resin suppliers. One just needs to choose the resin with the right protection.

Figure 2.30 Long term yellowing and fading of plastics

Figure 2.31 shows the yellowing and fading of various GE (now SABIC) plastics. Figure 2.32 and Figure 2.33 show that fading and color shift are very dependent on the colors even in the same resin and that care should be taken in the color selection. In the case of color retention, green is the worst and bright white and black are the best.

The same applies to gloss retention. Here the green performed the best but the white and black did not do too badly.

Notice that Delta b (dB in Figure 2.31) is used for the yellowness shift and Delta E (dE in Figure 2.32) for color. Going back to our previous discussion, an increase in the b value indicates that the color is more yellow. Delta E, obviously, indicates total color shift.
Do the same for a plastic cross section that is designed to take the stress of the force of a hanging 100 kg mass. You better not stand under the weight! The weight may drop on you within minutes, depending on the specific plastic and the environmental conditions. All plastics are viscoelastic and are subject to creep and stress relaxation. Under continuous stress their properties will change to the point of rupture.

2.3.3 Plastics and Chemical Resistance

Although both metals and plastics can degrade due to environmental exposure over time, the degradation of metals is a lot more predictable and controllable. The most common alloy and degrading phenomenon are steel and rusting. With the right paint or plating and with periodic maintenance, the rusting can be kept under control for centuries.

A great example of the longevity of metals is the iron pillar in front of the Qutub Minar in Delhi, India. Though the pillar was forged about 1600 years ago and moved to Delhi nearly 1000 years ago, it still stands fully intact and free of rust.

Figure 2.34 The iron pillar in front of the Qutub Minar in Delhi [12]
Also, the level of stress in the metal structures plays almost no role in how fast the metal will oxidize or be affected by common environmental chemicals such as acids, alkali, salt, or solvents. Even galvanic corrosion is very predictable and controllable by using the right pairs of metals in contact with each other.

Now let us step into the world of plastics.

Different plastics have different resistance to common solvents and chemical agents. Even moisture in the air can degrade plastics by breaking down the polymer chains. Plastics can also get oxidized and lose their mechanical properties.

Here is the key difference, though. Plastics under even a small amount of tensile stress are a lot more vulnerable to Environmental Stress Cracking (ESC) and chemical attack than those without it. Generally, amorphous plastics are more vulnerable than semicrystalline ones.

Let us look at the reason why.

As discussed previously, most polymers have long chains mostly of hydrocarbon molecules. When the plastic is cooled down from a high temperature, the chains re-entangle themselves. In the process they leave some spaces between the chains, which are called the “free volume.” As a side note, because of the orderly structures of the crystalline areas in semicrystalline materials, the free volume is less and therefore they are more chemically resistant than their amorphous counterparts. Most oils and solvents are also hydrocarbons and have a natural affinity to the hydrocarbons in the polymer. If allowed to enter the free spaces, they can cause the chains to break. If the chains are packed tightly, the attacking agents have less opportunity to enter and cause the degradation [2].

Now let us look at the typical injection molded wall. See Figure 2.35.

![Figure 2.35 Cooling of injection molded wall](image)

Plastic basically is a very poor conductor of heat. An injection molded part may be ejected out of a mold at upwards of 200 °C. As soon as it comes out, the outer layers are exposed to the ambient air and start to cool and shrink. The inside layers are insulated by the outside layers and stay hot for a much longer time.

The net result is that the outside layers are continuously pulled in by the inside layers and the inside layers are pulled out by the outside layers when the part has
finally cooled down. This results in the stress pattern for the part shown in Figure 2.36.

![Stress Diagram](image)

Figure 2.36 Stresses induced during cooling [6]

2.3.3.1 Physical Effect

To actually demonstrate the above stress pattern and the effect it has on its physical properties, the top surface of a 3 mm thick PC dog bone was machined about 0.5 mm deep. Care was taken to make sure the plastic stayed at room temperature during the machining, by circulating plenty of cold water at the interface of the cutting tool and the surface being machined. As soon as the piece was released from the holding fixture after machining, the dog bone curled upwards. The top layer of compressive stress was removed and tensile stress in the next layer pulled the two ends in. Whereas the original dog bone could be bent hundreds of times without a fracture, one bending cracked the part in the middle! See Figure 2.37.

