This book evolved from Hanser Publishers’ textbook *Polymer Processing Fundamentals*, which was revised under the title *Understanding Polymer Processing*. It has now been almost twenty years since the first book appeared, and six years since the latter was published. The last edition of this book has been adopted by several universities in North and South America, Europe, Asia, and Africa as a textbook to introduce engineering students to polymer processing. The changes and additions that were introduced in this edition are based on suggestions from these professors and their students, my own teaching experience, and suggestions from my students, as well as changes that have occurred in the industry in the past few years. Perhaps the biggest addition is an additional chapter on additive manufacturing.

With this edition, the author owes his gratitude to Dr. Mark Smith of Hanser Publishers for editing the book and catching problems and inconsistencies throughout, and Jörg Strohbach for all his assistance with typesetting and template issues. I am grateful to Tobias Mattner for his superb job at re-drawing all the figures and for his suggestions on how to make many of the figures more understandable. A special thanks to Dr. Dominik Rietzel and Martin Friedrich for co-authoring Chapter 7, Additive Manufacturing. Their experience and input on the entire additive manufacturing field and technology was very valuable. Thank you Diane for — as always — serving as a sounding board and advisor during this project, Palitos for your interest in this field, and Rudi for changing things up a bit.

Summer 2017

Tim A. Osswald
This book provides the background for an understanding of the wide field of polymer processing. It is divided into three parts to give the engineer or student sufficient knowledge of polymer materials, polymer processing and modeling. The book is intended for the person who is entering the plastics manufacturing industry, as well as a textbook for students taking an introductory course in polymer processing.

Understanding Polymer Processing is based on the 12-year-old Hanser Publishers book Polymer Processing Fundamentals, as well as lecture notes from a 7-week polymer processing course taught at the University of Wisconsin-Madison.

The first three chapters of this book cover essential information required for the understanding of polymeric materials, from their molecule to their mechanical and rheological behavior. The next four chapters cover the major polymer processes, such as extrusion, mixing, injection molding, thermoforming, compression molding, rotomolding, and more. Here, the underlying physics of each process is presented without complicating the reading with complex equations and concepts, however, helping the reader understand the basic plastics manufacturing processes. The last two chapters present sufficient background to enable the reader to carry out process scaling and to solve back-of-the-envelope polymer processing models.

I cannot possibly acknowledge everyone who helped in the preparation of this manuscript. First, I would like to thank all the students in my polymer processing course who, in the past two decades, have endured my experimenting with new ideas. I am also grateful to my polymer processing colleagues who taught the introductory polymer processing course before me: Ronald L. Daggett, Lew Erwin, Jay Samuels and Jeroen Rietveld. I thank Nicole Brostowitz for adding color to some of the original graphs, and to Katerina Sánchez for introducing and organizing the equations and for proofreading the final manuscript. I would like to thank Professor Juan Pablo Hernández-Ortiz, of the Universidad Nacional de Colombia, Medellín, for his input in Part III of this book. Special thanks to Wolfgang Cohnen for allowing me to use his photograph of Coyote Buttes used to exemplify the Deborah number in Chapter 3. My gratitude to Dr. Christine Strohm, my editor at Hanser Publishers, for her encouragement, support and patience. Thanks to Steffen Jörg at Hanser Publishers for his help and for putting together the final manuscript. Above all, I thank
my wife Diane and my children Palitos and Rudi for their continuous interest in my work, their input and patience.

Summer of 2010

Tim A. Osswald
Contents

Preface to the Second Edition .. VII

Preface to the First Edition .. IX

1 **Introduction** .. 1
 1.1 Historical Background .. 1
 1.2 General Properties ... 5
 1.3 Macromolecular Structure of Polymers 9
 1.4 Molecular Weight ... 11
 1.5 Arrangement of Polymer Molecules 13
 1.5.1 Thermoplastic Polymers 14
 1.5.2 Amorphous Thermoplastics 14
 1.5.3 Semi-Crystalline Thermoplastics 16
 1.5.4 Thermosets and Crosslinked Elastomers 18
 1.6 Copolymers and Polymer Blends 18
 1.7 Polymer Additives ... 19
 1.7.1 Plasticizers .. 20
 1.7.2 Flame Retardants ... 20
 1.7.3 Stabilizers .. 20
 1.7.4 Antistatic Agents ... 20
 1.7.5 Fillers .. 21
 1.7.6 Blowing Agents .. 21
 1.8 Plastics Recycling .. 22
 1.9 The Plastics and Rubber Industries 24
 1.10 Polymer Processes .. 25
Contents

2 Mechanical Behavior of Polymers ... 29
 2.1 Viscoelastic Behavior of Polymers 29
 2.1.1 Stress Relaxation .. 29
 2.1.2 Time-Temperature Superposition 31
 2.2 The Short-Term Tensile Test .. 33
 2.2.1 Elastomers ... 33
 2.2.2 Thermoplastic Polymers .. 35
 2.3 Long-Term Tests ... 37
 2.3.1 Isochronous and Isometric Creep Plots 38
 2.3.2 Creep Rupture ... 40
 2.4 Dynamic Mechanical Tests .. 41
 2.5 Mechanical Behavior of Filled and Reinforced Polymers 44
 2.6 Impact Strength .. 47
 2.7 Fatigue ... 49
 2.8 Weathering .. 51

3 Melt Rheology ... 61
 3.1 Introduction to Rheology ... 61
 3.1.1 Shear Thinning Behavior of Polymers 62
 3.1.2 Normal Stresses in Shear Flow 64
 3.1.3 Deborah Number ... 66
 3.1.4 Rheology of Curing Thermosets 68
 3.1.5 Suspension Rheology .. 69
 3.1.6 Viscoelastic Flow Models .. 69
 3.2 Rheometry .. 71
 3.2.1 The Melt Flow Indexer .. 71
 3.2.2 The Capillary Viscometer .. 72
 3.2.3 The Cone-and-Plate Rheometer 75

