Preface

This manual has been created thinking of plastics injection molding technicians as well as processing engineers and quality and design engineers.

The book was initially born as a small procedure guide for the company where I was working, for fine-tuning injection machines with the aim of creating a logical, safe, and optimized start-up method. Gradually, it grew and accumulated interesting information for the technicians, in my opinion, and it took shape until the final editing.

It was created for those who have ever needed a book to help and support them to understand the technology, materials, and thermoplastics injection process.

It is a book that helps identify the key points of the process and show, explore, and teach new tools to define more stable, robust, and consistent processes; a book with information, for example, such as the following:

- Clear explanations about the main key points of the thermoplastics injection molding process
- Glossaries with detailed explanations and easy-to-handle data tables
- Explanations about thermoplastics and their properties and behavior
- Support information to select material according to its further application
- Support information to determine the most suitable machine to use
- Real case examples, problems, analysis, and solutions
- Scientific injection molding explanations of tools, calculations, and portability
- Examples of defects and failures, their causes and possible solutions
- Easy and clear explanations for injection process optimization
- General processing recommendations

I hope that this book can be a tool for consulting and support during the professional life of the reader.

I also aim to encourage technicians toward a cultural change in both the analysis of problems and the parameterization and definition of robust plastics injection molding processes, where the transition from the empirical method toward the scientific method can be made using appropriate methodologies.

José R. Lerma Valero

September 2019
José R. Lerma Valero was born in Barcelona, Catalonia, in 1962; he is married and has a son. He obtained a superior degree in mechanics, with specialty in molds, and studied business management. He started his professional life as a trainee in a small injection molding factory.

José R. Lerma has dedicated close to 40 years of his professional life to the world of thermoplastics. Most of this professional life in plastics injection factories has been dedicated to producing parts for the automotive sector, producing both technical and aesthetic parts, painted, with chrome plating, etc. The functions and responsibilities he carried out in these injection plants have been of all kinds; for example, Processing Engineer, Technical Department Manager, Maintenance Manager, Production Manager, and Plant Manager.

Currently, and for almost 12 years, he is the Technical Manager for Spain and Portugal in Biesterfeld Ibérica SLU, leader in polymer distribution in Europe, with a portfolio of materials from the world’s leading manufacturers.

José R. Lerma has been collaborating for more than 15 years with different technical centers in Spain as a leader of different seminars all related to plastics and the transformation of plastics, having trained hundreds of technicians in this technology.

It should also be noted that for six years he has developed and taught a specific seminar about scientific injection molding methodology in Spain, Portugal, and some Latin-American countries quite successfully.

All this accumulated background of experience in real day-to-day cases in factories as well as the training received and the experience of providing training in seminars to technicians is reflected and shared in this book.
Contents

Acknowledgments ... V

Preface .. VII

About the Author ... IX

Part 1: Plastics

Polymers ... 3

1.1 Plastics ... 3

1.2 Molecular Bonds ... 4

1.3 Functionality ... 6

1.4 Polymerization ... 6
 1.4.1 Polycondensation ... 6
 1.4.2 Polyaddition .. 6

1.5 Determination of the Molecular Weight of Polymers ... 7

1.6 Thermoplastics .. 8
 1.6.1 Classification of Thermoplastics ... 8
 1.6.1.1 According to Their Molecular Structure: Morphology 8
 1.6.1.2 According to Their Molecular Chain Form ... 11
 1.6.1.3 According to the Position of Atoms in the Chain 12

1.7 Properties and Characteristics of Plastics ... 13
 1.7.1 Thermal and Physical Behavior .. 13
 1.7.1.1 Rheology .. 13
 1.7.1.2 Elastic Deformation ... 13
 1.7.1.3 Viscosity .. 13
 1.7.1.4 Glass Transition Temperature (T_g) ... 15
 1.7.1.5 Melting Temperature (T_m) ... 16
 1.7.1.6 Thermoplastics Behavior .. 17
 1.7.1.7 Changes of State in Amorphous Materials ... 17
 1.7.1.8 Changes of State in Semi-crystalline Materials ... 18
 1.7.1.9 Behavior under Load .. 19

1.8 A Brief History of Plastics ... 21
 1.8.1 1900–1930 .. 22
 1.8.2 1950s .. 23
 1.8.3 1960s .. 24

Thermodynamic Behavior of Plastics: PVT Graphs ... 25

2.1 Thermodynamics .. 25

2.2 PVT Graphs ... 25
 2.2.1 PVT Graphs Related to Amorphous and Crystalline Materials 25
6.10 Polyphenylene Oxide (PPO) .. 57
6.11 Polycarbonate (PC) .. 58
6.12 Polymethylmethacrylate (PMMA) 58
6.13 Liquid Crystal Polymer (LCP) 59
6.14 Elastomers ... 59
 6.14.1 Thermoplastic Elastomer (TPE–V) 59
 6.14.2 Elastomer Thermoplastic Vulcanized (ETPV) 60
 6.14.3 Thermoplastic Copolymer Elastomer Ether Ester
 (TPC ET) ... 60
 6.14.4 Polyurethane (TPU) 60
 6.14.4.1 Composition 61
6.15 Styrene Butadiene Copolymer (SBC) 62
6.16 Ionomer .. 63
6.17 Polyphenylene Sulfide (PPS) 63
 6.17.1 Properties .. 63
 6.17.2 Features ... 64
6.18 Polysulfones .. 64
 6.18.1 Polyphenyl Sulfone (PPSU) 64
 6.18.2 Polyethersulfone (PESU) 64
 6.18.3 Polysulfone (PSU) 65

Chemical Resistances ... 66
 CHAPTER 7
7.1 Chemical Substances ... 66
 7.1.1 Ethers .. 66
 7.1.2 Alkalis .. 67
 7.1.3 Esters ... 67
 7.1.4 Ketones ... 68
 7.1.5 Aliphatic Compounds 69
 7.1.6 Halogenated Hydrocarbons 69
 7.1.7 Halogenated Compounds 69
 7.1.8 Amines .. 69
 7.1.9 Other Chemicals that May Attack Plastics 70

