Sample Pages

Die Design for Extrusion of Plastic Tubes and Pipes

Sushil Kainth

ISBN (Book): 978-1-56990-672-9

For further information and order see

www.hanserpublications.com (in the Americas)
www.hanser-fachbuch.de (outside the Americas)

© Carl Hanser Verlag, München
Contents

Preface .. V

About the Author .. VII

1 Die Design: Basic Considerations .. 1
 1.1 Die Definition and Purpose ... 1
 1.2 A Spider Supported Die Head 3
 1.2.1 Flange Adapter .. 3
 1.2.2 Spider Cone or Torpedo 4
 1.2.3 Spider .. 5
 1.2.4 Connecting Mandrel .. 6
 1.2.5 Connecting Ring .. 7
 1.2.6 Die Clamp or Die-Adjusting Ring 7
 1.2.7 Die or Bush .. 8
 1.2.8 Pin or Mandrel .. 9

2 Project Planning ... 11
 2.1 Data Collection .. 11
 2.1.1 Product .. 12
 2.1.2 Product Range .. 13
 2.1.3 Wall Thickness .. 14
 2.2 Material ... 14
 2.2.1 Rheology Data .. 15
 2.2.2 Thermodynamic Properties 17
 2.3 Equipment .. 18
 2.3.1 Extruder ... 19
 2.3.2 Calibrator .. 19
 2.3.3 Cooling Bath .. 19
 2.3.4 Haul-off ... 19
3 Design of a Simple Die .. 23
 3.1 Design Brief 23
 3.2 Design of Pin and Die Bush 24
 3.2.1 Draw Down Ratio 25
 3.2.2 Draw Down Ratio Balance 27
 3.2.3 Die Land .. 28
 3.2.4 Convergent Section 29
 3.3 Relaxation Chamber 31
 3.4 Spider ... 33
 3.5 Cone or Torpedo 37
 3.6 Flange Adapter 38
 3.7 Die Clamp Plate 39
 3.8 Screw Fixings 39
 3.9 Heating of Die 41
 3.10 Detailed Drawings 42
 3.10.1 Die Bush 42
 3.10.2 Pin ... 43
 3.10.3 Clamp Plate 44
 3.10.4 Connecting Ring 45
 3.10.5 Connecting Mandrel 45
 3.10.6 Spider ... 46
 3.10.7 Torpedo or Cone 47
 3.10.8 Flange Adapter 48
 3.11 References .. 49

4 Simulation of Melt Flow 51
 4.1 Experimental Approach 51
 4.2 Mathematical Calculations of the Flow Characteristics 52
 4.3 Computer Simulation 59
 4.4 References .. 64
6 Monolayer Die for Tubes ∅1 mm to ∅6 mm 107
 6.1 ∅1 mm to ∅6 mm Fixed Center in Line Die ... 107
 6.1.1 Design Brief ... 107
 6.1.2 Draw Down Ratios and Tooling Sizes ... 109
 6.1.3 Design Procedure .. 109
 6.1.4 Die Simulation (∅2 mm Tube) .. 112
 6.1.4.1 Die Geometry .. 112
 6.1.4.1.1 Feed Section ... 112
 6.1.4.1.2 Distribution Section ... 113
 6.1.4.1.3 Annuli or Tooling Section 115
 6.1.4.2 Project Definition .. 116
 6.1.4.2.1 Material Information ... 116
 6.1.4.2.2 Processing Conditions .. 116
 6.1.4.3 Simulation Results .. 117
 6.1.4.3.1 Feed Section .. 117
 6.1.4.3.2 Distribution Section or Spiral Mandrel Part 117
 6.1.4.3.3 Tooling Section (Annuli) ... 118
 6.1.4.3.4 Correction of Tooling Section 119
 6.1.5 Die Simulation (∅6 mm Tube) .. 121
 6.1.5.1 Die Geometry .. 121
 6.1.5.1.1 Dimensions of Feed Section 121
 6.1.5.1.2 Dimensions of Distribution Section 121
 6.1.5.1.3 Dimensions of Tooling Section 121
 6.1.5.2 Project Definition .. 122
 6.1.5.2.1 Material Information ... 122
 6.1.5.2.2 Processing Conditions .. 122
 6.1.5.3 Simulation Results .. 122
 6.1.5.3.1 Feed Section .. 122
 6.1.5.3.2 Distribution Section or Spiral Mandrel Part 123
 6.1.5.3.3 Tooling Section (Annuli) ... 124

7 Monolayer Die for Tubes ∅4 mm to ∅16 mm .. 127
 7.1 Initial Die Design ... 129
 7.1.1 Feed Section ... 131
 7.1.2 Distribution or Spiral Mandrel Section .. 132
 7.1.3 Annuli or Tooling Section ... 133
 7.2 Project Definition ... 135
 7.2.1 Material Information ... 135
 7.2.2 Processing Conditions ... 135
7.3 Simulation Results .. 136
 7.3.1 Feed Section .. 136
 7.3.2 Distribution Section or Spiral Mandrel 137
 7.3.3 Sections Past the Mandrel 139

7.4 Ø4.00 mm Tube Die .. 139
 7.4.1 Feed Section .. 141
 7.4.2 Distribution Section or Spiral Mandrel 141
 7.4.3 Sections Past the Mandrel 142