As I will mention in Chapter 3, this is one reason I strongly advocate against using machined plastic parts for doing any kind of impact or physical testing during the development of a project.

![Stress Relief with Machining](image)

Figure 2.37 Stress relief with machining

2.3.3.2 Chemical Resistance

Let us also look at what it does to the free spaces. In a compressive layer the free spaces are reduced and in the tensile layer the free spaces are increased. Therefore, as molded, any plastic part is naturally more resistant to ESC and chemical attack.
What happens when the part is made to bend (or “ unbend” in the case of a warped part)?

Figure 2.38 shows the simulation of a dog bone being bent. As can be seen from these pictures, the compressive layer quickly turns into a tensile one.

The fact that the load carrying capacity of a plastic part is in a state of continuous stress may be secondary to the fact that it has now become more susceptible to chemical attack and ESC. Never mind strong chemicals, it can now be made to fail even with the humidity in the air.

In the training I conduct, I take a PC dog bone and flex it back and forth tens of times. I then smear it with acetone and leave it aside. I take another dog bone and bend it very slightly to induce a tensile stress on it. I put a small drop of acetone on it. It completely breaks apart into two pieces. See Figure 2.39. At the end of the session I look at the piece that I smeared with acetone and bend it back and forth. Practically no damage is done because the acetone evaporated before it could penetrate the surface with the compressive layer under it.

Please visit my website to view a video of the above. Here is the link: www.vikpedia.org.

Figure 2.38 Stresses induced in bending [7]
2.3.4 Physical Properties—Plastics vs. Metals

Table 2.2 shows the salient differences between plastics and metals.

Published Properties

Since the actual properties are so dependent on the way testing is performed as well as the actual conditions of use (time, temperature, rate of loading, environmental conditions, molding conditions, physical design, tooling, etc.), the published plastic properties are more of a set of guidelines, as a starting point, and for comparing different plastics. As will be explained in Chapter 3, these properties have to be used with a lot of caution. In fact, most resin suppliers have disclaimers to this effect to make sure the users do not misunderstand the properties and apply them incorrectly. See Figure 2.40. This is a typical disclaimer most resin suppliers use.

Michael Sepe is an industry leader as a material analyst. Some of his thoughts on the data sheets are that they:

- Provide short-term mechanical properties at room temperature
- Provide values for yield stress and impact energy to break and tell us when catastrophic failure occurs but nothing regarding what works
- Do not provide a clear picture for the effects of time under load
- Are only an attempt to deal with the effects of elevated temperature—DTUL (Deflection Temperature Under Load) and Vicat softening (which can also be very misleading)

I encourage the readers to read some of his work to get more insights on what these properties are and provide.
Continued strain can lurk in different corners that the designer may not even be aware of. Here are some common examples.

3.3.2.1 Warpage

Figure 3.39 shows a polycarbonate part that came out warped from the tool. The part was “unwarped” in the process of being assembled with its mating part, thus introducing a continuous strain. In less than a few months cracks appeared in the part just from the sweat on the operators’ hands attacking the part under continuous strain.

![Figure 3.39 Cracks in part “unwarped” when assembled [8]](image)

3.3.2.2 Plastic Screws

There are basically two types of screws used in fastening plastics without the use of threaded metal inserts. They are thread forming and thread cutting. See Figure 3.40: the one on the left is thread forming and the one on the right thread cutting.
The thread forming screw basically forces its way into the plastic boss and distorts the plastic, introducing a continuous hoop strain. The thread cutting screw, on the other hand, has a drill-like cutting edge that cuts its path into the plastic, minimizing continuous strain on the boss.

![Figure 3.40](image1.png) Thread forming and cutting screws

Figure 3.41 shows the catastrophic failure of a boss in a PC/ABS part fastened with a thread forming screw. This happened in a matter of weeks after the product was shipped. Changing to a thread cutting screw completely eliminated the problem.

![Figure 3.41](image2.png) Catastrophic failure of PC/ABS part with thread forming screw
3.3.2.3 Force Fit Assemblies

Unlike in metal parts, force fitting a peg into a hole will cause failures. Figure 3.42 shows a portable phone with one cover fastened to the other by force fitting a hole over a stud. In no time at all cracks developed around the hole. I sent the phone back to be replaced by another phone with no cracks. Within a few months cracks developed on the new phone too.