Additives .. 74
 CHAPTER 8
8.1 Stabilizers .. 74
8.2 Lubricants .. 75
8.3 Antioxidants ... 76
8.4 UV Protection .. 76
 8.4.1 Absorbents ... 76
 8.4.2 HALS ... 76
8.5 Plasticizers .. 76
8.6 Antistatic Compounds .. 77
8.7 Flame Retardants .. 77
 8.7.1 Combustion Mechanism of a Plastic 78
 8.7.1.1 Solid Phase .. 78
9.2.6 Coefficient of Linear Thermal Expansion (CLTE) Test 97
9.2.7 Flammability Test UL94 97
9.2.8 Limited Oxygen Index (LOI) Test ISO 4589 1.2 99
9.2.9 Incandescent Glow Wire IEC 60695-2-13 and 2-12 100
9.2.10 Glow Wire Ignition Test (GWIT) IEC 60695-2-13, 2-12 ... 101
9.2.11 Glow Wire Flammability Test (GWFT) IEC 60695-2-12 ... 101
9.2.12 Reaction to Fire: Classification 101
9.3 Electric Tests ... 102
9.3.1 Dielectric Strength ASTM D149 IEC 60243-1 102
9.3.2 Dissipation Factor ASTM D150 IEC 60250 102
9.3.3 Dielectric Constant ASTM D150 IEC 60250 102
9.3.4 Comparative Tracking Index (CTI) IEC 60112 102
9.3.5 Surface Resistivity (SR) ASTM D527 IEC 6009 3 103
9.3.6 Volume Resistivity (VR) ASTM D527 IEC 6009 3 104
9.4 Rheological Tests .. 104
9.4.1 Melt Flow Rate (MFR), MFI ISO 1133 104
9.4.2 MVI and MVR 105
9.5 Weathering ... 105
9.5.1 XW Weather-Ometer 106
9.5.1.1 Accelerated Weathering 106
9.5.1.2 Tests in Natural Environments 107
9.5.2 Radiation .. 107
9.6 Stress in Transparent Materials 108
9.6.1 Residual Stress Measurement in Transparent Materials . 108
9.6.2 Method .. 108
9.7 Colors: Lab System .. 109
9.8 Chemical Resistance and Stress Cracking 110
9.8.1 Electrical Properties 110
9.8.1.1 HWI: Hot Wire Ignition 110
9.8.1.2 HAI: High Ampere Arc Ignition 111
9.8.1.3 Time of Arc Resistance (TAR) ASTM D 495 111
9.8.1.4 HVAR: High Voltage Arc Resistance to Ignition 111
9.8.1.5 HVTR: High Voltage Arc Tracking Rate 111
9.8.1.6 CTI: Comparative Tracking Index 112
9.8.1.7 RTI: Relative Temperature Index 112

Properties of Plastics: Understanding Technical Data Sheets 113
CHAPTER 10

10.1 Density .. 114
10.2 Bulk Density .. 115
10.3 Flow Rates ... 115
10.3.1 Melt Volume Index (MVI) 115
10.3.2 Melt Flow Index (MFI) 116
10.4 Tensile Stress, Mechanical Resistance 117
10.5 Elastic Modulus and Tensile Modulus 118
10.6 Impact Resistance 119
10.7 Coefficient of Linear Thermal Expansion (CLTE) 120
10.8 Vicat Softening Temperature 121
10.9 Heat Deflection Temperature (HDT or HDTUL) 122
10.10 Thermal Conductivity 123
10.11 Hardness ... 124
10.12 Surface Resistivity ... 124
10.13 Heat Conductivity ... 125
10.14 Yellow Card .. 125

Part 2: Material Selection

CHAPTER 11 Material Selection Checklist 129
11.1 Technical Specifications 130
11.2 Target Factor Values 131

CHAPTER 12 Material Selection 134

Part 3: Injection: Machines and Processes

CHAPTER 13 The Injection Molding Machine 161
13.1 Clamping Unit ... 161
13.1.1 Clamping Force 162
13.1.2 Clamping Unit Systems 162
13.1.2.1 Mechanical Toggle Clamping System 163
13.1.2.2 Hydraulic Piston Clamping System 163
13.1.2.3 Hydraulic Closure System for Large Tonnages 164
13.1.2.4 Servolectric Clamping: Movements Made by Servomotors, Bearings, and High-Precision Screws 164
13.1.3 Theoretical Clamping Force Required 165
13.2 Injection Unit ... 166
13.2.1 Injection Unit Characteristics 167
13.2.1.1 L/D Ratio 167
13.2.1.2 Compression Ratio (K-Ratio) 167
13.2.1.3 Plasticizing Capacity 167
13.2.2 Screw ... 167
13.2.3 Barrels .. 168
13.2.4 Screw Mechanism 168
13.2.4.1 Screw Feeding Zone, Initial Zone 168
13.2.4.2 Compression Zone, Solids Conveying Zone 168
13.2.4.3 Nitrided Screw vs Bimetal Screw 169
13.2.5 Check Valve Non-Return Tip 170
13.2.6 Nozzle ... 171
13.3 Which is the Right Machine? 173
13.3.1 Factors to Consider for Choosing the Right Machine 173
13.3.2 Clamping Force 174
13.3.3 Residence Time of Material 175
13.3.4 Injection Unit Size 175
15.3.7 Effects of the Different Parameters 206
15.3.7.1 Mold Temperature .. 206
15.3.7.2 Melt Temperature .. 206
15.3.7.3 Part Temperature ... 207
15.3.7.4 Dosage Stroke ... 207
15.3.7.5 Back Pressure .. 207
15.3.7.6 Injection Speed .. 207
15.3.7.7 Holding Pressure .. 207
15.3.7.8 Material Viscosity 208

CHAPTER 16 Generic Recommendations for Injection Molding Conditions 209

CHAPTER 17 Mold Design Guide Recommendations 218
17.1 Metals Versus Steels for Molds 218
17.2 Runners .. 220
17.3 Types of Gates .. 224
17.3.1 Most Common Gates 224
17.4 Mold Cooling ... 226
17.5 Cooling System in Cores 226
17.6 Venting .. 227
17.6.1 Deep .. 227
17.6.2 Venting for Runners 228
17.6.3 Venting in Distribution Channels 229
17.6.4 Venting in Ejectors .. 229
17.7 Draft Angles ... 230
17.8 Shrinkage .. 230

CHAPTER 18 Gates: Types and Recommendations 231
18.1 Fan Edge .. 231
18.2 Submarine or Tunnel Gate 232
18.3 Pin Point Gate .. 232
18.4 Tab Gate .. 233
18.5 Sprue Gate or Direct Gate 234
18.6 Flash Gate ... 234
18.7 Outer Ring ... 235
18.8 Inner Ring ... 235
18.9 Overlarged Jump Gate .. 236
18.10 Pin Gate ... 236
18.11 Most Common Injection Points 237
18.12 Central Flow Distribution Channels 238

CHAPTER 19 Plastic Parts Design: Recommendations 239
19.1 Recommendations .. 239
19.1.1 Ribs and Reinforcements Designs 239
19.1.1.1 Relative Torsion Resistance vs Reference 240
19.1.1.2 Deformation at Constant Load 241
19.1.2 Tensile Stresses 241
19.1.3 Thickness Design 242
19.1.3.1 Changes in Thickness 243
19.1.3.2 Homogeneous Thicknesses 243
19.1.4 Sharp Corners and Radii 244
19.1.5 Influence of the Notches in the Impact Resistance 245
19.1.6 Slots and Undercuts 246
19.1.7 Snap-Fit 247
19.1.8 Rigidty 248
19.1.9 Creep and Relaxation 248
19.1.10 Tubular Frames, Screw Holes 249

Injection: Some Practical Tips 250

20.1 Inspection of Runners and Gates Systems 250
20.1.1 Gate Depth, Width, and Length 250
20.1.1.1 Defects Due to the Gates 251
20.1.2 Gates and Runners Design 252
20.1.3 Spiral Effect or Flow Distribution 253
20.1.4 Nozzles in Processes with Hot Runners 254
20.1.5 Cooling 254
20.1.6 Purging or Cleaning of the Injection Unit 255
20.1.7 Venting 255
20.1.8 POM Foaming Test 257
20.1.9 Surface Tension 258
20.1.9.1 Contact Angle 259
20.1.9.2 Industrial Methods for Activating the Surface or Increasing Surface Tension 260