7.5 Other Materials .. 143
 7.5.1 LDPE .. 143
 7.5.1.1 Simulation Results of Ø16 mm Tube Die 143
 7.5.1.1.1 Feed Section 144
 7.5.1.1.2 Distribution Section or Spiral Mandrel 144
 7.5.1.1.3 Sections Past the Mandrel 144
 7.5.1.2 Simulation Results of Ø4 mm Tube Die 145
 7.5.1.2.1 Feed Section 145
 7.5.1.2.2 Distribution Section or Spiral Mandrel 145
 7.5.1.2.3 Sections Past the Mandrel 146
 7.5.2 HDPE .. 147
 7.5.2.1 Simulation Results of Ø16 mm Tube Die 147
 7.5.2.1.1 Feed Section 147
 7.5.2.1.2 Distribution Section or Spiral Mandrel 147
 7.5.2.1.3 Sections Past the Mandrel 148
 7.5.2.2 Simulation Results of Ø4 mm Tube Die 148
 7.5.2.2.1 Feed Section 149
 7.5.2.2.2 Distribution Section or Spiral Mandrel 149
 7.5.2.2.3 Sections Past the Mandrel 149
 7.5.3 Nylon 12 .. 150
 7.5.3.1 Simulation Results of Ø16 mm Tube Die 151
 7.5.3.1.1 Feed Section 151
 7.5.3.1.2 Distribution Section or Spiral Mandrel 151
 7.5.3.1.3 Sections Past the Mandrel 152
 7.5.3.2 Simulation Results of Ø4 mm Tube Die 152
 7.5.3.2.1 Feed Section 152
 7.5.3.2.2 Distribution Section or Spiral Mandrel 153
 7.5.3.2.3 Sections Past the Mandrel 153
 7.5.4 Flexible PVC .. 154
 7.5.4.1 Simulation Results of Ø16 mm Tube Die 154
 7.5.4.1.1 Typical Flexible PVC (Power Law) 154
 7.5.4.1.2 Typical Flexible PVC (Power Law) – Slip 155
 7.5.4.1.3 Hydro Polymers’ Own Grade 155
7.5.4.1.4 Hydro Polymers XH76214 156
7.5.4.1.5 Rehau 8426 156

7.5.4.2 Simulation Results of ∅16 mm Tube Die 157
7.5.4.2.1 Feed Section 157
7.5.4.2.2 Distribution Section or Spiral Mandrel 158
7.5.4.2.3 Sections Past the Mandrel 158

7.5.4.3 Simulation Results of ∅4 mm Tube Die 159
7.5.4.3.1 Feed Section 159
7.5.4.3.2 Distribution Section or Spiral Mandrel 159
7.5.4.3.3 Sections Past the Mandrel 160

8 Monolayer Die for Pipes ∅50 mm to ∅125 mm 161

8.1 Design Brief .. 161
8.2 Calculations of Draw Down Ratios for Tool Sizes........ 163
8.3 Initial Die Design 165
8.4 Die Geometry ... 168
 8.4.1 Feed Section 168
 8.4.2 Distribution or Spiral Mandrel Section 169
 8.4.3 Section above the Spiral Mandrel 170
 8.4.3.1 ∅125 mm × 17 SDR 170
 8.4.3.2 ∅125 mm × 11 SDR 172
 8.4.3.3 ∅50 mm × 17 SDR 173
 8.4.3.4 ∅50 mm × 11 SDR 174

8.5 Project Definition 175
 8.5.1 Material Information 175
 8.5.2 Processing Conditions 176

8.6 Simulation Results 177
 8.6.1 Simulation Results of ∅125 mm × 17 SDR Die 177
 8.6.1.1 Feed Section 177
 8.6.1.2 Distribution Section or Spiral Mandrel 178
 8.6.1.3 Sections Past the Spirals 180
 8.6.2 Simulation Results of ∅125 mm × 11 SDR Die 181
 8.6.2.1 Feed Section 181
 8.6.2.2 Distribution Section or Spiral Mandrel 182
 8.6.2.3 Sections Past the Spirals 182
 8.6.3 Simulation Results of ∅50 mm × 17 SDR Die 183
 8.6.3.1 Feed Section 184
 8.6.3.2 Distribution Section or Spiral Mandrel 184
 8.6.3.3 Sections Past the Spirals 185
8.6.4 Simulation Results of ∅50 mm × 11 SDR Die 186
 8.6.4.1 Feed Section ... 186
 8.6.4.2 Distribution Section or Spiral Mandrel 187
 8.6.4.3 Sections Past the Spirals 188
8.6.5 Simulation Results of Other Sizes in the Pipe Range 188

9 Monolayer Die for Pipes ∅140 mm to ∅315 mm 191
 9.1 Design Brief .. 192
 9.2 Calculations of Draw Down Ratios for Tooling Sizes 193
 9.3 Initial Die Design .. 194
 9.4 Die Geometry .. 196
 9.4.1 Feed Section .. 196
 9.4.2 Distributor or Spiral Mandrel Section 197
 9.4.3 Section above the Spirals 199
 9.4.3.1 ∅315 mm × 26 SDR 199
 9.4.3.2 ∅315 mm × 17 SDR 201
 9.4.3.3 ∅250 mm × 17 SDR 202
 9.4.3.4 ∅140 mm × 17 SDR 202
 9.4.3.5 ∅225 mm × 11 SDR 203
 9.4.3.6 ∅140 mm × 11 SDR 204
 9.5 Project Definition .. 206
 9.5.1 Material Information 206
 9.5.2 Processing Conditions 206
 9.6 Simulation .. 206
 9.6.1 Simulation Results of ∅315 mm × 26 SDR Die 206
 9.6.1.1 Feed Section ... 207
 9.6.1.2 Distribution Section or Spiral Mandrel 208
 9.6.1.3 Section Past the Spirals or Tooling Section 212
 9.6.2 Simulation Results of ∅315 mm × 17 SDR Die 213
 9.6.2.1 Feed Section ... 213
 9.6.2.2 Distribution Section or Spiral Mandrel 213
 9.6.2.3 Section Past the Spirals or Tooling Section 214
 9.6.3 Simulation Results of ∅250 mm × 17 SDR Die 214
 9.6.3.1 Feed Section ... 215
 9.6.3.2 Distribution Section or Spiral Mandrel 215
 9.6.3.3 Section Past the Spirals or Tooling Section 215
 9.6.4 Simulation Results of ∅140 mm × 17 SDR Die 216
 9.6.4.1 Feed Section ... 216
 9.6.4.2 Distribution Section or Spiral Mandrel 216
 9.6.4.3 Section Past the Spirals or Tooling Section 217
Contents

9.6.5 Simulation Results of $\varnothing 225$ mm × 11 SDR Die 217
9.6.5.1 Feed Section 217
9.6.5.2 Distribution Section or Spiral Mandrel .. 218
9.6.5.3 Section Past the Spirals or Tooling Section 218
9.6.6 Simulation Results of $\varnothing 140$ mm × 11 SDR Die 219
9.6.6.1 Feed Section 219
9.6.6.2 Distribution Section or Spiral Mandrel .. 219
9.6.6.3 Section Past the Spirals or Tooling Section 220