4 Extrusion ... 77
 4.1 Pumping ... 77
 4.2 The Plasticating Extruder ... 80
 4.2.1 The Solids Conveying Zone 83
 4.2.2 The Melting Zone ... 87
 4.2.3 The Metering Zone .. 89
 4.3 Extrusion Dies .. 91
 4.3.1 Sheet-in Dies .. 92
 4.3.2 Tubular Dies .. 93
Mixing

5.1 Distributive Mixing 98
5.2 Dispersive Mixing 101
 5.2.1 Break-Up of Particulate Agglomerates 101
 5.2.2 Break-Up of Fluid Droplets 103
5.3 Mixing Devices 108
 5.3.1 Banbury Mixer 108
 5.3.2 Mixing in Single Screw Extruders 109
 5.3.3 Static Mixers 112
 5.3.4 Cokneader 114
 5.3.5 Twin Screw Extruders 115

Injection Molding

6.1 The Injection Molding Cycle 120
6.2 The Injection Molding Machine 125
 6.2.2 The Clamping Unit 126
 6.2.3 The Mold Cavity 127
6.3 Special Injection Molding Processes 130
 6.3.1 Multi-Component Injection Molding 131
 6.3.2 Co-Injection Molding 133
 6.3.3 Gas-Assisted Injection Molding (GAIM) 134
 6.3.4 Injection-Compression Molding 137
 6.3.5 Reaction Injection Molding (RIM) 138
 6.3.6 Liquid Silicone Rubber Injection Molding 140
6.4 Computer Simulation in Injection Molding 141
 6.4.1 Mold Filling Simulation 142
 6.4.2 Orientation Predictions 144
 6.4.3 Shrinkage and Warpage Predictions 145

Additive Manufacturing

7.1 Vat Polymerization Processes 149
 7.1.1 Stereolithography (SLA) 149
 7.1.2 Solid Ground Curing (SGC) 151
 7.1.3 Continuous Liquid Interface Production (CLIP) 152
7.2 Powder Bed Fusion 153
 7.2.1 Selective Laser Sintering (SLS) 154
 7.2.2 Multi Jet Fusion (MJF) 155
 7.2.3 Selective Heat Sintering (SHS) 157
7.3 Material Extrusion 158
7.4 Material Jetting .. 159
 7.4.1 Wax Jetting 159
 7.4.2 Polymer Jetting 160
7.5 Sheet Lamination Processes 162
 7.5.1 Laminated Object Manufacturing (LOM) 162
 7.5.2 Automated Tape Layup (ATL) and Automated Fiber Placement (AFP) 163
7.6 Binder Jetting .. 164
7.7 Indirect Additive Manufacturing 165
 7.7.1 Wax Patterns for Casting 165
 7.7.2 Binder Jetting for Casting 166
 7.7.3 Additive Manufacturing for Molds 166

8 Other Plastics Processes 171
 8.1 Fiber Spinning 171
 8.2 Film Production 172
 8.2.2 Film Blowing 174
 8.3 Blow Molding 176
 8.3.1 Extrusion Blow Molding 176
 8.3.2 Injection Blow Molding 179
 8.4 Thermoforming 180
 8.5 Calendering 183
 8.6 Coating .. 184
 8.7 Processing Reactive Polymers 187
 8.8 Compression Molding 190
 8.9 Foaming .. 194
 8.10 Rotational Molding 195
 8.11 Welding .. 197

9 Transport Phenomena in Polymer Processing 203
 9.1 Dimensional Analysis and Scaling 203
 9.1.1 Dimensional Analysis 204
 9.1.2 Scaling and Similarity 214
 9.2 Balance Equations 216
 9.2.1 The Mass Balance or Continuity Equation ... 217
 9.2.2 The Material or Substantial Derivative 218
 9.2.3 The Momentum Balance or Equation of Motion 219
 9.2.4 The Energy Balance or Equation of Energy 224
9.3 Model Simplification .. 226
 9.3.1 Reduction in Dimensionality 228
 9.3.2 Lubrication Approximation 230
9.4 Simple Models in Polymer Processing 232
 9.4.1 Pressure Driven Flow of a Newtonian Fluid through a Slit . 232
 9.4.2 Flow of a Power Law Fluid in a Straight Circular Tube
 (Hagen-Poiseuille Equation) 234
 9.4.3 Volumetric Flow Rate of a Power Law Fluid in Axial Annular
 Flow ... 235
 9.4.4 Radial Flow between Two Parallel Discs – Newtonian Model . 237
 9.4.5 Cooling or Heating in Polymer Processing 240
9.5 Mechanics of Particulate Solids 245
 9.5.1 Adhesive Forces and Flowability 247
 9.5.2 Flowability and the Yield Locus 249
 9.5.3 Momentum Balance and Constitutive Equations for
 Particulate Solids ... 251
 9.5.4 Friction, Compaction, and Density Distribution 253