Part 4: Scientific Molding

Scientific Molding or Injection by Advanced Methods 263

21.1 Knowledge and Training are Tools for the Future 263
21.2 The Process 263
21.3 Some Concepts Related to Scientific Molding 264
21.3.1 Molding Processor 264
21.3.2 Science 264
21.3.3 Intelligence 264
21.4 Machine Inputs vs Process Outputs 265
21.5 New Processing Tools 267
21.6 Advanced Methods—Scientific Injection Molding Tools 269
21.6.1 Relative Viscosity Analysis or In-Mold Rheology Test 269
21.6.2 Delta P: Determination Method 274
21.6.3 Process Window: Determination Method (for Holding Injection Pressure Phase) 276
21.6.4 Gate Seal Study 278
21.6.5 Method and Analysis of Injection Pressure Losses along
the Filling System .. 280
21.6.6 Machine Portability 282
21.6.7 Cavities Balance Study 283
21.6.8 Study of Shear Stress at the Gates 284
21.6.9 Blank Templates .. 287
 21.6.9.1 Gate Seal Study, Blank Template 287
 21.6.9.2 In-Mold Rheology, Blank Template 288

CHAPTER 22 Using Spreadsheets: Advanced Molding and Machine
Portability .. 289
 22.1 Thermoplastic Processing by Injection—Advanced Manual 289

Part 5: Failure Analysis

CHAPTER 23 Process Under Control, Failure Analysis 303
 23.1 Points to Consider 303
 23.1.1 Clamping Unit 303
 23.1.2 Barrels ... 303
 23.1.3 Screws .. 303
 23.1.4 Nozzles .. 304
 23.1.5 Refrigeration System, Temperature Control in the Mold
 and the Machine 304
 23.1.6 Water Connection System in Molds 304
 23.1.7 Dryers and Dehumidifiers 305
 23.1.8 Grinders .. 306
 23.1.9 Hot Runner ... 307
 23.1.10 Thermoregulators 307
 23.1.11 Appearance Criteria 307
 23.1.12 Resin Handling 307
 23.2 Failure Analysis, Checks, and Optimizations 309
 23.2.1 Preliminary Investigation of Failures 309
 23.2.2 Process Optimization 310
 23.2.2.1 Radii ... 310
 23.2.2.2 Cold Slug 310
 23.2.2.3 Steps for Analysis of Problems Derived from
 Plastics Injection Molding Process 311
 23.2.3 Trials Injection Molding Parameters Template 314

CHAPTER 24 Typical Problems in Plastics Injection 315
 24.1 Lack of Drying or Dehumidification 315
 24.1.1 Materials Drying 316
 24.1.2 How to Properly Dehumidify 317
 24.2 Filling System .. 317
 24.2.1 Effects on the Quality of the Parts 318
 24.2.2 Runners System Design 319
 24.3 Proper Position of the Gate 319
 24.3.1 Consequences of a Non-correct Gate Location 320
24.3.2 Recommendations for Correct Gate Location 320
24.4 Hold Pressure Time Too Short 321
24.4.1 Hold Pressure Stage .. 321
24.4.2 Hold Pressure Time Too Short 321
24.5 Inadequate Melt Temperature 322
24.5.1 Incorrect Melt Temperature 322
24.5.2 Signs of Incorrect Melt Temperature 322
24.5.3 Correct Melt Temperature 322
24.5.3.1 Melt Temperature Measurement 322
24.5.3.2 30/30 Melt Temperature Measuring Method 323
24.5.3.3 30/30 Melt Temperature Measuring Method 323
24.5.3.4 30/30 Melt Temperature Measuring Method 323
24.5.3.5 30/30 Melt Temperature Measuring Method 323
24.5.3.6 30/30 Melt Temperature Measuring Method 323
24.6 Correct Mold Temperature 323
24.6.1 Incorrect Mold Temperature 324
24.6.2 Recommendations to Properly Adjust the Mold Temperature 324
24.7 Residues on Mold Surface 325
24.7.1 Types of Deposits 325
24.7.2 Mold Care .. 326
24.8 Excessive Material Drying 327

Defects in Injection Molded Parts 328

25.1 Defects in Parts Manufactured by Thermoplastics Injection Molding .. 328
25.1.1 Sink Marks or Uncompensated Shrinkage 328
25.1.2 Streaks .. 330
25.1.2.1 Streaks Caused by Burns 330
25.1.2.2 Streaks Caused by Moisture 330
25.1.2.3 Streaks Caused by Trapped Air 331
25.1.3 Weld Lines .. 332
25.1.4 Grooves, Vibrations, and Corona Effects 333
25.1.5 Gloss ... 333
25.1.6 Jetting ... 334
25.1.7 Spots and Markings near the Gate 335
25.1.8 Black Spots ... 335
25.1.8.1 Process 335
25.1.8.2 Machine 336
25.1.8.3 Polymer 336
25.1.9 Inhomogeneous Material 336
25.1.10 Blushes near the Gate 337
25.1.11 Bubbles ... 337
25.1.12 Cracking .. 337
25.1.13 Delamination .. 337
25.1.14 Splay, Silver Marks 337
25.1.15 Warpage .. 338
25.1.16 Stress Cracking, ESC 338
25.1.17 Surface Scratching 338
25.2 Defects in Injection Molding and Painted Parts 338
25.2.1 Holes and Craters 338
Contents

25.2.2 Trapped Air 338
25.2.3 Part Molded with Stress 339
25.2.4 Cracks .. 339
25.2.5 Irregularities 340
 25.2.5.1 Sinkings 340
 25.2.5.2 Peaks/Crawling 340
 25.2.5.3 Lack of Adhesion 341
25.3 Cross Cut Test .. 341
25.4 Defects in Chrome Plating on Plastic Parts 342
 25.4.1 Defects .. 343
 25.4.2 Peaks, Spots, Bubbles 343
 25.4.3 Blisters .. 343
 25.4.4 Adhesion .. 344

Analysis of Real Cases .. 345

26.1 Broken Support Brackets 345
 26.1.1 Drying of Material 345
 26.1.2 Filling System Review and Optimization 347
26.2 Pulleys that Do Not Work 349
 26.2.1 Radii .. 349
 26.2.2 Material Selection 350
26.3 Broken Gears ... 350
26.4 Unfilled PC Cover .. 351
26.5 Dimensional Instability in Parts 352
26.6 Insufficient Filling .. 355
26.7 Several Problems with Polycarbonate 356
 26.7.1 A Plastic Chair Full of Problems 356
 26.7.1.1 Concentric Circular, Dark Area around the Gate 356
 26.7.1.2 Weld Lines in the Back Chair Grill 356
 26.7.1.3 Marks in the Cavity Gate 357
 26.7.1.4 Streaks 357
 26.7.2 Support Breaks 357
26.9 Deformation of ABS Part 359
26.10 Bimetallic Effect ... 360
26.11 Hesitation Effect (Flow Stoppage) 361
26.12 Gloss Caused by the Glass Fiber Reinforcement 363
26.13 Pressure-Limited Process: Always a Mistake to Avoid 365
26.14 Streaks in Transparent Polycarbonate 367
 26.14.1 Dehumidifying 367
 26.14.2 Back Pressure 368
 26.14.3 Suction .. 368
 26.14.4 Gate .. 368
 26.15 Polyamide Parts Cannot Withstand the Assembly Stress 369
 26.15.1 Gates .. 371

CHAPTER 26
Environmental stress cracking (ESC) is a major cause of failures in plastics, especially amorphous plastics.