10 Coextrusion Pipe Dies ... 223
10.1 Extruded Separately and Then Combined 223
10.2 Extruded Together from One Die .. 225
10.2.1 Simulation of 2-Layer Interface .. 227
10.2.1.1 Velocity ... 228
10.2.1.1.1 Overall Velocity Profile ... 228
10.2.1.1.2 Velocity Profile near the Joining of Two Melt Streams 228
10.2.1.2 Pressure Drop ... 231
10.2.1.3 Temperature .. 233
10.2.1.4 Shear Stress .. 234

11 Coextrusion Die ($\varnothing 5.00$ mm to $\varnothing 16.00$ mm) 237
11.1 Design Brief ... 237
11.2 Product Sizes and Tooling Sizes ... 238
11.3 Output Calculations for Different Tube Sizes 240
11.4 Design of 2-Layer Plus Striping Die for Micro-Duct
$\varnothing 5.00$ mm to $\varnothing 16.00$ mm ... 242
11.4.1 Tooling Section ... 242
11.4.2 Distributor Sections .. 243
11.4.2.1 Outside Layer Distributor .. 243
11.4.2.1.1 Outside Layer Die Geometry for Simulation 244
11.4.2.1.2 Body, Mandrel, and Spirals Dimensions for Simulation 245
11.4.2.1.3 Dimensions of Tooling Part from the End of Spiral to the Die End ... 246
11.4.2.1.4 Feed Section ... 246
11.4.2.1.5 Balancing of Flow through Ports to Spirals 246
11.4.2.1.6 Processing Conditions for Outer Layer 248
11.4.2.2 Inside Layer Distributor .. 248
11.4.2.2.1 Dimensions of Inside Layer Mandrel 250
11.4.2.2 Dimensions of Section above the Spirals to Pin and Die .. 251
11.4.2.3 Feed Section ... 251
11.4.2.4 Flow from Ring to Spirals 251
11.4.2.5 Processing Conditions 252
11.4.2.6 Flow Variables 252
11.5 Striping ... 253
11.6 Calculation of Number of Bolts Required for Die Head 256
11.7 Heating of Extrusion Dies .. 260

12 Coextrusion Three-Layer Die (⌀20.00 mm to ⌀65.00 mm) 263
12.1 Design Brief .. 263
12.2 Product and Tooling Sizes 264
12.3 Output Calculations for Different Pipe Sizes 266
12.4 Design of 3-Layer Pipe Die for Pipes of ⌀20 mm to ⌀65 mm 268
 12.4.1 Tooling Section .. 268
 12.4.2 Distribution Section 271
 12.4.2.1 Outside Layer Distributor 271
 12.4.2.2 Dimensions of Body, Mandrel, and Spirals 274
 12.4.2.3 Dimensions of the Part Past the Spirals 275
 12.4.2.4 Feed Section 276
 12.4.2.5 Balancing of Flow through Ports to Channels 278
 12.4.2.6 Processing Conditions for Outer Layer 279
 12.4.2.7 Melt Variables Noted from the Software 279
 12.4.3 Design of Second Layer (Middle Layer) 280
 12.4.3.1 Second Layer Distributor 280
 12.4.3.1.1 Distribution Section 282
 12.4.3.1.2 Dimensions of Body, Mandrel, and Spirals of Layer 2 283
 12.4.3.1.3 Dimensions of Section above the Spirals of Second Layer 285
 12.4.3.1.4 Feed Section 285
 12.4.3.1.5 Dimensions of the Feed Ports of Middle Layer 287
 12.4.3.1.6 Processing Conditions for Middle Layer 288
 12.4.3.1.7 Melt Variables Noted from the Software 288
 12.4.4 Design of Third Layer (Inside Layer) 289
 12.4.4.1 Third Layer Distributor 289
 12.4.4.1.1 Dimensions of Body, Mandrel, and Spirals of Layer 3 292
12.4.4.1.2 Dimensions of Section above the Spirals of Third Layer .. 293
12.4.4.1.3 Feed Section .. 293
12.4.4.1.4 Processing Conditions for Inside Layer .. 294
12.4.4.1.5 Important Melt Variables Obtained from the Software for the Inside Layer of the Die .. 295