10 Modeling Polymer Processes 259
 10.1 Single Screw Extrusion – Isothermal Flow Problems 259
 10.1.1 Newtonian Flow in the Metering Section of a Single Screw
 Extruder .. 261
 10.1.2 Cross Channel Flow in a Single Screw Extruder 263
 10.1.3 Newtonian Isothermal Screw and Die Characteristic Curves .. 266
 10.2 Extrusion Dies – Isothermal Flow Problems 270
 10.2.1 End-Fed Sheet Die .. 270
 10.2.2 Coat-Hanger Die .. 273
 10.2.3 Extrusion Die with Variable Die Land Thicknesses ... 276
 10.2.4 Fiber Spinning ... 277
 10.2.5 Wire Coating Die ... 281
 10.3 Processes That Involve Membrane Stretching 283
 10.3.1 Film Blowing ... 284
 10.3.2 Thermoforming .. 289
 10.4 Calendering – Isothermal Flow Problems 291
 10.4.1 Newtonian Model of Calendering 292
 10.4.2 Shear Thinning Model of Calendering 300
 10.4.3 Calender Fed with a Finite Sheet Thickness 303
 10.5 Injection Molding – Isothermal Flow Problems 304
 10.5.1 Balancing the Runner System in Multi-Cavity Injection Molds 304
 10.5.2 Radial Flow between Two Parallel Discs 307
10.6 Non-Isothermal Flows .. 310
 10.6.1 Non-Isothermal Shear Flow .. 311
 10.6.2 Non-Isothermal Pressure Flow through a Slit 313

10.7 Melting ... 315
 10.7.1 Melting and Solidification Time 315
 10.7.2 Melting with Drag Flow Melt Removal 319
 10.7.3 Melting Zone in a Plasticating Single Screw Extruder 325
 10.7.4 Melting Inside a Fused Filament Fabrication (FFF) Nozzle 332

10.8 Curing Reactions during Processing 341

10.9 Estimating Injection Pressure and Clamping Force 343

Index ... 359
More importantly, each industry utilizes its own sets of standards to evaluate the materials. Furthermore, whole companies concentrate on either one or the other industry.

1.10 Polymer Processes

The two main plastics processing techniques are the *extrusion* and *injection molding processes*. As covered in detail in Chapters 4 and 6, the fundamental element of both these manufacturing methods is the screw and heated barrel system, as depicted in Figure 1.20.
Figure 1.20 Plastics processing break down

The right column in the figure first presents extrusion, with its two major categories, the single screw extruder and the twin screw extruder. The twin screw system is an arrangement of two screws inside a double or twin barrel, primarily used for mixing (compounding). Mixing and compounding is covered in Chapter 5 of this book. Both, the single and twin screw systems, are used for melting the resin, as well as for pumping the polymer melt through the extrusion die. The pumping action is accomplished by generating the pressure required to push the melt through...
the die. The die in the extrusion systems are used to shape the material into a continuous product, such as a film, a plate, a tube, a strand, or any desired profile. In most cases, twin screw extruder dies produce strands that are cut into pellets of the compounded plastic or resin, which is used in subsequent extrusion or injection molding processes. The pellets that result from a twin screw compounding process are typically pellets of polymer blends.

Injection molding is perhaps the most widely and versatile process in the plastics industry. Figure 1.20 presents the process with some of its variations, such as two-component injection molding, where one plastic is over-molded on a pre-injected substrate. Related to the two-component injection process is the co-injection molding process, where one resin displaces another creating a product with a skin made up of the first resin, and a central core of the second material. If the second material is a fluid, such as nitrogen or water, one creates a hollow part. This type of process can be referred to as fluid assisted injection molding. The two commercial fluid assisted processes are the gas-assisted injection molding and the water assisted injection molding processes.

Problems

1. Estimate the degrees of polymerization of a polyethylene with an average molecular weight between 150,000 and 200,000.

2. What is the maximum possible separation between the ends of a polystyrene molecule with a molecular weight of 160,000?

3. Write the molecular structure for the following polymers: polyacetal, polycarbonate, polyvinyl chloride, polystyrene, and polytetrafluoroethylene.

References

test results remains the same, except for a horizontal shift to the left or right, representing lower or higher response times, respectively.

2.1.2 Time-Temperature Superposition

The time-temperature equivalence seen in stress relaxation test results can be used to reduce data at various temperatures to one general *master curve* for a reference temperature, T. To generate a master curve at any reference temperature, the curves shown on the left of Figure 2.1 must be shifted horizontally, holding the reference curve fixed. The master curve for the data in Figure 2.1 is on the right of the figure. Each curve was shifted horizontally until the ends of all the curves superposed. The amount that each curve was shifted can be plotted with respect to the temperature difference taken from the reference temperature. For the data in Figure 2.1, the shift factor is shown in Figure 2.2. It is important to point out here that the relaxation master curve represents a material at a single temperature, but depending on the time scale, it can be regarded as a Hookean solid, or a viscous fluid. In other words, if the material is loaded for a short time, the molecules are not allowed to move and slide past each other, resulting in a perfectly elastic material. In such a case, the deformation is fully recovered. However, if the test specimen is maintained deformed for an extended period of time, such as 100 hours for the 25 °C case, the molecules will have enough time to slide and move past each other, fully relaxing the initial stresses, resulting in permanent deformation. For such a time scale the material can be regarded as a fluid.