![Strain crack with force-fitted stud](image)

Figure 3.42 Strain crack with force-fitted stud

Flat head screws work wonderfully well for metals and wood.

One may design a conical opening for the flat head in a plastic part. However, the seating torque required to prevent the screw from coming loose introduces a continuous hoop strain in the opening. Figure 3.43 and Figure 3.44 show the failures in low and high modulus materials respectively. The part in Figure 3.43 is made out of high density polyethylene with an elasticity modulus of approximately 400-1,000 MPa. The failure is thus in the ductile mode and shows the white stress marks around the hole. Figure 3.44 shows the failure in an acrylic sheet. This is a much stiffer material and the elasticity modulus is approximately 2,800 MPa. This leads to a catastrophic brittle failure.

4 See discussion on brittle and ductile failure starting in the reference chapter (Chapter 9).
3.3.2.4 Tolerance Stack Up Issues

This kind of failure is very common and occurs due to continuous strain attributable to tolerance stack up issues. Figure 3.45 shows the tolerance analysis of the top and bottom covers of a power supply made out of polycarbonate. When assembled, surface A should rest against surface B and surface C against D. Under the theoretical nominal conditions all of them come together when assembled. However, in the worst case A and B have a gap of 0.030. This does not even take into account additional possible gaps due to part warpage.

The continuous strain, therefore, is approximately \(\frac{0.030}{0.500} = 6\% \) because of the strain being borne solely by the 0.500 length above the four gussets on the long boss. Also to be noted is the fact that these components can easily be subjected to a continuous temperature over 60 °C in use.

Figure 3.46 shows the actual failure of the long boss under these conditions.
With the above discussion in mind, the gate location should be based both on balanced flow and functional requirements of the part. It is therefore reasonable that the designer be involved in deciding the location of the gate and that this is not just left to the flow simulation or tooling personnel.

3.3.7 Orientation

Figure 3.62 (top) shows the crack pattern when a polystyrene cold cup is crushed. You can clearly see the very straight and parallel lines that the cracks result in. This is because of the orientation of the polymer chains.

In normal processing, with the molds being heated to the optimum temperature, the polymer chains are allowed to go back to their normal random state before ejection. However, in the case of the cup, to reduce the cost, the cycle time is extremely low. To help reduce the cycle time, the mold is run very cold. The material freezes almost instantaneously upon injection and the chains do not have the required temperature or time to go back to the random entanglement state. As pointed out in Chapter 2, the chains are lined up so the chemical bond is only in the direction of the flow. In the cross direction there are only the weak secondary bonds. Thus, on impact the cracks develop across the secondary bonds. In Figure 3.62 (bottom) there is the same cup, in which water was boiled for a few seconds in a microwave oven. The chains have now reoriented themselves into their natural position and the cup itself is much tougher.

Polystyrene is an amorphous material. In the case of a semicrystalline material, running the mold at the optimum temperature is even more critical. If the mold is run cold, the crystalline areas are not allowed to develop during the molding cycle. The part is therefore very weak and will distort over time as the crystalline areas develop.
If life gives you lemons, make lemonade.

The fact that chains get oriented under certain processing conditions can be taken advantage of. The common polypropylene bags are oriented such that chains run in the direction of the handle. Thus, it takes very little effort to tear the bag at the right angle to the handle direction and it is extremely difficult to do so in the long direction of the handle. Figure 3.63 illustrates this.

Living hinges are another common example of taking advantage of orientation and the resultant superior properties in the length direction of the chains. Figure 3.64 shows a simplified illustration of a living hinge. The material is made to flow from one thick section to the other through the thin one. Ideally, the thin section is cooled rapidly by putting cooling lines directly above and below it. This freezes the chains across the thin section, giving it an enormous fatigue life. More information on designing living hinges in the reference chapter (Chapter 9).
3.3 Plastics Structural Calculations

Figure 3.63 Orientation effect in common polypropylene shopping bags

Figure 3.64 Simplified living hinge illustration

Figure 3.65 shows a common dental floss container with a very efficient living hinge.

Figure 3.65 Common dental floss container with living hinge
3.3.8 Wear of Plastics

Care has to be taken when designing plastic members that slide against each other during use.

When two plastics rub against each other, the materials from the surface are gradually removed due to adhesion or abrasion. Adhesive wear takes place when very small pieces of the materials are removed by the rubbing surface. This results in a fine dust. When a harder surface digs up a softer surface, abrasion takes place and this results in grooves or scratches on the surface.