Exposure of polymers to chemicals tends to accelerate the process of cracking or crazing. This process begins with stress much lower than that needed to produce cracks simply in contact with air. The mere effect of both conditions separately, stress or contact with an aggressive chemical, need not necessarily result in ESC. This phenomenon usually occurs when a combined action of both effects occurs.

ESC depends on multiple factors such as crystallinity, surface roughness, residual stress, presence of chemical agents, temperature, and strain level or molecular stretching.

The ESC effect can be minimized by lower residual stress and molecular stretching during the injection process. The use of cold molds should be avoided, as they cause residual stresses that will accelerate the ESC. Polymers of higher molecular weight should be used, because they are more resistant to ESC.
7.1 Chemical Substances

Chemical resistances

- **Limited resistance, minor or moderate attack**: Use briefly.
- **Good resistance, minor attack**
- **Excellent resistance, without attack**
- **Low resistance: Not recommended**

<table>
<thead>
<tr>
<th></th>
<th>LDPE</th>
<th>HDPE</th>
<th>PP</th>
<th>PP C</th>
<th>PS</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DILUTED ACIDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCENTRATED ACIDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALCOHOLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDEHYDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALIPHATIC HYDROCARBONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AROMATIC HYDROCARBONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALOGENATED HYDROCARBONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KETONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINERAL OIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGETAL OIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX TEMPERATURE °C</td>
<td>80</td>
<td>120</td>
<td>135</td>
<td>121</td>
<td>70</td>
<td>130</td>
</tr>
<tr>
<td>MIN TEMPERATURE °C</td>
<td>-50</td>
<td>-100</td>
<td>0</td>
<td>-40</td>
<td>0</td>
<td>-130</td>
</tr>
<tr>
<td>AUTOCLAVE STERILIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROWAVES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS STERILIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRY HEAT STERILIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMMA RAY STERILIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEMICAL STERILIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGEN PERMEABILITY</td>
<td>20</td>
<td>3</td>
<td>4.4</td>
<td>6.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2 PERMEABILITY</td>
<td>280</td>
<td>45</td>
<td>92</td>
<td>65</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>OXYGEN PERMEABILITY</td>
<td>60</td>
<td>10</td>
<td>25</td>
<td>24</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 7 – Chemical Resistances

Chemical Resistances

Chemical Resistances Chart

<table>
<thead>
<tr>
<th>Temperature</th>
<th>HIPS</th>
<th>HDP</th>
<th>PE</th>
<th>PP</th>
<th>PC</th>
<th>PS</th>
<th>SAN</th>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical Resistances

- **Weak Acids**
- **Strong Acids**
- **Oxidant Acids**
- **Weak Alkalis**
- **Strong Alkalis**
- **Salts (Solutions)**
- **Halogens**
- **Aliphatic Hydrocarbons**
- **Chlorinated Hydrocarbons**
- **Alcohols**
- **Esters**
- **Ketones**
- **Ethers**
- **Aldehydes**
- **Amines**
- **Organic Acids**
- **Aromatic Hydrocarbons**
- **Oil and Derivatives**
- **Mineral Oils**
- **Fats and Oils**
- **Unsaturated Chlorinated Hydrocarbons**

Legend

- **Excellent Resistance, Without Attack**
- **Limited Resistance, Moderate Attack**
- **Good Resistance, Minor Attack**
- **Poor Resistance (Attacked or Dissolved), Not Recommended**
- **No Data**
9.1.2 Flexural Test ISO 178

This flexural test measures the extent of bending resistance of a material and its stiffness. To carry it out, a specimen is placed so that it rests on two points. Then, pressure is applied at its midpoint.

Test speed: 2 mm per minute.

To calculate the flexural modulus, the load/deflection curve is drawn. The flexural modulus is determined by the slope of the line tangent to the stress-strain curve in the region where the plastic has not yet been permanently deformed or where elastic strain occurs.
9.1.3 Wear Resistance Test TABER ASTM D1044

This wear resistance test measures the amount of material loss by abrasion or wear.

The sample is mounted on a turntable which rotates at 60 rpm. Loads are applied as weights that push the abrasive wheels against the sample. After a certain number of cycles the test is stopped.

The mass lost by abrasion is indicated in mg/1000 cycles.

9.1.4 Hardness Tests

9.1.4.1 Ball Pressure Hardness Test ISO 2039-1

A 5 mm diameter ball of hardened and polished steel is pressed at 358 N on a sample surface with a minimum thickness of 4 mm. 30 seconds after, the depth of impression is measured.

Hardness pressure is calculated by dividing the load applied by the mark area (N/mm²).

9.1.4.2 Rockwell Hardness Test ISO 2039-2

The diameter of the ball depends on the Rockwell scale used. The indenter is made of hardened and ground steel. The sample is subjected to a lighter load. A heavier load is then applied and, finally, the lighter load is applied again.

The measurement is based on the total penetration depth achieved. The values are always between 50 and 115 (in Rockwell units).

The scale increases in severity R to M through L.
Table 9.1 Rockwell Hardness Test

<table>
<thead>
<tr>
<th>Rockwell hardness scale</th>
<th>Lower load (N)</th>
<th>Higher load (N)</th>
<th>Ball diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>98.07</td>
<td>588.4</td>
<td>12.7</td>
</tr>
<tr>
<td>L</td>
<td>98.07</td>
<td>588.4</td>
<td>6.35</td>
</tr>
<tr>
<td>M</td>
<td>90</td>
<td>980.7</td>
<td>6.35</td>
</tr>
</tbody>
</table>

Figure 9.4 Rockwell hardness conditions and sequence

Figure 9.5 Rockwell hardness test machine; source: Zwick-Roell

Rockwell hardness calculation = 130 – E (see Figure 9.4).

Units: 0.002 mm (one unit per each 0.002 mm of the mark depth).

9.1.4.3 Shore A and Shore D Hardness Test ISO 868

The Shore A test is intended for soft materials. The Shore D test is intended for harder materials.

Pressure is applied on the sample for 15 seconds. Hardness is read on the durometer scale. Values range from 0 (total penetration: 2.5 mm) to 100 (no penetration).

Shore A hardness ranges from 10 to 90. Shore D hardness ranges from 20 to 90.

Shore A values over 90 require switching to the Shore D scale. Shore D values under 20 require switching to the Shore A scale.
9.1.5 Impact Charpy Test ISO 179 IZOD, ISO 180

The sample specimens are different between ISO and ASTM. See Table 9.2.

Table 9.2 Sample Dimensions for Charpy Impact Test

<table>
<thead>
<tr>
<th>Type</th>
<th>Thickness</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO sample</td>
<td>4 mm</td>
<td>80 mm</td>
</tr>
<tr>
<td>ASTM sample</td>
<td>3 mm</td>
<td>60 mm</td>
</tr>
</tbody>
</table>

The impact Charpy test is used to estimate the degree of weakness or strength of material samples subjected to impact. We can thus compare the toughness of different materials.