13 Three-Layer-Plus-Striping Die for ∅25 mm to ∅110 mm Pipes .. 297
13.1 Design Brief .. 298
13.2 Product and Tooling Sizes .. 298
13.3 Output Calculations for Different Pipe Sizes ... 300
13.4 Design of 3-Layer Die Head for Pipes ∅25 mm to ∅110 mm 302
 13.4.1 Tooling Section ... 302
 13.4.2 Body and Main Layer Mandrel ... 304
 13.4.3 Middle Layer Mandrel ... 307
 13.4.4 Inside Layer Mandrel .. 309
 13.4.5 Mandrel Extension ... 311
 13.4.6 Complete Die ... 313
13.5 Die Simulation .. 314
 13.5.1 Geometry for Simulation of Main Layer .. 315
 13.5.1.1 Dimensions of Feed Section .. 316
 13.5.1.2 Dimensions of Body, Mandrel, and Spirals 316
 13.5.1.3 Dimensions of the Die Part Past the Spirals 317
 13.5.1.4 Feed Balancing ... 317
 13.5.2 Processing Conditions .. 320
 13.5.3 Melt Variables Taken from Software ... 321
 13.5.4 Second Layer .. 322
 13.5.4.1 Geometry for Simulation .. 322
 13.5.4.1.1 Feed Section ... 322
 13.5.4.1.2 Distribution Section ... 323
 13.5.4.1.3 Section above the Spirals ... 324
 13.5.4.2 Processing Conditions ... 324
 13.5.4.3 Melt Variables Taken from Simulation ... 325
 13.5.4.3.1 Feed Section ... 325
 13.5.4.3.2 Distribution Section ... 325
 13.5.4.3.3 Section above the Spirals ... 325
 13.5.5 Third or Inside Layer .. 326
 13.5.5.1 Inside Layer Geometry .. 327
 13.5.5.1.2 Body, Mandrel, and Spirals .. 327
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5.5.1.3 Section above the Spirals</td>
<td>328</td>
</tr>
<tr>
<td>13.5.5.2 Processing Conditions</td>
<td>328</td>
</tr>
<tr>
<td>13.5.5.3 Simulation Results</td>
<td>329</td>
</tr>
<tr>
<td>13.6 Flow Balancing of Three Layers</td>
<td>329</td>
</tr>
<tr>
<td>14 Materials for Extrusion Dies</td>
<td>331</td>
</tr>
<tr>
<td>14.1 Nitrided Steels</td>
<td>332</td>
</tr>
<tr>
<td>14.2 Fully Hardened Steels</td>
<td>333</td>
</tr>
<tr>
<td>14.2.1 1.2344 (H13) Steel</td>
<td>334</td>
</tr>
<tr>
<td>14.2.2 1.2767 (EN30B) Steel</td>
<td>334</td>
</tr>
<tr>
<td>14.2.3 1.2316 Steel</td>
<td>334</td>
</tr>
<tr>
<td>14.3 Quenched and Tempered Steels</td>
<td>335</td>
</tr>
<tr>
<td>14.3.1 1.2311 (P20) Steel</td>
<td>335</td>
</tr>
<tr>
<td>14.3.2 1.2312 (P20+S) Steel</td>
<td>336</td>
</tr>
<tr>
<td>14.3.3 1.2738 (P20+Ni) Steel</td>
<td>336</td>
</tr>
<tr>
<td>14.4 Speciality Steels</td>
<td>336</td>
</tr>
<tr>
<td>14.4.1 1.2316 Steel</td>
<td>337</td>
</tr>
<tr>
<td>14.4.2 1.2083 Steel</td>
<td>337</td>
</tr>
<tr>
<td>14.4.3 Stainless Steel</td>
<td>337</td>
</tr>
<tr>
<td>14.4.3.1 1.4462 Steel</td>
<td>337</td>
</tr>
<tr>
<td>14.4.3.2 UDDEHOHLM STAVAX® ESR</td>
<td>338</td>
</tr>
<tr>
<td>14.4.4 Other Metals</td>
<td>338</td>
</tr>
<tr>
<td>14.4.4.1 Hastelloy®</td>
<td>339</td>
</tr>
<tr>
<td>14.4.4.2 Inconel®</td>
<td>339</td>
</tr>
<tr>
<td>14.4.4.3 Tungsten Carbide</td>
<td>340</td>
</tr>
<tr>
<td>14.4.5 Corrosion Resistant Plating</td>
<td>340</td>
</tr>
<tr>
<td>14.5 References</td>
<td>340</td>
</tr>
</tbody>
</table>

Index | 341 |
After 50 years of experience in plastics processing, designing, and manufacturing of tools and equipment, in the mid-1990s I got involved in the development of a business for the design and manufacturing of plastics extrusion dies. To develop the business, I needed to convince my customers, with a good reason, that my approach was different to that of anybody else. With this in mind, I searched a lot of literature. I found that there is a lot about the theory of the flow characteristics of molten plastics through the die channels, but there are not any solved examples of the die design. Some of the formulae and equations given in the literature are so complex that most of the practical engineers would find it difficult to solve these equations.

In the computation of the melt flow characteristics through the die channel, there are several influencing factors, such as the rheology data and the thermodynamic properties of the materials involved. Coupled with them are the die geometry and the processing conditions, such as the output requirements and the temperature variations in the melt as well as in the die. The derivatives of these are the pressure loss through the die channel, the velocity profile, the shear rate, the shear stress, etc. Commercially available computer software takes all the hard work of computation from the die design engineers. With the use of such software, die designers can design a die that is fit for its purpose, in terms of materials being used and outputs required for the given sizes of the products.

In this book, I have used the computer simulation software named “Virtual Extrusion Laboratory™, Polymer Processing Simulation Software” by Compuplast International, Inc. Most of the dies given in the book are based on the spiral type of distributor and the reason for using such distributor is also explained in detail. All the dies illustrated in the book have been simulated with the aforesaid software, and the results of the simulations are also given as a guide for the design of other similar dies.

The range of dies covered in the book is monolayer and multilayer tubes and pipes from \varnothing 1 mm to \varnothing 315 mm. Larger or smaller sizes can be designed on the same principles. In the last chapter, the choice of commonly used steels for the manufac-
ture of dies is also discussed. Most of the solved examples of the dies given in this book are used in the manufacturing of specific products and are well proven. The above-mentioned software has been used as a tool for the simulation of the melt flow variables in the dies.

This book has been written as a practical guide for engineers and designers associated with the extrusion processes of polymers for the manufacture of plastic tubes and pipes. As the calculations of the melt flow through the dies are very complex and time consuming, the use of simulation software is highly recommended.

Finally, I thank Dr. Mark Smith and Dr. Julia Diaz-Luque of Hanser for their help and support in the publication of this book.

Sushil Kainth, MBA, B.Sc., CEng, MIET.
1.2 A Spider Supported Die Head

There are several names for this type of die, such as mandrel support die, ring support die, spider supported die, or spider die. The latter is the most commonly used term in the industry and will be employed here throughout this discussion.

This type of die is normally used for extruding PVC or similar types of thermally unstable materials. For other materials that are not so heat sensitive, such as polyolefins (LDPE, HDPE, and PP), polyamides, and many more, a spiral type of distribution is recommended because of its superiority in homogenizing the flow of plastic melt in the die head, as shown in Chapter 5.

In a spider die, a melt stream of plastic from the extruder enters the die head through the breaker plate or connecting ring (not shown in Figure 1.1) into a round channel. The spider cone or torpedo spreads the melt into an annular shape, as shown in Figure 1.1, before it is divided into several sections by the spider legs. Then, these melt sections are joined together by the converging angles of the connecting mandrel (04), the connecting ring (05), the die bush (07), and the mandrel (08). Finally, the melt is forced through a parallel annulus (more commonly known as a die land) between the mandrel and the die.

The term “die head” is used for the complete unit to distinguish it from the die or, as sometimes referred to, the bush. The die or bush is a part of the die head that forms the outside shape of the product to be extruded. To avoid any confusion, the term “die” will be used for the part 07 of the die head and “pin” for the mandrel (08).

The names of the die head parts used here are commonly known in the extrusion industry, and almost everybody involved in plastics processing is familiar with the function of these parts. Nevertheless, a brief description of these parts is given here, and more details are given in Chapter 3.