![Figure 2.2](image)

Figure 2.2 Shift factor as a function of temperature used to generate the master curve plotted in Figure 2.1
WLF Equation [2]

The amount relaxation curves must be shifted in the time axis to line-up with the master curve at a reference temperature is represented by

\[
\log t - \log t_{\text{ref}} = \log \left(\frac{t}{t_{\text{ref}}} \right) = \log a_T
\]

(2.2)

Although the results in Figure 2.2 were shifted to a reference temperature of 298 K (25 °C), Williams, Landel, and Ferry [2] chose \(T_{\text{ref}} = 243 \) K for

\[
\log a_T = \frac{-8.86(T - T_{\text{ref}})}{101.6 + T - T_{\text{ref}}}
\]

(2.3)

which holds for nearly all amorphous polymers if the chosen reference temperature is 45 K above the glass transition temperature. In general, the horizontal shift, \(\log a_T \), between the relaxation responses at various temperatures to a reference temperature can be computed using the well known Williams-Landel-Ferry [2] (WLF) equation. The WLF equation is

\[
\log a_T = \frac{-C_1(T - T_{\text{ref}})}{C_2 + T - T_{\text{ref}}}
\]

(2.4)

where \(C_1 \) and \(C_2 \) are material dependent constants. It has been shown that with \(C_1 = 17.44 \) and \(C_2 = 51.6 \), Eq. (2.4) fits well for a wide variety of polymers as long as the glass transition temperature is chosen as the reference temperature. These values for \(C_1 \) and \(C_2 \) are often referred to as universal constants. Often, the WLF equation must be adjusted until it fits the experimental data. Master curves of stress relaxation tests are important because the polymer’s behavior can be traced over much longer periods than those that can be determined experimentally.

Boltzmann Superposition Principle

In addition to the time-temperature superposition principle (WLF), the Boltzmann superposition principle is of extreme importance in the theory of linear viscoelasticity. The Boltzmann superposition principle states that the deformation of a polymer component is the sum or superposition of all strains that result from various loads acting on the part at different times. This means that the response of a material to a specific load is independent of pre-existing loads. Hence, we can compute the deformation of a polymer specimen upon which several loads act at different points in time by simply adding all strain responses.
2.2 The Short-Term Tensile Test

The most commonly used mechanical test is the short-term stress-strain tensile test. Stress-strain curves for selected polymers are displayed in Figure 2.3 [3]. For comparison, the figure also presents stress-strain curves for copper and steel. Although they have much lower tensile strengths, many engineering polymers exhibit much higher strains at break than metals.

![Stress-strain curves for several materials](Comparing stress-strain behavior)

Figure 2.3 Tensile stress-strain curves for several materials

The next two sections discuss the short-term tensile test for cross-linked elastomers and thermoplastic polymers separately. The main reason for separating these two polymers is that the deformation of a crosslinked elastomer and an uncrosslinked thermoplastic differ greatly. The deformation in a crosslinked polymer is generally reversible, while the deformation in typical uncross-linked polymers is associated with molecular chain relaxation, making the process time-dependent and irreversible.

2.2.1 Elastomers

The main feature of cross-linked elastomeric materials is that they can undergo large, reversible deformations. This is because the curled polymer chains stretch...
3.2.2 The Capillary Viscometer

The most common and simplest device for measuring viscosity is the capillary viscometer. Its main component is a straight tube or capillary, and it was first used to measure the viscosity of water by Hagen [22] and Poiseuille [23]. A capillary rheometer has a pressure driven flow for which the shear rate is maximum at the wall and zero at the center of the flow, making it a non-homogeneous flow [24].

Since pressure driven viscometers employ heterogeneous flows, they can only measure steady shear functions such as viscosity, $\eta(\dot{\gamma})$. However, they are widely used because they are relatively inexpensive and simple to operate. Despite their simplicity, long capillary viscometers provide the most accurate viscosity data available. Another major advantage is that the capillary rheometer has no free surfaces in the test region, unlike other types of rheometers, such as the cone and plate rheometer discussed next. When the strain rate dependent viscosity of polymer melts is measured, capillary rheometers are capable of obtaining such data at shear...
rates greater than 10 s\(^{-1}\). This is important for processes with higher rates of deformation such as mixing, extrusion, and injection molding. Because its design is basic and it only needs a pressure head at its entrance, the capillary rheometer can easily attach to the end of a screw- or ram-type extruder for online measurements. This makes the capillary viscometer an efficient tool for industry. The basic features of the capillary rheometer are shown in Figure 3.13.

Figure 3.13 Schematic diagram of a capillary rheometer

A capillary tube of radius \(R\) and length \(L\) is connected to the bottom of a reservoir. Pressure drop and flow rate through this tube are used to determine the viscosity. At the wall, the shear stress is:

\[
\tau_w = \frac{R(p_0 - p_L)}{2L} = \frac{R\Delta p}{2L} \tag{3.11}
\]

Equation (3.11) requires that the capillary be long enough to assure fully developed flow, where end effects are insignificant. However, because of entrance effects, the actual pressure profile along the length of the capillary exhibits curvature. The effect is shown schematically in Figure 3.14 [24] and was corrected by Bagley [25] using the end correction \(e\):

\[
\tau_w = \frac{R(p_0 - p_L)}{2(L / D + e)} \tag{3.12}
\]

The correction \(e\) at a specific shear rate can be found by plotting pressure drop for various capillary \(L / D\) ratios, as shown in Figure 3.15.
The cone-and-plate rheometer can be used to measure viscosity as well as first normal stress difference.

Figure 3.14 Entrance effects in a typical capillary viscometer

Figure 3.15 Bagley plots for two shear rates

The equation for shear stress is then

\[\tau_{rz} = \frac{r}{R} \tau_w \] \hspace{1cm} (3.13)

To obtain the shear rate at the wall the Weissenberg-Rabinowitsch [26] equation can be used

\[\dot{\gamma}_w = \frac{1}{4} \dot{\gamma}_{aw} \left(3 + \frac{d(\ln Q)}{d(\ln \tau)} \right) \] \hspace{1cm} (3.14)

where, \(\dot{\gamma}_{aw} \) is the apparent or Newtonian shear rate at the wall and is written as

\[\dot{\gamma}_{aw} = \frac{4Q}{\pi R^3} \] \hspace{1cm} (3.15)
The shear rate and shear stress at the wall are now known. Therefore, using the measured values of the flow rate, Q, and the pressure drop, $p_0 - p_L$, the viscosity is calculated using

$$\eta = \frac{\tau_w}{\dot{\gamma}_w}$$

(3.16)

3.2.3 The Cone-and-Plate Rheometer

The cone-and-plate rheometer is another rheological measuring device widely accepted in the polymer industry. Here, a disc of polymer is squeezed between a plate and a cone, as shown in Figure 3.16. When the disc is rotated, the torque and the rotational speed are related to the viscosity and the force required to keep the cone at the plate is related to the first normal stress difference. The secondary normal stress difference is related to the pressure distribution along the radius of the plate.