The sample is placed in the specimen holder. Then, a pendulum hammer (with a hardened steel tip of a certain radius) is dropped from a certain height. The impact causes shearing of the sample material due to the sudden load.

The height difference between the baseline and the residual height reached by the hammer represents the energy absorbed by the sample.

This test can be performed at different temperatures. It can also be performed with or without notches in the sample.

9.1.5.1 Izod Test ISO 180

The result of this test is obtained by dividing the energy required to break the sample by the initial area. The result is expressed in kilojoules per square meter, kJ/m².
The characteristics and instructions included in catalogs and technical documentation brochures provided by injection machine manufacturers allow us to determine if a machine can be technically optimal for producing a particular project or part made by an injection molding process.

The injection machine can be divided into two main units: the clamping unit and the injection unit.

The clamping unit comprises, among others, the clamping force, the moving plate stroke, the tie bar free spacing, the mold minimum and maximum thicknesses, clamping and opening mold speed, etc.

The injection unit incorporates several characteristics, like the screw diameter, maximal pressure, L/D ratio, compression ratio, plasticizing capacity, maximal injection volume, heating power, maximal injection speed, etc.

13.1 Clamping Unit

<table>
<thead>
<tr>
<th>Clamping unit determines:</th>
<th>Clamping force</th>
<th>Mold maximum and minimum thicknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moving plate stroke</td>
<td>Plate thickness</td>
</tr>
<tr>
<td></td>
<td>Tie bar free spacing</td>
<td>Ejection stroke</td>
</tr>
</tbody>
</table>
13.1.1 Clamping Force

Function and characteristics

- Keeping the mold closed so it does not open due to the injection pressure thrust during the cavity filling and packing.
- When the product obtained by multiplying the projected part area in the mold by the injection pressure needed exceeds the closing force, the tie bars are overstressed and elongate even more. They can exceed the steel elastic tensile limit and break or deflect the clamping plates.
- The mechanical clamping systems are stiffer than hydraulic clamping systems.
- The hydraulic clamping system exerts pressure close to the center of the plate.
- The latest generation of mechanic toggle clamping systems also concentrate strength close to the center of the movable plate.

Movable platen stroke

A longer stroke will make the machine more versatile. In the hydraulic clamping systems, the total stroke of the piston is equal to the sum of the mold thickness and the maximum opening mold stroke.

Tie bars distance

The distance should be the widest possible, provided that the plate bending will be respected.

Stationary and movable platen

They should be parallel. The weight of the movable platen and mold must rest on the base of the bed and not on the tie bars.

Mold size regarding the platen size

According to the rule of thumb, the molds whose base area regarding the movable platen is less than ¼ of the area of the platen should not be placed.

The projected area of the molds used should not be less than a quarter of the area delimited by the tie bars in the clapping platen. If the mold area were smaller, the plates could be flexed more than recommended.

13.1.2 Clamping Unit Systems

According to their design, we can distinguish the following sealing systems:

- Mechanic toggle clamping system
- Hydraulic clamping system
- Hydraulic two-stage piston system
- Tie-barless system
- Electrical system
13.1.2.1 Mechanical Toggle Clamping System

13.1.2.2 Hydraulic Piston Clamping System
There are several kinds of two-stage clamping systems that may be included within the hydraulic clamping systems. The most common system is a mechanical lock in the machine made by two very small hydraulic cylinders, driving two locking parts which act over the central axis. Once the central axis is locked, the high pressure enters through a larger cylinder (pressure cylinder), moving it only a few millimeters, to provide the necessary and programmed clamping force.

13.1.2.3 Hydraulic Closure System for Large Tonnages

There are as many hydraulic clamping systems as there are machine manufacturers. All of them have tried to develop more versatile, fast, accurate, and low-maintenance systems.

In general, these devices have a system of small-section and low-volume piston to effect a fast closing movement. Thus, this movement requires little volume of oil and, therefore, has a low energy cost and is performed very rapidly. The system is complemented with a large piston. This piston performs the final locking of clamping force by a short stroke.

13.1.2.4 Servoelectric Clamping: Movements Made by Servomotors, Bearings, and High-Precision Screws
Chapter 16

Generic Recommendations for Injection Molding Conditions

Attention: follow carefully the recommendations in this chapter. The author assumes no responsibility for incidents, accidents, damage to equipment or people, or adverse outcomes that may occur.

DRYING

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>150°C</td>
<td>2-4 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL NAME</th>
<th>MOLD TEMP</th>
<th>MELT TEMP</th>
<th>MELT TEMP</th>
<th>MELT TEMP</th>
<th>MAX MELT TEMP</th>
<th>RESIDENCE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEP FLUORINATED ETHYLENE POLYPROPYLENE</td>
<td>200-240°C</td>
<td>360-370°C</td>
<td>330-350°C</td>
<td>335-350°C</td>
<td>390°C</td>
<td>5 min</td>
</tr>
</tbody>
</table>

PERIPH SPEED m/s
0.5

BACK PRESSURE bar
< 60

INJECTION PRESSURE bar
1950

HOLD PRESSURE bar
600

COMMENTS
FILTERS, CAPS, AND GASKETS

VENTING

GATES

SHRINKAGE

SHRINKAGE

- Clamping system
- Mold system
- Injection system
- Hydraulic system

MATERIAL NAME
PEI POLYETHERIMIDE

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>195°C</td>
<td>3-4 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOLD TEMP</th>
<th>MELT TEMP</th>
<th>MELT TEMP</th>
<th>MELT TEMP</th>
<th>MAX MELT TEMP</th>
<th>RESIDENCE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>175°C</td>
<td>305-405°C</td>
<td>325-430°C</td>
<td>310-380°C</td>
<td>415°C</td>
<td>5 min</td>
</tr>
</tbody>
</table>

PERIPH SPEED m/s
0.5

BACK PRESSURE bar
< 5

INJECTION PRESSURE bar
2000

HOLD PRESSURE bar
1800

COMMENTS

- ELECTRICAL COMPONENTS
- INTEGRATED CIRCUITS' HOLDERS
- f/e 150:1
Chapter 16 — Generic Recommendations for Injection Molding Conditions

<table>
<thead>
<tr>
<th>MATERIAL NAME</th>
<th>MOLD TEMP</th>
<th>MELT TEMP</th>
<th>MELT TEMP</th>
<th>MELT TEMP</th>
<th>MAX MELT TEMP</th>
<th>RESIDENCE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEK POLYETHER ETHER KETONE</td>
<td>150-160 °C</td>
<td>370-380 °C</td>
<td>350-370 °C</td>
<td>340-350 °C</td>
<td>150 ºC</td>
<td>4 hours</td>
</tr>
<tr>
<td>PSU/PPSU/PESU POLYSULFONES</td>
<td>150-160 ºC</td>
<td>315-370 ºC</td>
<td>310-370 ºC</td>
<td>295-365 ºC</td>
<td>20 ºC</td>
<td>30 min</td>
</tr>
<tr>
<td>PC POLYCARBONATE</td>
<td>80-120 ºC</td>
<td>265-315 ºC</td>
<td>265-315 ºC</td>
<td>275-300 ºC</td>
<td>20 ºC</td>
<td>7 min</td>
</tr>
</tbody>
</table>