1.2.1 Flange Adapter

The flange adapter (01 in Figure 1.1) is sometimes known as flange connection and, as the name implies, on one side this part forms a connection to the extruder flange. On the other side it is attached to the spider, which holds the whole die head together. At the extruder end there is a recess to locate on the breaker plate or connecting ring.

The flange part is identical to the extruder flange and both the extruder flange and the flange adapter are clamped together with a clamp not shown in Figure 1.1. The melt from the extruder enters into the flange adapter from the breaker plate in the
form of strands, which are joined together into a round slug. In the case of a spider die head, the slug of melt is spread around the spider cone or torpedo, as shown in Figure 1.1.

The flange adapter normally has a heater and a thermocouple probe fitted to control the temperature of the material in this region. In some cases, a pressure transducer to monitor the pressure in the die head is also incorporated in this part. The design of the flange adapter varies with the design of the other parts of the die and the geometry of the extruder flange to which it is fitted, as can be seen in Chapter 3 and Chapters 5 to 13.

1.2.2 Spider Cone or Torpedo

The spider cone or torpedo (02 in Figure 1.1) is a conical part attached to the inner section of the spider. It is used for dividing the flow of melt from a round slug to an annulus form, which is pushed through the spider channels. The design of this part is discussed in Chapter 3.
1.2.3 Spider

The spider (03 in Figure 1.1) is the heart of this type of die head. It is a bridge between the flange adapter and the connecting ring on the outside, and the torpedo and the mandrel or pin on the inside. More importantly, it divides the melt stream into channels around the spider legs. The melt is again joined by the compression in the connecting ring and the mandrel or pin. The inside and outside annular parts of the spider are kept together by the spider legs, the number of which varies between four and eight depending on the size of the die head. The gap between the outer ring and the inner section—in other words, the channel height—is designed to suit the output required, considering ease of manufacturing and a minimum residence time for the melt. A narrow channel increases the pressure in the die head and is difficult to machine and polish. On the other hand, a large section height increases the residence time and reduces the shear rate, resulting in degradation of the heat sensitive materials in this region. The shape of the spider legs is designed to divide the flow of melt stream and to make it join easily in the chamber between the connecting ring and the pin, as shown in Figure 1.4.
1.2.4 Connecting Mandrel

The connecting mandrel (04 in Figure 1.1) is connected to the inner section of the spider on one end and the pin is connected to it on the other end. The shape and dimensions of this part are dependent upon the shape and dimensions of the other adjoining parts, namely, the inside section of the spider and the diameter of the pin. The lengths of the connecting mandrel and of the corresponding connecting ring are designed to suit the characteristics of the material. These days, a spider die head is very rarely used for processing polyolefin materials like polyethylene and polypropylene. However, there are instances when, for very short runs and for economic reasons, a spider die head is used for processing these materials. In these instances, the lengths of the connecting mandrel and of the connecting ring are made considerably greater, to diffuse the melt disturbance caused by the spider legs and to minimize the flow lines.
3.10 Detailed Drawings

Having gone through the general principles of the spider die design, the detailed drawings prepared for manufacturing all the parts are shown below:

3.10.1 Die Bush

A detailed drawing of the die bush in Figure 3.18 shows all the common dimensions for all the sizes. The dimensions, which vary with each size of the pipe, are listed separately in Table 3.4. It should be noted that the back face of the die bush should be perfectly flat, to provide a good seal against the corresponding face of the outer connecting ring. The inside surface of the die bush should be highly polished and sectional changes should be blended with generous radii.

Figure 3.18 Detailed drawing of die bush
Table 3.4 Dimensions for Pipe Sizes in Section A-A

<table>
<thead>
<tr>
<th>Pipe size [mm]</th>
<th>D1 [mm]</th>
<th>Land L1 [mm]</th>
<th>Angle A</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>52.50</td>
<td>58.35</td>
<td>42°37'</td>
</tr>
<tr>
<td>40.00</td>
<td>42.00</td>
<td>47.25</td>
<td>44°21'</td>
</tr>
<tr>
<td>32.00</td>
<td>33.60</td>
<td>37.80</td>
<td>44°54'</td>
</tr>
<tr>
<td>25.00</td>
<td>26.25</td>
<td>29.93</td>
<td>45°29'</td>
</tr>
<tr>
<td>20.00</td>
<td>21.00</td>
<td>23.78</td>
<td>45°33'</td>
</tr>
</tbody>
</table>

3.10.2 Pin

A detailed drawing of the pin in Figure 3.19 shows all the common dimensions for all the sizes. The dimensions, which vary with each size of the pipe, are listed separately in Table 3.5. The front end of the pin has a hexagon cut to fit a standard Allen key for tightening the pin to the connecting mandrel. The back face of Ø73.00 mm fits against the corresponding diameter of the mandrel. Also note that generous radii to blend the sections should be used and the outer surface should be highly polished to eliminate the melt sticking to the surface.

![Figure 3.19 Detailed drawing of pin](image)
The principles of designing spiral mandrel dies for tubes and pipes are explained in Chapter 5, where a die for ∅20 mm to ∅50 mm pipe sizes was illustrated as an example. In this chapter, the design of tubes from ∅1 mm to ∅6 mm is given to cover a range of sizes, applications, and materials.

6.1 ∅1 mm to ∅6 mm Fixed Center in Line Die

This die is used for medical tubes made from different types of polymers. As explained in the previous chapters, the starting point of die design is the design brief. Therefore, information about the design scope, product range, materials to be processed, output required, size of the extruder, etc. is collected as a starting point. After collecting this information, tables of product sizes, tooling sizes using convenient factors of draw down ratios, line speed calculations, etc. are compiled as in Table 6.1. From the tooling sizes a rough design of the die is made to get the geometry information for simulation purposes. From the simulation results, the design is corrected to suit the results and finalized to meet the customer requirements as close to the design brief as possible. This approach is repeated time and again for all the designs.