The button in Figure 3.66 was made of PC and was supposed to rub against the mating surface also made of PC. Most amorphous materials have a very high surface energy and therefore good adhesion. Just a few hundred cycles caused the button to get sticky due to adhesive wear. The button was changed to acetal and the combination worked as desired.

Figure 3.66 Trigger button failure: the circled area shows vertical wear scratches on the button
The appearance and strength of the knit line depend on the following:

5.5.3.1 Venting

When flow fronts come together, they generally trap air and gas between them. This trapped air and gas can affect the appearance in the following ways (see Figure 5.24):

- Not allowing the fronts to meld, thus leaving a microscopic void
- Burning the flow front due to dieseling (see Chapter 3, Figure 3.33)
5.5.3.2 Melt Temperature
Higher melt temperatures intuitively should make the knit lines stronger, since the flow fronts meet at a higher temperature and therefore cause better fusion between them. However, they can also result in a higher amount of volatiles, due to the degradation of the low molecular additives and the polymer itself. These volatiles and degradation products travel faster than the polymer and therefore come in the way of an optimum fusion of the fronts. Therefore, the effect of a higher melt temperature on the weld quality depends on the specific combination of material, part, and tool design.

5.5.3.3 Injection Speed
Higher injection speeds go hand in hand with a higher melt temperature because of the increased shear. Therefore, the previous discussion also applies to injection speeds.

Additionally, on the negative side, the volatiles do not have the time to be completely vented and may get trapped between the fronts from the opposite sides, causing the weld to be weaker.

5.5.3.4 Packing Pressure
Higher packing pressures generally result in better knit lines, due to the better fusion of the flow fronts and the expelling and/or compression of the volatiles. They also help the melt flow into the nooks and crannies of the mold surface instead of just skimming it. See Figure 5.25.

5.5.3.5 Mold Temperature
The mold temperature has the most effect on the quality of the appearance and, consequentially, the strength of the knit lines. This is primarily due to two reasons:
1. The melt is kept hotter, without the degradation associated with the melt temperature and injection speed
2. The melt reproduces the surface of the mold instead of skimming along it; Figure 5.25 shows the difference in the surface with low and high pressures and melt temperatures
5.5.3.6 Mold Surface

Textured surfaces generally hide the knit line and shiny surfaces do the opposite. Therefore, where possible, the inclusion of even a light texture improves the appearance.

5.5.3.7 Material

Finally, the material itself can add to or take away from the strength and appearance of the lines. As an example, flame retardant materials may have more volatiles that prevent fusion of the flow fronts than their non-flame retardant counterparts.

Within the same family, glossier plastics may show the knit line more than their less glossy counterparts. As an example, a straight PC may show the knit line more than a PC/ABS, which is somewhat less glossy.

5.5.3.8 Putting It All Together through a DOE

Below is a case study to validate some of the preceding discussion on the appearance of a knit line.

Figure 5.26 shows the knit lines in a PC/ABS part before and after adjusting the molding parameters. The part in question had visually unacceptable knit lines, as can be seen from the photographs.

This study is also an example on how a simple DOE (Design of Experiments—see details of the methodology in Chapter 8) can quickly and efficiently get to the best solution. Without a DOE, it might have taken days or even weeks of changing parameters one at time to come up with a solution. Even then, the solution might have not been the optimum one.
The factors considered were: mold temperature, melt temperature, and injection speed, per the preceding discussion. The mold did have adequate venting through vented ejector pins in the back.

One of the requirements of a DOE is that the effect of the study be a numerical value and not an attribute such as “good” and “bad.” The task, therefore, was to convert a visual defect or lack thereof to a numerical value. In order to do this, a team of engineers and QC personnel was asked to rate the appearance of each study from 0 to 5, zero being totally unacceptable and five being totally acceptable.

The recommended melt temperature for the material was 520-540 °F, so these values were chosen as the low and high, respectively. Similarly, the mold temperatures were 175 °F and 200 °F, respectively. The injection speed values were determined from a viscosity study that will be described in the following pages, in the scientific molding section.