Clutch Plates
- RTI 260
- TP 243
- Vs 200:1

Gear

<table>
<thead>
<tr>
<th>MATERIAL NAME</th>
<th>MOLD TEMP</th>
<th>MELT TEMP</th>
<th>MELT TEMP</th>
<th>MELT TEMP</th>
<th>MAX MELT TEMP</th>
<th>RESIDENCE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTI 260</td>
<td>150-160 ºC</td>
<td>370-380 ºC</td>
<td>350-370 ºC</td>
<td>340-350 ºC</td>
<td>150 ºC</td>
<td>4 hours</td>
</tr>
<tr>
<td>TP 243</td>
<td>150-160 ºC</td>
<td>315-370 ºC</td>
<td>310-370 ºC</td>
<td>295-365 ºC</td>
<td>20 ºC</td>
<td>30 min</td>
</tr>
<tr>
<td>Vs 200:1</td>
<td>80-120 ºC</td>
<td>265-315 ºC</td>
<td>265-315 ºC</td>
<td>275-300 ºC</td>
<td>20 ºC</td>
<td>7 min</td>
</tr>
</tbody>
</table>

Strengths
- High transmittance
- UV resistance
- Impact resistance until -150°C
- Hot water, hydrolysis
- Dimensional stability
- Low resistance to oils and fats

Weaknesses
- Low resistance to oils and fats
Chapter 16 — Generic Recommendations for Injection Molding Conditions

Comments

Strengths
- Dimensional stability
- Outdoors
- Chemical resistance to oils

Weaknesses
- Strict drying, hydrolysis
- Low resistance to gasolines and ketones

PET Polyethylene Terephthalate

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Mold Temp</th>
<th>Melt Temp</th>
<th>Melt Temp</th>
<th>Melt Temp</th>
<th>Max Melt Temp</th>
<th>Residence Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET Polyethylene Terephthalate</td>
<td>80-100 °C</td>
<td>235-250 °C</td>
<td>225-240 °C</td>
<td>215-230 °C</td>
<td>207 °C</td>
<td>2 min</td>
</tr>
</tbody>
</table>

Drying Temperature
- 120°C (5-5.5 hours)

Venting
- Deep

Gates
- 1.4-2%

PP Polypropylene

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Mold Temp</th>
<th>Melt Temp</th>
<th>Melt Temp</th>
<th>Melt Temp</th>
<th>Max Melt Temp</th>
<th>Residence Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Polypropylene Modified</td>
<td>60-110 °C</td>
<td>260-265 °C</td>
<td>225-270 °C</td>
<td>219-256 °C</td>
<td>204 °C</td>
<td></td>
</tr>
</tbody>
</table>

Drying Temperature
- 180°C (5 hours)

Venting
- Deep

Gates
- 1.2-2%

Comments

Strengths
- UV resistance
- Stiffness

Weaknesses
- Strict drying
- Permeability to CO₂

PP Polypropylene

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Mold Temp</th>
<th>Melt Temp</th>
<th>Melt Temp</th>
<th>Melt Temp</th>
<th>Max Melt Temp</th>
<th>Residence Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Polypropylene Modified</td>
<td>130-140 °C</td>
<td>270-285 °C</td>
<td>270-285 °C</td>
<td>264 °C</td>
<td>4 min</td>
<td></td>
</tr>
</tbody>
</table>

Drying Temperature
- 120°C (5 hours)

Venting
- Deep

Gates
- 1.2-2%

Comments

Strengths
- Dimensional stability
- Impact resistance

Weaknesses
- Impact resistance
- Resistance to gasolines and ketones

PP Polypropylene

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Mold Temp</th>
<th>Melt Temp</th>
<th>Melt Temp</th>
<th>Melt Temp</th>
<th>Max Melt Temp</th>
<th>Residence Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Polypropylene Modified</td>
<td>60-110 °C</td>
<td>260-265 °C</td>
<td>225-270 °C</td>
<td>219-256 °C</td>
<td>204 °C</td>
<td></td>
</tr>
</tbody>
</table>

Drying Temperature
- 180°C (5 hours)

Venting
- Deep

Gates
- 1.2-2%

Comments

Strengths
- Dimensional stability
- Impact resistance

Weaknesses
- Impact resistance
- Resistance to gasolines and ketones
25.1.2 Streaks

25.1.2.1 Streaks Caused by Burns

This thermal degradation is caused by excessive temperatures and/or residence times; gases are generated by the decomposition of the polymer or additive pack. Brown or silver streaks can be seen in the workpiece surface.

When the molecular structure is thermally degraded, the molecular chain can decrease, and silver streaks appear. The change in the macromolecules causes a brownish discoloration.

The heat required for thermal degradation of the material may come from the injection unit setting, from an excessive shear during dosing (back pressure) by a high peripheral speed (rpm), from an excessive shear on sharp edges, from sudden changes of direction, etc.

Verifications—To Check:
- Check if the melt temperature is near the upper limit recommended or even above.
- See if the streak appears behind narrow sections of passage of material.
- Check if the defect can be reduced by decreasing the injection speed.
- Check if the reduction in the melt temperature has a positive effect on the defect.
- Check if the degradation streak is affected by a high residence time caused by interruptions, excessive cycle, or inadequate machine size.
- Check for a considerable amount of regrind material or dust from the regrind process.
- Check there are no retentions inside the hot runners.
- Check that the nozzle is working properly and there are no retentions. Pay attention to shut-off hydraulic nozzles.
- Check that time and temperature of pre-drying material are not excessively high.
- Check that the shear originated during the dosing by screw rotation is not excessive (keep within the recommended limits for the material).

25.1.2.2 Streaks Caused by Moisture

They appear on the part surface with the shape of comet trails. The surface surrounding the silver streaks is porous and rough. This can be seen under a microscope.
Residual humidity in the melt causes gas evaporation of water inside. These gas bubbles tend to come out to the surface by the advancing flow effect from inside to outside. Trapped bubbles burst at the surface with the application of pressure, creating the visible effect of the streak.

Verifications—To Check:

- Hygroscopic materials such as PA, PBT, ABS, PC, PMMA, TPU, and others need a thorough pre-processing dehumidification. Check the polymer manufacturer’s recommendations.

- When material is ejected, the purge bubbles may appear and release steam if the material is not sufficiently dehumidified (inconsistency of purging).

- The flow front has crater-like structures.

25.1.2.3 Streaks Caused by Trapped Air

They appear as matte, silver, or white streaks near the last filling zone. They also appear in areas with ribs, thickness variations, letters, reliefs, etc. The air concentrated in the ribs and grooves can be surpassed by the flow front and be trapped in the melt.

The air unable to escape during filling goes to the surface and becomes compressed in the direction of flow during the hold pressure stage.
Chapter 25 — Defects in Injection Molded Parts

Verifications—To Check:

- Make sure that the suction is not the cause of the problem.
- Perform tests decreasing the injection speed to minimize the problem.
- See if ejection purge shows bubbles or explosions and if the flow front has craters.
- Verify the back pressure. If the back pressure is low, the air is not completely removed from the pellets during dosing.
- Verify possible wear in the screw barrel of the plasticizing unit.