![Figure 3.16 Schematic diagram of a cone-plate rheometer](image)

Problems

1. Estimate the consistency index, m, and the power-law index, n, for the ABS at 220 °C presented in Figure 3.2.
2. Estimate the consistency index, m, and the power-law index, n, for the PC at 340 °C presented in Figure 3.2.
3. Use Eq. (3.3) to fit the consistency index for the PC presented in Figure 3.2.
4. You are to extrude a polystyrene sheet through a die with a land length of 0.1 meters. What is the maximum speed you can extrude the sheet if the relaxation time of the polystyrene is 0.5 seconds for the given processing temperature?
5. Estimate the consistency index of the ABS at 220 °C after adding 20% by volume of micro glass beads.

6. How important is the elastic response inside an internal batch mixer when the rotors turn at 60 rpm, if the relaxation time of the rubber compound is 5 seconds?

References

[21] ASTM, 8.01, Plastics (I), ASTM (1994), Philadelphia
6.3.4 Injection-Compression Molding

The injection-compression molding (ICM) is an extension of conventional injection molding by incorporating a mold compression action to compact the polymer material for producing parts with dimensional stability and surface accuracy. In this process, the mold cavity has an enlarged cross-section initially, which allows polymer melt to proceed readily to the extremities of the cavity under relatively low pressure. At some time during or after filling, the mold cavity thickness is reduced by a mold-closing movement, which forces the melt to fill and pack out the entire cavity. This mold compression action results in a more uniform pressure distribution across the cavity, leading to more homogeneous physical properties and less shrinkage, warpage, and molded-in stresses than are possible with conventional injection molding. The injection-compression molding process is schematically depicted in Figure 6.22. A potential drawback associated with the two-stage sequential ICM is the hesitation or witness mark resulting from flow stagnation during injection-compression transition. To avoid this surface defect and to facilitate continuous flow of the polymer melt, simultaneous ICM activates mold compression while resin is being injected. The primary advantage of ICM is the ability to produce dimensionally stable, relatively stress-free parts, at a low pressure, clamp tonnage (typically 20 to 50% lower than with injection molding), and reduced cycle time. For thin-wall applications, difficult-to-flow materials, such as polycarbonate, have been molded as thin as 0.5 mm. Additionally, the compression of a relatively circular charge significantly lowers molecular orientation, consequently leading to reduced birefringence, improving the optical properties of a finished part. ICM is the most suitable technology for the production of high-quality and cost-effective CD-audio/ROMs as well as many types of optical lenses.
6.3.5 Reaction Injection Molding (RIM)

Reaction injection molding (RIM) involves mixing of two reacting liquids in a mixing head before injecting the low-viscosity mixture into mold cavities at relatively high injection speeds. The liquids react in the mold to form a cross-linked solid part. Figure 6.23 presents a schematic of a high pressure polyurethane injection system. The mixing of the two components occurs at high speeds in impingement mixing heads. Low pressure polyurethane systems, such as the one schematically presented in Figure 6.24, require mixing heads with a mechanical stirring device. The short cycle times, low injection pressures, and clamping forces, coupled with superior part strength and heat and chemical resistance of the molded part make RIM well suited for the rapid production of large, complex parts, such as automotive bumper covers and body panels. Reaction injection molding is a process for rapid production of complex parts directly from monomers or oligomers. Unlike thermoplastic injection molding, the shaping of solid RIM parts occurs through polymerization (cross-linking or phase separation) in the mold rather than solidification of the polymer melts. RIM is also different from thermoset injection molding in that the polymerization in RIM is activated via chemical mixing rather than thermally activated by the warm mold. During the RIM process, the two liquid reactants (e.g., polyol and an isocyanate, which were the precursors for polyurethanes) are metered in the correct proportion into a mixing chamber where the streams impinge at a high velocity and start to polymerize prior to being injected into the mold. Due to the low-viscosity of the reactants, the injection pressures are typically very low, even though the injection speed is fairly high. Because of the fast reaction rate, the final parts can be de-molded in typically less than one minute. There are a number of RIM variants. For example, in the so-called reinforced reaction injection molding (RRIM) process, fillers, such as short glass fibers or glass flakes, have been used to enhance the stiffness, maintain dimensional stability, and reduce material cost of the part. As another modification of RIM, structural reaction injection molding (SRIM) is used to produce composite parts by impregnating a reinforcing glass fiber-mat (preform) preplaced inside the mold with the curing resin. Resin transfer molding (RTM) is very similar to SRIM in that it also employs reinforcing glass fiber-mats to produce composite parts; however, the resins used in RTM are formulated to react more slowly, and the reaction is thermally activated as it is in thermoset injection molding. The capital investment for molding equipment for RIM is lower compared with that for injection molding machines. Finally, RIM parts generally exhibit greater mechanical and heat-resistant properties due to the resulting cross-linking structure. The mold and process designs for RIM become generally more complex because of the chemical reaction during processing. For example, slow filling may cause premature gelling, which results in short shots, whereas fast filling may induce turbulent flow, creating internal porosity. Moreover, the low viscosity of the material tends to cause flash that requires trimming. Another disadvantage of RIM is that the reaction with isocyanate requires special environmental precaution due to health issues. Finally, like many other thermosetting materials, the recycling of RIM parts is not as easy as that of thermoplastics. Polyurethane materials (rigid, foamed, or elastomeric) have traditionally been synonymous with RIM as they and urea urethanes account for more than 95% of RIM production.
Figure 6.23 Schematic diagram of a high pressure polyurethane injection system.