6.1.1 Design Brief

The information about the required die received from a particular customer is as shown in Table 6.1.
Table 6.1 Design Brief

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Product</td>
</tr>
<tr>
<td>2.</td>
<td>Product range (OD/ID)</td>
</tr>
<tr>
<td>3.</td>
<td>Wall thickness of each product</td>
</tr>
<tr>
<td>4.</td>
<td>Material or materials if more than one</td>
</tr>
<tr>
<td>5.</td>
<td>Rheology data (relationship of shear rates vs. viscosities at different temperatures)</td>
</tr>
<tr>
<td>6.</td>
<td>Thermodynamic data</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Extruder details</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Calibrator</td>
</tr>
<tr>
<td>9.</td>
<td>Cooling bath</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Haul-off</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Cutter</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Winder</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1.2 Draw Down Ratios and Tooling Sizes

Table 6.2 gives the product size and relevant tooling size.

Table 6.2 Draw Down Ratios for \(\varnothing2–6 \) mm Tubes

<table>
<thead>
<tr>
<th>Tube designation</th>
<th>OD [mm]</th>
<th>ID [mm]</th>
<th>Wall thickness [mm]</th>
<th>Die ID [mm]</th>
<th>Pin OD [mm]</th>
<th>DDR</th>
<th>Layer thickness at material exit [mm]</th>
<th>Draw down ratio balance (DRB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single layer LDPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2.40</td>
<td>1.80</td>
<td>0.30</td>
<td>3.60</td>
<td>2.70</td>
<td>2.25</td>
<td>0.45</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3.90</td>
<td>2.60</td>
<td>0.65</td>
<td>5.85</td>
<td>3.90</td>
<td>2.25</td>
<td>0.975</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5.40</td>
<td>3.50</td>
<td>0.95</td>
<td>8.10</td>
<td>5.25</td>
<td>2.25</td>
<td>1.425</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>5.71</td>
<td>4.71</td>
<td>0.50</td>
<td>8.57</td>
<td>7.07</td>
<td>2.25</td>
<td>0.75</td>
</tr>
<tr>
<td>Single layer HDPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6.00</td>
<td>4.30</td>
<td>0.85</td>
<td>12.00</td>
<td>8.60</td>
<td>4.00</td>
<td>1.7</td>
</tr>
<tr>
<td>Single layer PVC (plasticized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6.00</td>
<td>4.30</td>
<td>0.85</td>
<td>12.00</td>
<td>8.60</td>
<td>4.00</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table 6.3 shows the calculations of the line speed for a given output.

Table 6.3 Calculations of Line Speed for Given Output

<table>
<thead>
<tr>
<th>Material type</th>
<th>Material output [kg/h]</th>
<th>Density [kg/m³]</th>
<th>Output volume [m³/h]</th>
<th>Tube OD [mm]</th>
<th>Tube ID [mm]</th>
<th>Area of annulus [mm²]</th>
<th>Length of tube per hour [m/h]</th>
<th>Length of tube per minute [m/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>25.00</td>
<td>762</td>
<td>0.0328084</td>
<td>2.40</td>
<td>1.80</td>
<td>2</td>
<td>16577</td>
<td>276</td>
</tr>
<tr>
<td>HDPE</td>
<td>38.00</td>
<td>762</td>
<td>0.04986877</td>
<td>3.86</td>
<td>2.54</td>
<td>7</td>
<td>7516</td>
<td>125</td>
</tr>
<tr>
<td>HDPE</td>
<td>40.00</td>
<td>762</td>
<td>0.05249344</td>
<td>5.40</td>
<td>3.50</td>
<td>13</td>
<td>3952</td>
<td>66</td>
</tr>
<tr>
<td>HDPE</td>
<td>45.00</td>
<td>762</td>
<td>0.05905512</td>
<td>5.71</td>
<td>4.71</td>
<td>8</td>
<td>7216</td>
<td>120</td>
</tr>
<tr>
<td>LDPE</td>
<td>45.00</td>
<td>951</td>
<td>0.04731861</td>
<td>6.00</td>
<td>4.30</td>
<td>14</td>
<td>3441</td>
<td>57</td>
</tr>
<tr>
<td>PVC</td>
<td>35.00</td>
<td>1120</td>
<td>0.03125</td>
<td>6.00</td>
<td>4.30</td>
<td>14</td>
<td>2272</td>
<td>38</td>
</tr>
</tbody>
</table>

6.1.3 Design Procedure

Table 6.2 is used for starting the design from the tooling end and this information is used for the simulation as well. From the design brief in Table 6.1 it was evident that the output required by the customer is 45 kg/h (the maximum plasticizing...
capacity of the extruder). This level of output is used for the largest size of tooling and smaller sizes of the tube would have less output, because of the high shear stress in the land area of the die annulus. Table 6.3 shows that a 45 kg/h output for a tube size of 5.71 mm in outside diameter and 4.71 mm in inside diameter will give a line speed of 120 m/min, whereas a tube of 2.40 mm in outside diameter and 1.80 mm in inside diameter will give a line speed of 276 m/min. It must be checked with the customer if their equipment would be capable of handling such a high line speed. The draw down ratio, which determines the tooling size and the level of output, can be changed from the simulation results, when the performance of the whole die is optimized.

From the above information, a rough design of the die is made to establish the initial dimensions of the die geometry. This die geometry along with the material information and the processing conditions are inserted into the simulation software to get the simulation results. The results are then checked and the design is changed to optimize the processing results in terms of the pressure drop in the die, shear rate, shear stress, residence time, etc., so that the ultimate die design meets the customer expectations and gives the most suitable results. This exercise, as explained in the previous chapter, is completed for all the sizes of the tubes and specified materials to be processed. The final design of the die for this particular customer is shown in Figure 6.1 and Figure 6.2.

The die shown in Figure 6.1 and Figure 6.2 is based on the 2 mm tube tooling as specified in Table 6.2. The die is designed for precision medical tubes, where the tooling is semi-fixed center; in other words, the pin is inserted into a concentric mandrel and it fits tightly on the taper in the mandrel. The die has a very slight radial adjustment on the die carrier (08), as shown in Figure 6.1. The whole idea is that once the small radial adjustment to get an even wall thickness of the tube is made, then the die adjustment should be locked in place. Any further tool changes should be made without the necessity of any adjustment to get an even wall thickness of the products. As the pin is inserted in the mandrel from the front, removing the pin for tool changing would be difficult unless the whole die is dismantled.