25.1.3 Weld Lines

When several flow fronts face each other, the flow front edges that are rounded come in contact and are crushed against each other. If temperature and pressure are not high enough, the corners in contact with the cavity will not bind on the entire surface and microcracks appear. Fluids do not mix homogeneously. At this time it is very important that the aeration or venting of the mold has been effective.

Verifications—To Check:

The flow fronts must coincide quickly and with a higher temperature to reduce the incidence of the defect. To achieve this, the following conditions could be tested and checked:

- Material with higher melt flow
- Increased mold temperature
- Increased melt temperature
- Increased injection speed
- Proper venting in critical areas
- Increased hold pressure
- Gates dimensions
- Gates location
Sometimes, we can adapt overflow areas in the welding lines position to promote that the weld line be placed out of the critical zone of the part. However, we must re-work and cut this area later.

25.1.4 Grooves, Vibrations, and Corona Effects

Very fine grooves formed by concentric rings, like those of a vinyl record, can be seen on the surface of the part. Their appearance is due to the formation of a solid layer behind the flow front, which is cooled very rapidly. The cooling of the peripheral layer also causes cooling of part of the flow front. When this happens, a new layer from the melt flow passes through the cold flow front, creating a new groove or line.

Verifications—To Check:

These actions help to increase the speed of advance of the flow:

- Increase the injection speed
- Increase the maximum injection pressure (no limited process)
- Increase the melt temperature
- Avoid small gates and channels
- Use materials with less viscosity (more fluid)

25.1.5 Gloss

Figure 25.8 Gloss

Figure 25.9 Left: high gloss, light reflection, narrow intensity distribution; right: low gloss, light reflection, broad intensity distribution
The brightness of a part is due to the refraction of light on its surface. Gloss differences are due to the different behavior of this surface, caused by various reasons (differences in mold surface, shrinkage differences, cooling differences, different mold temperature, inner vacuoles, orientation of pigments, fillers, etc.).

Verifications—To Check:
- Check the mold temperature (a high temperature causes parts with higher gloss)
- Check the melt temperature (a high temperature causes parts with higher gloss)
- Injection speed: a high injection speed usually increases the part’s surface gloss
- Cavity mold surface texturing
- Design of ejection system
- Radiate sharp corners
- Design with uniform thickness
- Provide operational venting channels
- Take into account the different temperatures in molds, runners, ejectors, etc.; these thermal gradients generate differences in surface gloss

25.1.6 Jetting

Jetting is a free melted material jet forcing the melt to zigzag within the cavity. When the melt touches the walls of the mold, it is cooled and cannot melt homogeneously with the rest of material that goes into the cavity.

Figure 25.10 Correct and incorrect gate position; it can cause jetting in the molded part

Verifications—To Check:
- Reduce first injection speed to pass through the gate
- Increase melted mass temperature
Advice:

- Use lubricant grease or oils that are compatible with the polymer used.
- Manufacture molded parts without stress. With this purpose:
 - Use the adequate melt temperature as recommended by the manufacturer.
 - Minimize residence time of the material in the injection unit.
 - Dry the material properly.

26.2.2 Material Selection

If the stresses exceed the strength of ABS, it shall be broken without remedy. If it is possible to know the stresses applied, we can find a material that brings us a safety margin during its use.

<table>
<thead>
<tr>
<th>In summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Causes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Advice</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

26.3 Broken Gears

I received several parts with visible breaks. I started watching the pieces for possible problems. They were mechanical parts used in gears, with a central housing for a square shaft. I applied a flame to try to identify the type of material and I got a strong scent: it smelled similar to a “burning horn”. When the piece burned, it formed dripping threads. It was made of polyamide (PA).

I also noted bursts and microbubbles in the surface of most parts received. Some had pores or vacuoles in the section break. I also saw the remains of a direct gate. All pieces had a very pronounced weld line in front of the gate.

Possible Causes of Britteness

The samples indicate that the dehumidifying was not enough. There are traces of humidity everywhere.

The central core, squared, is not radiated on the front side, where it meets the bottom wall of the piece. This generates shear and accumulation of stresses.
passed the pen on the radii and could clearly see a double line, indicating the absence of radius.

I observed two types of gate: a submarine and other direct by piece. If both work separately and individually, they are not sufficient to fill and package the part.

Advice:

- Dry the raw material (in this case PA) at 80 °C for 12 hours.
- Increase the mold temperature for maximum crystallinity of the polymer (80 °C would be suitable). This would provide more and better mechanical properties.
- Humidify or condition the parts and prepare them before including them in the assembly step. PA parts have to be conditioned to reach their equilibrium of humidity absorption, to achieve the properties of use.
- Radiate cores in the central square of the base, where it meets the wall of the part.
- Increase direct gate in order to compensate the shrinkage that promotes the internal vacuoles.

<table>
<thead>
<tr>
<th>In summary</th>
<th>Broken parts during use</th>
<th>Material: PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes</td>
<td>Mold temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No radii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irregular drying</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate with incorrect dimensions</td>
<td></td>
</tr>
<tr>
<td>Advice</td>
<td>Increase mold temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apply radii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct and proper material drying</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase the gate dimension</td>
<td></td>
</tr>
</tbody>
</table>

26.4 Unfilled PC Cover

Improper thickness of the wall connected to the gate prevents the proper filling of the transparent PC sheet.

In this case, the problem was in a transparent cover made of polycarbonate (PC). The filling of the cavity was hard and flow lines and corona effect (see Chapter 15) were seen in areas far away from the gate.

After cutting the piece, I noticed that the wall where the gate is located (this is in the center of the part) was too thin (1 mm) in relation to the perimeter side walls (4 mm), rather thick.

The “thick to thin” rule is not observed in this case. Neither has been included a semi-spherical facilitator flow in front of the gate. This simple mechanization
facilitates filling, especially at first, and minimizes friction and shear near the gate.

The gate is too small for the volume and section of the part. If we double the gate section, we quadruple the volume that can pass through it.

It is recommended that the wall connected to the gate should be the thinner wall of the part. Flow restriction prevents the filling and holding pressure of the cavity in the thicker areas.

Advice:
- Review design to increase the thickness of the wall connected to the gate
- Warm the mold (PC can be worked at 90–100 °C)
- Have a facilitator flow in front of the gate
- Increase the gate section for easy filling and packing of the cavity
- Use a more fluid PC

<table>
<thead>
<tr>
<th>In summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Causes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Advice</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

26.5 Dimensional Instability in Parts

In this case, the difficulties encountered to manufacture consistent dimensions in precision parts make it impossible to carry out the work.

During fabrication of a colored transparent polystyrene (PS) ring, the degree of dispersion of the dimension obtained exceeds the specified tolerance for this product. The tolerances for these products are very low and cannot stabilize the dimensions variation range.

After a meeting with the customer, I visited the injection plant to observe the full injection process. The three plates mold has eight cavities. Such a high number of cavities is not recommended when one wants to make very high precision parts.