Looking at the DOE analysis graphs in Table 5.3, it clearly shows that the mold temperature had the greatest effect on the appearance. Notice also that the increase in injection time improved the appearance! This is contrary to intuition. Ask any molder and he/she will say that increasing the injection time will degrade the quality of the knit line, as the material fronts will be cooler when they meet. This shows the value of letting the data drive our decision against the opinions of so-called experts.

One final point. Looking at Table 5.3, the best knit line would have been at the highest mold, melt, and injection time. However, keeping these extreme settings would have reduced the “processing window,” resulting in a relatively unstable process and reducing the process capability or Cpk. There will be more discussion on the processing window later in this chapter. The charts in Figure 5.27 show the above graphically.

The final settings were 530 °F, 190 °F, and 3.5 seconds for melt temperature, mold temperature, and injection time, respectively, for an appearance index of >3, which was visually acceptable as the best compromise.

Figure 5.26 Before and after appearance of knit lines
One of the common methods to reduce the gate blush is by what is known as velocity profiling. The injection velocity is reduced in the first small fraction of the total injection phase to help reduce the shear during the wall formation in the gate area, to improve the thickness of the gate layer. Once this stable area is formed, it is less likely to erode during the rest of the injection phase.

5.5.9 Flow Marks, Gloss, and Texture Variation

There are multiple reasons for flow marks. Some of these are:
- Local burning or degradation of the plastic due to high shear
- Pigment or other additives separation from the resin or degradation due to poor compatibility of the pigment or additives or overheating. See Figure 5.40.
- Inadequate homogenization of the material because of a large shot size relative to the barrel
- Degradation of the material because of a small shot size relative to the barrel
- Too much or too little back pressure
- Contaminants in the material including incompatible resins (such as nylon in PC)
- Glass fibers on the surface in glass-filled resins
- Splay due to excessive moisture or too long a residence time; see Figure 5.41
5.5 Common Processing Issues

- Trapped air or gases
- Incomplete melding of the flow fronts
- Hesitation
- Sudden change in direction of flow
- Sudden change in the thickness
- Ribs being too thick
- Sharp internal corners
- Non-uniform packing resulting in shiny and matt areas near each other
- Non-uniform heating or cooling of the mold including hot spots; see Figure 5.42
- Non-uniform heating and/or packing causing the texture to appear more or less matt; see Figure 5.42

Figure 5.41 Splay due to moisture in the resin [9]

Figure 5.42 Noticeable change in the reproduction and matt level in the textures with the change of mold temperature and/or pack pressure
- Non-uniform texture or polishing of the mold walls
- Too high or too low graphics interrupting the flow of the material. See Figure 5.43 top. One way to minimize the knit line appearance is to provide venting for the trapped air and gases to escape. In the middle of a part (as opposed to the edges, where conventional venting can be employed), this can be achieved by inserting a laminated section of steel right under the graphics with controlled venting gaps between them. See the bottom image in Figure 5.43.

![Figure 5.43](image)

Figure 5.43 Deep graphics causing interruption of flow

Because of the fact that flow marks are caused by multiple reasons, there is not one standard method to eliminate or reduce them. Instead, a careful and logical cause and effect study should be conducted with tools like a fishbone diagram, as will be explained in Chapter 8.

5.5.10 Record Grooving

Record grooving are concentric grooves that look like the old fashioned vinyl records—hence the name. These occur as the flow front hesitates, builds up pressure again, flows, and hesitates again. This is the result of a less than adequate pressure at the flow front and of inadequate velocity and/or stock temperature. Adjusting
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5VA</td>
<td>293</td>
</tr>
</tbody>
</table>

A

- Abaqus 278
- ABS 57, 62, 69, 71, 90, 96, 98–101
- acetal homopolymer and copolymer 13
- acrylonitrile-butadiene-styrene 13
- addition polymers 169
- agency requirements 58–59
- air poppet valve 147
- alignment plates 248
- alternate polymer 12
- amorphous 9, 19–20, 44–45
- amplitude profiling 247
- AMW 11, 16, 18, 169, 171
- angle pin 141
- ANSYS 278
- antimicrobials 14
- antioxidants 13
- anti-stats 14
- appendages 242
- aramid 17
- assembly and secondary operations 6
- ASTM D 523 28
- ASTM D 1238 18
- atomic weight 14–15
- average molecular weight 11, 169, 171
- avoidable costs 55