Figure 6.24 Schematic diagram of a low pressure polyurethane injection system
When we think of the history of additive manufacturing (AM), also known as 3D printing, at first glance it seems to be a recent development and some suggest the technology is a main accelerator for the new industrial revolution in the context of digital production. However, the idea is more than 100 years old, and the first patent application, for a method for producing topographical contour maps by cutting wax sheets and stacking them, was granted to J.E. Blanther in 1892 [1]. This concept was applied to a manufacturing process in 1984, when the patent for stereolithography was filed [2]. Unfortunately, the filing of those patents did not lead to a breakthrough of the technologies in the beginning as computational power was poor and the part properties were just good enough for geometrical prototyping applications. Today, over 30 years later, what was first called rapid prototyping has been renamed additive manufacturing as it expresses the original idea of the technology and not the initial use. Numerous technologies exist that are used to automatically manufacture near net-shape parts directly from CAD data. After the main patents ran out in the field of Fused Deposition Modeling (FDM) and stereolithography (SLA) the biggest hype started for the use of additive manufacturing at home and on desktops. This led to new ideas and innovations from startups but also to huge investments of global companies in various areas ranging from software, machines, and materials to applications.

Traditionally, in additive manufacturing, the three-dimensional parts are built layer by layer, which is why these processes are often referred to as layered manufacturing - basically a 2.5-D method. With new technologies, the idea of building a part voxel by voxel, defining infinitesimal volumes with different properties, is gaining more importance, as new file formats, such as 3MF\(^2\), and today’s computational capabilities are able to process more than just one simple layer at a time. Thus, recent trends are moving additive manufacturing towards true three-dimensional freeform manufacturing. In addition to usage of the various additive manufacturing processes to produce prototypes or actual products, it is sometimes also used in an in-
direct way, such as for the production of molds or tools, a field referred to as *additive tooling*.

Table 7.1 presents a summary of additive manufacturing techniques broken down into the suggested ISO/ASTM additive manufacturing categories and names [3]. The table presents alternative names, often coined as tradenames by the original inventors and companies that commercialized the different techniques. Additive processes can be classified by the initial state of the material, which can be gaseous, liquid, or solid. The various categories are presented in more detail in the subsequent sections.

The general additive manufacturing technique is schematically presented in Figure 7.1. The process begins by transforming a CAD model into a surface-based file format such as the STL format, which is still a standard today. The STL format transforms a complex CAD surface representation to a surface approximated with triangles, after which it is more easily divided into two dimensional slices, which are then physically reproduced using the AM process. Depending on which technology is used, the slices can have a height of a few nanometers to some millimeters, which influences the stair-stepping effect on the generated parts. As mentioned, today there are attempts to define small volumes, so called voxels, instead of layers, which leads to a need for new file formats. These file formats provide the possibility to define different physical properties, such as color, stiffness, density, or conductivity, directly in the transfer file format, instead of generating these subsequently on the machine. These formats might also be helpful and needed for those new technologies that process in volumes instead of layers.

![Figure 7.1 Schematic workflow of a typical additive manufacturing technique](image)

3) The name STL is derived from stereolithography, originally developed by 3D Systems to represent complex CAD geometries. However, because of its surface representation using triangles, STL is often assumed to be an acronym for Standard Transformation Language.
7.1 Vat Polymerization Processes

As the name implies, vat polymerization additive manufacturing processes make use of a vat or container filled with a liquid or unpolymerized photopolymer. The part is built up inside this container by curing or polymerizing the resin layer by layer using a defined light source such as ultraviolet light. Various vat polymerization processes are discussed below.

7.1.1 Stereolithography (SLA)

Stereolithography (SLA), schematically depicted in Figure 7.2, is a technique where an ultraviolet laser beam is used to cure a liquid photopolymer layer by layer. The method uses a platform that sits in a vat containing a liquid epoxy resin or an acrylate resin. During the build process, the platform sits just below the surface of the resin and an elevator is used to incrementally lower the platform after each layer of the photo-sensitive polymer has been exposed to the ultraviolet light by the highly focused laser beam. The laser scans the predefined area according to the slice information and cures the resin in a defined penetration depth. Subsequently, the plat-
Figure 9.23 Schematic of a semi-infinite cooling body. Denoted are depths at which 50% and 1% of the temperature difference is felt.

Figure 9.24 Dimensionless temperature as a function of dimensionless time and thickness.

Table 9.6 Penetration Thickness and Characteristic Times in Heating and Cooling of Polymers

<table>
<thead>
<tr>
<th>L</th>
<th>$T = \frac{L^2}{\alpha}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 μm</td>
<td>0.025 s</td>
</tr>
<tr>
<td>1 mm</td>
<td>2.5 s</td>
</tr>
<tr>
<td>2 mm</td>
<td>10 s</td>
</tr>
<tr>
<td>10 mm</td>
<td>250 s</td>
</tr>
</tbody>
</table>
For example, Figure 9.23 presents two depths, one where 1% and another where 50% of the temperature differential is felt. The 1% temperature differential is defined by

\[T = T_0 + 0.01(T_S - T_0) \]

\((9.112) \)

or

\[0.99 = \text{erf} \left(\frac{x_{01}}{2\sqrt{\alpha t}} \right) \]

\((9.113) \)

which can be used to solve for the given time that leads to a 1% temperature change for a given depth \(x_{01} \):

\[t_{01} = \frac{x_{01}^2}{13.25\alpha} \]

\((9.114) \)

The same analysis can be carried out for a 50% thermal penetration time:

\[t_{50} = \frac{x_{50}^2}{0.92\alpha} \]

\((9.115) \)

Hence, the time when most of the temperature difference is felt by a part of a given thickness is of the order

\[t = \frac{L^2}{\alpha} \]

\((9.116) \)

which can be used as a characteristic time for a thermal event that takes place through diffusion. Because polymers have a thermal diffusivity of about \(10^{-7} \text{m}^2/\text{s} \), we can easily compute the characteristic times for heating or cooling as a function of part thickness, \(2L \). Some characteristic times are presented as a function of thickness in Table 9.6.