To facilitate the quick tool changes, a pin pusher plug (12) and a pin pusher bolt (13) are placed in the die design. The winding in of the pin pusher bolt would push the pin pusher plug outward, which would release the pin from its taper in the mandrel. For inserting the new pin into the mandrel, the pin pusher bolt (13) is wound outward. For replacing the die, the die adjusting nut (09) in the front is removed first and then the die is pushed out with a slight movement of the melt from the extruder. In this way, a quick and easy tool changing is accomplished.
Figure 6.1 Sectional view of 2–6 mm tube dies, showing 2 mm pin and die in place and a mechanism for pushing the pin out

Figure 6.2 Sectional view of 2–6 mm tube dies, showing 2 mm pin and die in place and feed of melt into the spirals
Calculations of Draw Down Ratios for Tooling Sizes

The calculations of the inside diameters and wall thicknesses based on SDR 11, 17, and 26 and the sizes of the pins and dies using an adequate draw down ratio, along with the land length of the die, are given in Table 9.4.

| Table 9.4 Draw Down Ratios and Tooling Sizes |
|---------------------------------|---|---|---|---|---|---|---|---|---|---|---|
| Pipe spec. | OD [mm] | ID [mm] | Wall thickness [mm] | Die ID [mm] | Pin OD [mm] | DDR | Layer thickness at die exit [mm] | DRB | Die land length [mm] | Max. output [kg/h] |
| SDR 11 |
1	140	140.00	114.55	12.73	154.0	126.00	1.21	14.00	1.00	210	370
2	160	160.00	130.91	14.55	176.0	144.00	1.21	16.00	1.00	240	380
3	180	180.00	147.27	16.36	198.00	162.00	1.21	18.00	1.00	270	400
4	225	225.00	184.10	20.45	247.50	202.50	1.21	22.50	1.00	338	400
SDR 17											
5	140	140.00	123.53	8.24	168.00	148.24	1.44	9.88	1.00	148	340
6	160	160.00	141.18	9.41	192.00	169.41	1.44	11.29	1.00	169	360
7	180	180.00	158.82	10.59	216.00	190.59	1.44	12.71	1.00	191	380
8	225	225.00	198.53	13.24	270.00	238.24	1.44	15.88	1.00	238	400
9	250	250.00	220.59	14.71	300.00	264.71	1.44	17.65	1.00	265	420
10	280	280.00	247.06	16.47	336.00	296.47	1.44	19.76	1.00	296	430
11	315	315.00	277.94	18.53	378.0	333.53	1.44	22.24	1.00	334	450
Columns 1–10 in Table 9.4 are normal pre-design calculations; column 11 is the die land length, which in this case has been fixed as 15 times the layer thickness at the die exit. Column 12 is obtained from the die simulation results, which are explained later in the chapter.

9.3 Initial Die Design

From the sizes of die and pin given in Table 9.4, initially the die is designed for a ∅315 mm × 17 SDR pipe using the die inside diameter of 378.00 mm, the pin outside diameter of 333.53 mm, and the land length of 334.00 mm. The design of the complete die is shown in Figure 9.1. The design of the initial die is slightly different to the previous dies discussed above. In this case, the die mandrel has 8 spirals, whereas in the previous dies 4–6 spiral designs were used. This is due to the physical size of the die. For the same reason, the inside of the mandrel and the pin are hollowed out to reduce the weight of the die, and internal heaters are fitted for ease of heating up the die at the start of the operation and also for a better temperature control. In Figure 9.2, the same die is shown with the tooling for ∅140 mm × 17 SDR pipes.
Figure 9.1 G. A. of $\varnothing 315 \text{ mm} \times 17$ SDR die head

Figure 9.2 G. A. of $\varnothing 140 \text{ mm} \times 17$ SDR die head
10.2 Extruded Together from One Die

10.2.1.2 Pressure Drop

Pressure is a primary variable calculated during the solution. As has been seen in the previous examples of dies, pressure drops from the maximum at the start of the melt stream to zero at the die exit. As shown in Figure 10.12, the maximum average value of pressure at the beginning of the section is 0.108 MPa and 0.00 at the die exit.
Figure 10.13 shows a line through the outer section, along which the pressure drop of the outer layer is plotted in the graph in Figure 10.14. The total pressure drop through this section is 0.10232 MPa, which is the value at the beginning of the section on the right hand side, and it drops to zero at the die exit, as shown in the graph of pressure drop along the line in Figure 10.14.

Similarly, Figure 10.15 and Figure 10.16 show the pressure drop along the line in the inner layer. The value of pressure drop through this section is 0.10770 MPa. This is slightly higher than for the outer layer because of the narrow section near the junction of the two melts, and as this melt in the inner layer joins the main stream it equalizes to the outer layer, as shown in Figure 10.15.
10.2 Extruded Together from One Die

10.2.1.3 Temperature

Figure 10.17 shows the temperature variations in the section. The set temperatures for the two melts entering the die and the die body temperature are 200 °C. The blue areas in the section in Figure 10.17 are at 200 °C, and the yellow and red areas are at higher temperatures.
To investigate the extent of the variation in temperature near the wall of the outer layer, a line near the inside wall of the outer layer is drawn as shown in Figure 10.18, and the graph of temperature along this line is plotted in Figure 10.19. It can be seen from the graph that the temperature near the inside wall of the outer layer starts at 208 °C and rises to about 209 °C closer to where the two melt streams meet, and then it drops to 200 °C towards the die exit. For a material like HDPE this variation is not of much concern, since HDPE has a large window of processing temperature.