B

- back pressure 163, 168, 202, 219, 221
- baffles 152
- balanced filling 195
- balancing the cavities 213
- Bayblend 179
- Bayer Material Science 293
- BBP 292
- Beall, Glenn 69, 80
- Beaumont, John (Dr.) 128
- benzyl butyl phthalate 292
- beryllium copper 243
- BHAGS 286
- big Y 268
- birefringence 104–105, 175
- bis (2-ethylhexyl) phthalate 292
- bisphenol A 170
- blades 145, 148
- blends, alloys, and copolymers 13
- block copolymers 12
- booster 228–229, 231–232
- bosses 81
- Bozzelli, John 179, 224, 299
- B plate 148
- Branson 230, 232, 240, 256
- breaking the paradigm 285
- brittle and ductile behaviors 95
- brittle and ductile failures 294
- Brussee, Warren 301
- bubblers 152–153
Index

butt weld  239
by pass shut off  140

cadmium  292
calcium carbonate  238
candle wax  17
capacity  165, 173, 178–179, 219–221
capacity of the machine  165
carbolic acid  170
cause and effect or fishbone diagram  280
cavity plan view  157
certificate of compliance  218
checklists  279
chroma  24, 26
CIE L*, a*, b*  25
clamp  162, 165, 206
clamping system  162
classes of molds  297
CoC  218
coefficient of friction  47
coefficient of thermal expansion  95, 97, 99
COGS  259
cold runners  123
cold slug well  132
color  23
colorants  13
color measurement  24
color space  24
commercial plastics  13, 41
common light sources  27
compression ratios  164
condensation polymers  169–171
condensation reaction  170
contaminants  239
converter  229, 231
coolant flow  154
cooling  167–168, 178, 217, 219, 221
cooling insert  152
cooling layouts  151
cooling time  62, 178, 217
core plan view  157
corrosion resistance  120
cosmetic issues  201
cosmetic surface  74
Cosmos  278
cost  54–56, 61
cost of bought part  257
cost of goods sold  259
cost of molded part  257
cost of scrap  258
cost of secondary operations  258
covalent bond  8
Covestro  179, 224, 291, 293, 301, 303
Cp  302
Cpk  302
crazing  87–89
critical thickness  60
cross direction  208
cross flow direction  208
cross-linking  11
crush cones  94
crystallinity  175, 178
cushion  164, 211, 220–221
cycle time  115, 144, 150, 260

declined Molding  210
degradation  20, 173–174, 179, 186, 202
DEHP  292
delta b  31
delta E  25–26, 28, 31
delta P  214
Deming, W. Edwards  103
desiccant  171–172
design  1–2, 5
design of experiments  187, 282, 302
design reviews  279
dew point  171, 173–174, 219–220
dew point meter  173–174
DFM  59
DFMPro  208, 224, 279, 300
diaphragmming  242
DIBP  292
dibutyl phthalate  292
dielectric strength  57
dieseling 83
diisobutyl phthalate 292
DIN 160901 298
Directive 2002/95/EC 292
discoloration 179
DMADV 269–272
DMAIC 269–270
DOE 187–189, 271, 283, 302
DOs and DONTs block 69
Dow Chemicals 296
down speed 245
draft 58, 65, 82, 101–103, 109, 112
drying process 171
drying time 169, 173
dryness 173
Dukane 231, 240–241, 256
DuPont 292, 294

E
ejection 168, 206
ejector blades 145
ejector housing 156
ejector pins 139, 145
ejector sleeves 146
ejector system 117–118, 145, 148
elongation 57
Emerson 227, 229–234, 241, 246, 256
environmental 54, 57–58, 68, 83, 101
ESC 68–69
ESD 5

F
FAI 218–219
failure analysis 300
failure mode and effects analysis 275
family mold 117, 128, 195
far field 237–238
fastening 225
fatigue life 120
FDA 59
FEA 278
feed hopper 162
feed system 123, 132, 136, 162
fillers 14, 238
filling stage 168, 212
fill time 176, 212
FIMMTECH 302
finger cam 141
finite element analysis 278
five whys 281
fixture 229, 234–235, 244–245, 248–249
flame retardants 14, 174, 184, 239
flammability requirements 66
flashing 206
flat head screws 91
floating "A" plate 142
floating plate 118
flow direction 58, 75
flow front progression 183
flow leader 76
flow length 63–64, 174–175, 213
flow marks 202
FMEA 275–276
foaming agents 14
force fit assemblies 91
Ford 8D 269
fountain flow 63, 190, 201
freeze 178, 190, 194, 216–217
frequency 227–228, 230–231, 233, 235, 243
frozen skin 210
full round runner 124–125
fusion 236–237