With a characteristic time for heat conduction we can now define a dimensionless time using

\[Fo = \frac{L^2}{\alpha t} \]

\((9.117) \)

which is the well known Fourier number.

Cooling and heating of a finite thickness plate. A more accurate solution of the above problem is to determine the cooling process of the actual part, hence, one of finite thickness \(2L \). For the heating process of a finite thickness plate we can solve Eq. (9.109) to give

\[\frac{T - T_S}{T_S - T_0} = 1 - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cos \left(\frac{(2n-1)\pi x}{L} \right) \exp \left(-\frac{(2n-1)^2\pi^2}{2}Fo \right) \]

\((9.118) \)
Figure 9.25 presents the temperature history at the center of the plate and Figure 9.26 shows a comparison between the prediction and a measured temperature development in an 8 mm thick PMMA plate. As can be seen, the model does a good job of approximating reality.

Figure 9.25 Center-line temperature history during heating of a finite thickness plate. Note that cooling is represented by the same curve using $1 - \Theta$ as the dimensionless temperature.

Figure 9.26 Experimental and computed center-line temperature history during heating of an 8 mm thick PMMA plate. The initial temperature $T_0 = 20 °C$ and the heater temperature $T_s = 140 °C [7]$

Cooling and heating of a finite thickness plate using convection. As mentioned earlier, cooling with air or water is very common in polymer processing. For example, the
cooling of a film during film blowing is controlled by air blown from a ring located near the die exit. In addition, many extrusion operations extrude into a bath of running chilled water. Here, the controlling parameter is the heat transfer coefficient \(h \), or in dimensionless form the Biot number, \(Bi \), given by

\[
Bi = \frac{hL}{k}
\]

(9.119)

An approximate solution for the convective cooling of a plate of finite thickness is given by Agassant et al. [15]

\[
\frac{T - T_f}{T_0 - T_f} \approx e^{-Bi\tau} \cos \left(\sqrt{\frac{Bi}{L}} \right)
\]

(9.120)

The center-line temperature for plates of finite thickness is given in Figure 9.26 and a comparison between the prediction and experiments for an 8 mm thick PMMA plate cooled with a heat transfer coefficient, \(h \), of 33 W/m²/K is given in Figure 9.27. As can be seen, theory and experiment are in relatively good agreement.

![Figure 9.27](image)

Figure 9.27 Center-line temperature history of an 8 mm thick PMMA plate during convective heating inside an oven set at 155 °C. The initial temperature was 20 °C. The predictions correspond to a Biot number, \(Bi = 1.3 \) or a corresponding heat transfer coefficient, \(h = 33 \text{ W/m}^2/\text{K} \) [7]

9.5 Mechanics of Particulate Solids

Particulate solids, powders, or granulated materials are encountered everywhere in polymer processing. The size of the particles can be as large as several millimeters, corresponding to plastic pellets, to a few micrometers in size for fine powders. Understanding the movement and compaction of particulate solids is not only important when dealing with processes such as rotational molding and selective laser
Index

A
ABS 51
acrylonitrile-butadiene-styrene (ABS) 19
addition polymerization 9, 187
additive manufacturing 147
additives 19
additive tooling 166
adhesive forces 247
air ring 174
alternating copolymers 19
amorphous thermoplastic 14
annual polymer production 3
antistatic agents 20
approach or land 92
axial annular flow 235

B
Bagley 73
balance equations 216
Banbury mixer 108
barrier flights 89
biaxial molecular orientation 179
biaxial stretching 174
binder jetting 164, 166
Biot number 213
bipolymer 18
block copolymers 19
blowing agents 21
blow molding 176
branching 12
Brinkman number 213, 259, 260, 322, 324, 344

C
calendering 183, 291
capillary number 103, 213
capillary viscometer 72
carbon black 101
cast film extrusion 172
Castro-Macosko Curing Model 189
Cauchy momentum equations 223
cavity transfer mixing section 111
check valve 126
chemical foaming 195
clamping force 343
clamping unit 126
closed discharge 83
cocoon-hanger die 273
co-cocoon-hanger sheeting die 92
co-injection molding 133
cokneader 114
collapsing rolls 174
compaction 253
compression molding 190
condensation polymerization 11, 187
cone-and-plate rheometer 75
consistency index 63
continuity equation 217
cooling 240
cooling system 128
copolymer 19
co-rotating twin screw extruder 116
counter-rotating twin screw extruder 116
CRD mixing section 112
creep rupture 40
creep test 37
critical capillary number 103
cross channel flow 263
cross-head tubing die 93
crosslinked elastomers 18
cross-linking 18
curing reactions 341
curing thermoset 68
curtain coating 184