![Figure 10.18 Line near the inside of outer layer](image)

![Figure 10.19 Temperature profile along the line in Figure 10.18](image)

10.2.1.4 Shear Stress

The last variable to be checked for the die design is the shear stress. The physical meaning of this variable is that it shows the extent of shear stress generated during the melt flow. The value of shear stress is given in kPa. Figure 10.20 shows that the maximum shear stress is varying from −3.267 kPa to a maximum of 4.095 kPa in the red area of the section, which is in the die land region and closer to the outer
Symbols

1.2083 steel 337
1.2311 (P20) steel 333, 335
1.2312 (P20+S) steel 336
1.2316 steel 335, 337
1.2344 (H13) steel 333, 334
1.2738 (P20+Ni) steel 336
1.2767 (EN30B) steel 334
1.4462 steel 338
1.8509 (EN 41B) steel 333
ø50 mm 11 SDR die 167
ø50 mm 17 SDR die 166
ø125 mm 11 SDR die 166
ø125 mm 17 SDR die 165

A

above the distribution section 167
aluminum heaters 260
annuli 133
apparent values 17
average flow rate 321
axial flow 237

B

balanced dimensions 318
barrier materials 297
blown film 223
body 131
body heater 131
body temperature 279
bromides 331

c C

cable covering 12
cable ducting 263
calcium carbonate 331
calculations 52
cartridge heaters 260
case-hardened 332
ceramic heaters 260
channel 78
channel depth 73
channel width 73
choke ring 32, 33
coeextrusion 65, 224, 263
coeextrusion die 239
complete die 313
computer simulation 59
cone 37
convergence section 82
corrosion 331
corrosion resistant 340
corrosion resistant plating 340

data collection 11
dead spots 65
degradation 65, 220
density 23, 176
depth of spirals 275, 284, 317
design brief 20, 23, 107, 108, 237, 264, 298
design of three-layer die 302
design scope 127
die 24
die-adjusting ring 131
die body 196
die bush 24, 28, 34, 131, 196
die clamp ring 196
die constant 54
die design 23, 25
die gap 75
die geometry 112, 244
die heater 131
die land 28
die rigidity 65
die simulation 76, 314
die trial 51
die wall temperature 60
dimensions of distribution 198
distribution section 113, 131, 167, 271, 282
distributor 197, 243
draw down ratio 25, 27, 127, 239, 299
draw down ratio balance 27
DRB 27
flow in the channel 138
flow leakage 138
flow rate 182, 248, 279, 321
flow variation 92, 139, 180
fluid jacket heaters 260
fluorides 331
formulae 54
freezing temperature 176
fully hardened steels 333
G
glass fibers 331
H
hard chrome plating 340
Hastelloy® 331, 339
Hastelloy® C-276 339
HDPE 147
heating of extrusion dies 260
heat treatment 332
Hooke’s law 15
I
Inconel® 339
initial die design 165
inside layer 248
instability 221
interfacial instabilities 65
internal heating 261
L
land section 82
LDPE 143
leakage 65
low pressure losses 65
low residence times 65
M
mandrel extension 311
mandrel height 71
factor of proportionality 54
feed balancing 317
feed ports 275
feed section 79, 112, 131, 167, 246, 276
final assembly 11
flange adapter 38, 131, 196
flange heater 131
flat sheets 223
flexible PVC 154
flow balancing 246
elastic deformation 65
equipment 17, 18, 20
ethylene vinyl acetate 297
ethylene vinyl alcohol 297
EVA 297
EVOH 297
experimental approach 51
extrusion screws 332
mandrel spacer 131
manufacturing methods 11
mass flow rate 60
material 206
material definition 320
material information 14, 116, 127, 135, 175
material residence time 13
materials for extrusion dies 331, 331
material stagnation 207
materials used 298
mathematical calculations 52
melt flow 138, 179, 209
melt flow characteristics 13
melt flow rate 279
melt fracture 65
melt input temperature 60
melt stagnation 52
melt temperature 176, 279, 321
melt variables 279, 288, 321
mica band heaters 260
micro-duct 237
monolayer die 161, 191
multilayer 223
multilayer pipes 12

N
nickel plating 340
nitrided steels 332
nitriding process 332
number of bolts 256
number of channels 74
number of feed ports 284
number of overlaps 170, 284, 317
number of ports 170
number of spirals 275, 284, 317
nylon (PA12) 150

O
optimum output 189
output calculations 240, 266, 300
outside layer 271
overlaps 74

P
PEEK 331
physical properties 15
pin 24, 41, 131, 196
polycarbonate 331
polyether ether ketone 331
polyvinylidene fluoride 297
power law exponent 54
pressure drop 13, 52, 54, 182, 207, 231, 248, 279
pressure grades 191
processing conditions 60, 83, 116, 127, 135, 176, 206, 248, 279, 288, 298, 320
product definition 13
product range 13, 14, 23, 107, 237, 298
product sizes 107
profiles 223
project definition 135, 175, 206
project planning 11
PVDF 297

Q
quenched and tempered steels 335
quick tool changes 110

R
range of similar products 12
redistribution 65
reference diameter 170, 274, 283, 316
relaxation chamber 29, 31, 73
relaxation zone 309
residence time 13, 52, 220
results of variables 177, 207
rheological 14
rheology 15, 20, 52
rheology data 23, 135, 175, 238, 298
rheometer 52
ring feed system 70
S

SDR 163
sealing section 72
section above the distribution 131
section above the spirals 80, 199, 324
section past the spirals 276
selection of die materials 11
shark skin 221
shear rate 13, 16, 17, 52, 207, 321
shear stress 13, 15, 16, 52, 207, 234, 279, 321
sheathing 224
side-fed die 224
simulation 76, 206
simulation of materials flow 11
simulation results 117, 177
size of the extruder 19
solving problems 119
speciality steels 336
specific heat capacity 23, 176
specific heat of fusion 176
spider 35, 41, 47
spiral depth 170
spiral die 65
spiral height 72, 170, 274, 316
spiral mandrel 131, 196
spiral mandrel die 65
spiral mandrel distributors 65
spiral radius 170
spirals 244
standard dimension ratio 163
STAVAX® ESR 338
striping 253
surface hardness 332
swell phenomenon 25

T

temperature change 182, 207
temperature profile 234
temperature variation 233
tempering 333
thermal conductivity 23, 176
thermal properties 15
thermodynamic 17, 18
thermodynamic data 23
thermodynamic properties 52, 135, 175, 238, 298
third layer 289
three-layer crosshead die 297
three-layer die 263
tightening torques 259
tooling 242
tooling section 115, 133, 268, 302
tooling sizes 299
torpedo 33, 37, 47
type of extruder 19, 20

V

values of PN 191
velocity 321
velocity profile 228
viscoelastic behavior 52
viscosity 15, 16, 17
volumetric flow rate 221

W

wall thickness 14, 23, 24, 237, 298
wear 331
wear resistant 332, 340
wire covering 12
work harden 331