G
gas assisted molding 60, 109, 113, 295
– blush 200
– erosion 201
– freeze time 178
– location 58
– seal time 219, 221
– size 58, 103, 105
GE Plastics 291, 295
glass fibers 202
glass transition temperature 19
gloss 28, 30, 33, 202
gloss level measurement 28
guided ejection 148

H
HB 290, 293
HDPE 97
HDT 209
HDT (heat deflection temperature) 41
heat distortion temperature 209
heater bands 174, 209
heating band 252
heating tip 252
heat stabilizers 13
heat staking 250, 252
heat treatment requirements 120
hesitation 181, 203
hexavalent chromium 292
high impact polystyrene (HIPS) 44
hold 165, 194, 210–211, 215–217
holding pressure 210–211, 215–216
hold time 216
holistic 1
homogenization 202
homopolymers 12
horn 228–235, 237, 242, 244–245, 248–251
hot runner systems 130
hot sprue bushing 131
human sweat 101
Hunter L, a, b color 24–25
hydraulic cam 142
hydraulic cylinders 142
hydraulic pressures 166
hygroscopic 170, 238
hygroscopicity 238
hysteresis heating 226

I
ideal gas law 82
imbalanced melt conditions 129
impact strength 169, 171, 179–181
injection barrel 162
injection molding cycle 151
injection molding tool family 115
injection speed 186, 212
in-mold decoration 226, 297
inserts 97
inside corner radius 66
intensification ratio 166–167, 212, 220–221
iSixSigma 302

J
jetting 133, 190–191, 193
juicing 184–185

K
Kano analysis 283
knit line 182–184, 186–188
– location 58
Kulkarni, Suhas 299

L
laminar 154–155
land 158
latent defects 40
latent heat 236
L/D 164
lead 292
lifters 143
lightness or darkness 26
liquid injection molding 10
living hinge 106–107, 294
long term stress 33, 58
loose piece insert 144
lower specification limit 268
LSL 268
lubricants 14

M
MacAdam, David 25
MacAdam ellipse 25
MacAdam units of color difference 25
Makrolon 181
margin 259–260
mark up 259
material 1–2, 4
material compatibility 58
materials for mold components 122
maximum wall 58
Melt Flipper 128–129
melting point 9–10, 19–20, 33
melt temperature 174–175, 186, 188, 206, 212, 215–216
melt uniformity 179
metal contacts 243
metal inserts 89, 95
metamerism 26
metering zone 164
MFI index 21
MFR tester 18
Minitab 302
minimum wall 58
modal analysis 234
modulus 83, 85–86, 91, 95, 97
modulus of elasticity 84, 95
moisture content 171, 173, 179, 181
mold design checklist 159
mold designs 156
molded-in stresses 175, 183, 198, 216
mold elements 120
Moldex 64, 275, 278, 299
Moldflow 64–65, 195, 207, 275, 278, 299
mold heating 196
molding cycle 167–169, 177
molding machine 161, 212, 214
mold materials 120
mold surface temperature 197
Mold-Tech 29, 298
mold temperature 175–176, 186–188, 203, 205, 216–217
moment of inertia 84
monomer 7, 15, 17
morphology 42, 44
multicavity molds 127
multiple gates 79

N
naturally balanced runners 127
near field 237
Newtonian 176, 210, 212
Newtonian fluid 22
no flow condition 65, 83
nominal wall 59, 65–66, 71–73, 109
non-Newtonian 176
non-Newtonian fluid 22
non-return valve 163
non-uniform weld 248
nozzle 162, 178, 214–216

O
opportunity costs 56
optical 43, 47
optical parts 294
orientation 58, 105–106, 175, 198–200
outsert molding 97
overheads 258–260
overheating 251
overmelting 251
overmolding 43, 48, 100
overpacking 194, 206
overweld 242, 248