d
Damköhler number 213
Deborah number 66, 213
degradation 123
degree of cure 68
deviatoric stress 221
die characteristic curves 266
die lips 92
differential scanning calorimeter (DSC) 188
dimensional analysis 203
dioctylphthalate 20
dip coating 184
dispersed melting 114
dispersive mixing 101
distributive mixing 98
drag flow melt removal 319
drop break-up 105
dynamic fatigue 49
dynamic mechanical tests 41
E
ejector system 128
elastic shear modulus 43
end-fed sheeting die 270
energy balance 224
equation of energy 224
equation of motion 219
Erwin's ideal mixer 101
ethylene 10
extrudate swell 65, 66
extruder dimensions 81
extrusion blow molding 176
extrusion die 91, 270
F
fatigue 49
FDM 159
FFF 158
fiber orientation 193
fiber reinforced polymer (FRP) 44
fiber spinning 171, 277
fillers 21
film blowing 174, 284
flash 123
flex lips 92
flowability 247
flow number 103
foaming 195
force balance 219, 220
Fourier number 213
freezing line 174
friction 253
fused deposition modeling 159
fused filament fabrication 158

G
gate 127
glass mat reinforced thermoplastic 191
glass transition temperature 14, 16
Graetz number 214
graft copolymers 19
grooved feed extruders 84
grooved feed section 84

H
Hagen-Poiseuille equation 234
Halpin and Tsai 44
heating 240
high impact polystyrene (PS-HI) 19
hydraulic clamping unit 127
hydrostatic stress 221

I
impact strength 47
indirect additive manufacturing 165
injection blow molding 179
injection molding 119, 304
injection molding cycle 120
injection pressure 343
internal batch mixer 108
isochronous creep plots 38
isometric creep plots 38

K
knife coating 184
Kronecker delta 222

L
lamellar crystal 16
laminar mixing 98
laminated object manufacturing 162
LDPE 65
LOM 162
long fiber composites 44
loss modulus 43
loss tangent 43
lubrication approximation 230

M
Maddock 111
Manas-Zloczower number 214
manifold 92
mass balance 217
material derivative 218
material extrusion 158
material jetting 159
mechanical properties 29
melt film 87
melt flow indexer 71
melt fracture 66
melting 315
melting or transition zone 87
melting temperature 16
melting time 315
melting zone 325
melt pool 87
membrane stretching 283
metering section 261
metering zone 89
mixing devices 108
MJF 155
modeling 259
model simplification 226
mold cavity 128
molding diagram 123
molecular weight 11
momentum balance 219, 251
morphology development 219, 251
morphology development in polymer blends 97
multi-cavity injection molds 304
multi-color injection molding 131
Multi Jet Fusion 155

N
Nahme-Griffith number 214
Navier-Stokes equations 223
Newtonian plateau 63
nitrogen compounds 21
non-isothermal flows 310
normal stress coefficients 64
normal stresses 64
nozzle 126
nucleating agents 22
Nusselt number 214

O
open discharge 83
optimal orientation 100
optimum extruder geometry 269

P
parison 176
parison programming 176
particulate solid agglomerates 101
particulate solids 245
Paul Troester Maschinenfabrik 77
Péclet number 214
phenol-formaldehyde 18
phenolic 18
physical foaming 194
pinch-off 180
pineapple mixing section 111
pin mixing section 110
plasticating single screw extruder 80, 325
plasticizers 20
plug-assist thermoforming 181
polyethylene 10
polyisobutylene 30
polypropylene 41
polypropylene copolymer 37
powder bed fusion 153
power law index 63
power-law model 63
Prandtl number 214
pressure 222
pressure driven flow 232
properties 7
pumping systems 77

Q
QSM-extruder 110

R
radial flow 237, 307
random copolymers 19
Rayleigh disturbances 104
reactive polymers 187
reduced first normal stress difference 65
reduced viscosity 65
reinforced polymers 44
residual stress 124, 193
reverse draw thermoforming 182
Reynolds number 214
rheology 61
– of curing thermosets 68
roll coating 184
rotational molding 195
rubber 2
rubber compound 101
rubber elasticity 33
runner system 304

S
scaling 203
Schmidt number 214
screen pack 171
screw characteristic curves 82, 266
selective heat sintering 157
self-cleaning 115
semi-crystalline thermoplastic 16
shark skin 66
shear thinning behavior 62
sheeting die 92
sheet lamination processes 162
sheet molding compound 191
short fiber composites 44
short shot 123
short-term tensile test 33
shrinkage 193
SHS 157
single screw extruder 79
single screw extrusion 259
sink marks 124
slide coating 184
sliding plate rheometer 63
slit flow 232
smooth barrel 82
S-N curves 49
solid bed 87
solidification time 315
solids conveying zone 83
Song of Deborah 67
sperulitic structure 16
spider die 93
spinneret 171
spiral die 94
sprue and runner system 127
spurt flow 66
stabilizers 20
static mixers 112
stick-slip 66
storage modulus 43
stress relaxation 29
structure of polymers 9
stuffer machine 119
styrene-butadiene-rubber (SBR) 19
substantial derivative 218
supporting rheology 69

T
terpolymer 19
thermal fatigue 50
thermoforming 180, 289
thermosets 18
toggle mechanism 126
total stress 221
tube phenomena 203
tubular die 93
twin screw extruders 85, 115

U
unsaturated polyester 187
unwrapped screw channel 261
upper bound 100
U.S. polymer production 4

V
vat polymerization 149
vinyl ester 68
viscoelastic flow models 69
viscoelasticity 29
viscosity pump 262
volume-specific energy to fracture 48

W
warpage 124, 193
wax jetting 159
wax patterns 165
weathering 51
Weissenberg number 214
Weissenberg-Rabinowitsch equation 74
wind-up station 183
wire coating 184, 281
WLF equation 32

Y

yield locus 249