P
pack 182, 203, 210–211, 215
packing 167–168, 177, 186
packing pressure 177, 186
pad stamping 226, 296
painting 226
Pareto analysis 280
parting line 116–118, 125, 157
PBB 292
PBDE 292
PC/ABS 13, 28, 50, 179, 184, 187
PC-siloxane copolymer 13
peak pressure 168, 214
photoelastic analysis 300
piezoelectric device 228
pigment 174, 202
plasticizers 14
plasticizing 162, 164
plastic pressure 165–166, 169, 193, 220
platen 162
plate out 184
plating 226
Poka Yoke 275, 277, 279
polish 120, 148
polybrominated biphenyls 292
polybrominated diphenyl ethers 292
polycarbonates 9, 47
polyethylene 17
polymethyl methacrylate 9
polystyrene 9, 75, 89, 97, 104–106
polystyrene chains 16
poor drying 181
porous materials 139
power supply 229
Pp 302
Ppk 302
pressure 245, 247
pressure drop study 214
pressure history 168
primary bond 11
process capability 169, 174, 176, 188, 193, 302
processing 2, 5
processing issues 180
profiling 211
profit 258
projected area 165–166, 261
Prospector 290–291, 303

Q
QFD 273–274
quality function deployment 273–274

R
random copolymers 12
rate of loading 83, 95
REACH 292–293
read through 208
record grooving 204
refractive index 43, 47
regulatory requirements 58–59
relative viscosity 176
residence time 178–180, 202, 219, 221
residual stresses 70, 129, 150
resistance 57–58, 68–69, 72, 96
reverse mold 149
Reynolds number 154–155, 196, 220–221
rib height 58, 80, 82
robust design 54
RoHS 21, 43, 59, 218, 292
round energy directors 241
runner 166, 174, 181, 190, 193–195, 214–215
runner profiles 123–124
Rynite 150

S
SABIC 291, 295, 297
scale build up 197
Schaub, Mike 294
scientific molding 162, 176, 178, 209–210, 299
screw 162–166, 168, 211–212, 215
scuffing 207, 249
secant modulus 85
secondary bond 11
secondary operations 225
section modulus 84
self de-gating 133–134
semicrystalline 9, 19, 44–45, 175, 178, 200, 205, 207–208, 216
T

talc 238
temper 120
temperature and drying of air 169
tensile strength 57
texture 103, 240, 298
texture variation 202
Tg 236–237
thermal compatibility 58
thermal conductivity 120
thermal management 115, 150, 196
thermal pins 153–154
thermal staking 225
thermoplastic elastomers (TPE) 48
thermoplastics 9, 12
thermosets 9–10
thin wall 60, 109
thin wall molding 295
thread
 – cutting 90
 – forming 90
threaded parts 143
three plate molds 118
three plate tools 115
title block 157
toggle 162
tolerance stack up 92
tooling 2, 6
tool polish 297
tool specifications 263
TOPAS COC (Cyclic Olefin Copolymer) 48
total cost and life of molds 121
total tolerance 298
toughness 43, 46, 120
TPE family 48
TPU 100–101
traditional molding 209
transducer 231–232
transfer point 219, 221
trapezoidal 123, 125
turbulent flow 154
two plate molds 116
two plate tools 115
two shot molding 296
U

UHMWPE 17
UL 59, 63, 66, 218, 292–293, 303
UL 94 293
ultra-high molecular weight polyethylene 17
ultrasonic assembly 226, 231, 243
ultrasonic welding 225, 297
unbalanced filling 195
undercuts 140
underheating 251
underpacking 194
underweld 248–249
upper specification limit 268
USL 268
UV weatherability 13

V

value 24
valve gate 136
velocity stage 168
vent 137–138, 298
vented ejector pins 139
venting 136, 139, 159, 185, 192
vestige 133, 136, 149
vibration 227–231, 233, 248
vibration welding 225
viscosity 17, 22, 171, 176–177, 179, 181, 188, 210–213
viscosity curve 212
visible spectrum 27
visual defects 194
void 72, 74–75
volatiles 184, 186–187
voltage regulation 247
volumetric shrinkage 207, 211, 215

W

wall thickness 59, 63, 66, 69, 72, 111
wall thickness ratio 58
wall thickness uniformity 58
wall thickness variation 72, 75, 112–113
water transfer decoration 226
wear 53, 55, 108
wear resistance 120
weldability 120
weld collapse 248
weld lines 76

Y

Yeager, Mark 301
yellowing and fading 31

Z

Z puller 117