I decided to measure the parts and analyze the cavity number groups. I saw a significant spread between the parts obtained from different cavities number.
At this point I wondered:

- Is the switching point correct?
- On many occasions this point is not properly programmed, causing:
 1. Overcompaction
 2. Partial filling of the part during the hold pressure stage, without speed control
- Is the injection pressure limit being reached?
 Often, the filling is limited by the injection pressure limit and we have no control of the speed of filling the cavity.
- Does the flow front advance uniformly?
 Normally, injection speed profile curves are set flat or with a constant injection volume during all the filling stroke. This causes the flow to accelerate or decelerate according to the sections of passage of the material, runners, etc. We do not control the flow front speed.
- Is the hold pressure time right?
 Normally, this time is set depending on the weight (there are two limits) or depending on the part (dimensions, flashes, grips, etc.), or when the part fails to gain weight. We should not make perfect runners by increasing hold pressure time, cycle, or energy expenditure.
- Do we want to switch to hold pressure stage by hydraulic pressure?
 Normally, this system is not too used although it is the most reliable (outside the cavity pressure switching) and is available in almost all current standard machines. We must make better use of available technology in factories.

We make a start from zero, following these steps:

Injection Pressure Limit
Set the pressure value above the real pressure needed to ensure that we do not limit the injection process. There is nothing worse than a pressure-limited process.

Holding Pressure
Set the hold pressure time and hold pressure to zero.

Switching Stroke
Set the switching point close to the dosage point in order to inject a little injection volume in the cavity. We want to fill only a small amount of the part.

With these premises, we can start the progressive filling of the cavities.
During filling, we modify the switching point position to inject a greater quantity of material in each cycle. Suddenly, we find that certain cavities are completely filled while others are not. The eight cavities have not been filled in a balanced way. The probable cause is the small differences in gates and/or runners channels, in addition to the “spiral” effect. Here we identify a cause of the spread of dimensions between cavities.

We cannot obtain narrow dimensional tolerances in an unbalanced mold during filling.
After obtaining the correct switching point position, we proceed to pressurize and pack the cavities. We use the gate seal analysis. First we select a hold pressure time excessively overrun, which ensures that the gate will be closed or sealed and a low hold pressure level.

We increase the pressure values until the pieces are aesthetically and dimensionally correct. At this point we have an excessive holding pressure time, which ensures the gate seal. Then we weigh the injected parts without runner and we gradually reduce the holding pressure time, controlling the weight of each shot.

There will come a moment when the weight will decline. This indicates that the gate was not sealed. So we increase in the previous step holding pressure time, 1 second or so, and ensure the sealed gate with the shortest hold pressure time possible and, therefore, the optimum time.

Finally, we decrease the pressure injection limit to a value slightly above the necessary real filling pressure. In this way we ensure that it does not interfere with normal filling cavities, and it becomes a security element to any clogged or closed cavity.

With these steps, the dimensions of injected parts are dimensionally repetitive and consistent and will be dimensionally stable although the cavities filled first are bigger. To eliminate this last problem we have to ensure that the dimensions of channels and gates are identical.

Hold pressure

Key points:

1. Do we work with a sealed gate or with an open gate?
2. How much time will be set in hold pressure stage?
3. How much hold pressure will be set?

Points 1 and 2 determine if we work with sealed or open gates.

1. Place a hold pressure time much longer than necessary to seal the entrance.
2. Start with a low hold pressure and gradually increase until the piece is OK. This pressure is to study the sealing time of the gate. It is not the pressure with which we will work.
3. Weigh the part.
4. Gradually reduce hold pressure time and weigh the part until we have 0.5 seconds holding pressure.
5. Reflect times and weights on a chart.

Sealed gate processes are better and more stable.
Advice:

- Match and balance filling between cavities; adjust gates and channels if necessary
- Change the injection process for an optimum hold pressure time with sealed gate
- Adjust any cavity if it is outside the tolerance range

<table>
<thead>
<tr>
<th>Problem</th>
<th>Process with little robust dimensions</th>
<th>Dimensional instability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes</td>
<td>Cavity unbalanced</td>
<td>Unoptimized hold pressure</td>
</tr>
<tr>
<td>Advice</td>
<td>Balance filling between cavities</td>
<td>Set post-pressure correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work with sealed gate</td>
</tr>
</tbody>
</table>

26.6 Insufficient Filling

A change in the polymer used may hinder the filling of the cavity.

In this case, the part was made with a blend of PC-ABS. This blend is a material of high/medium viscosity. The flow path respect to the average thickness of the part was quite unfavorable. The average thickness of the part was 2.5 mm.

Looking at the gates, two submarine gates of small dimensions were connected to the rear walls. These walls were too thin.

In this case there had been a change of material. Previously, the material filled perfectly with this mold. The filling problems began when it was replaced by the new blend.

Given the large difference in viscosity between the two materials, it was necessary to review and modify certain aspects of the mold to properly fill the cavity.

Although the value of the MFI in each case is important, it can lead to certain errors. For example, if we look at a PP and a PC with a melt index of 4 g/10 m, this does not mean that we can fill the same cavity with both materials. In the case of PP, its viscosity may decline by a factor of 100 because of the shear rate, and, in the case of PC, the viscosity can be reduced by only a factor of 5.

Advice:

- Modify distribution channel, increasing the section
- Increase the section of the runner and submarine gate
- Increase the gate section
- Increase real walls section connected to the gate
Symbols
30/30 melt temperature measuring method 323

A
absorption of water 37
ABS part 359
accelerated weathering test 106
acronyms 41
acrylonitrile butadiene styrene (ABS) 52
acrylonitrile styrene acrylic rubber (ASA) 54
additives 6, 74
adhesion 344
advanced technician 265
aesthetic aspect 363
aesthetic defects 284, 362
aesthetic limitations checklist 130
aliphatic compounds 69
alkalis 67
allowed humidity 385
amines 69
amorphous 8
antiblocking additive 81
antifriction lubricants 84
antioxidant additive 74, 76
antistatic compounds 77
application environment, requirements checklist 129
atactic 12
atmospheric plasma treatment 260
axially symmetrical parts 320

B
back pressure 30, 186, 198, 207, 332, 337, 368, 375
back pressure recommendations 209
bactericide additive 87
bacteriostatic additive 87
Bakelite 23
balanced distribution channel 220
balanced filling system 370
ball pressure hardness test 90
ball valve 170
barrels 303
barrier screws 303
beryllium copper 218
bifunctional 6
bimetallic effect 360
bimetallic hard treatment 168
birefringence in transparent polymers 108
black spots 336
blend ABS-PC 53
blisters 343
block copolymer 374
blushes near the gate 337
bonding of materials 157
breaks 357
break stress 118
brittle fractures 350
brownish discoloration 330
bubbles 337, 343, 376
bubbles and peaks 343
bulk density 115
burns 330
burn test 35
butadiene particles size 343
cavities balancing study 283, 284, 289
cavity filling 31, 181
cavity filling imbalances 352
cavity mold surface texturing 334
cavity pressure 206
central flow distribution channels 238
Charpy test 92
check valve non-return tip 170
chemical resistances 66
clamping force 162, 194
clamping unit 161
clamping unit systems 162
CLTE test 97
coefficient of linear thermal expansion (CLTE) 120
cold layer 182
cold runner 252
cold slug 229, 310
collodion 22
comparative tracking index CTI 136
comparative tracking index test 112
compatibility agents 82
compensation of the volumetric shrinkage 347
compression ratio 167, 303
compression set test 94
compression zone 167
concentric circular, dark area around the gate 356
contact angle 259
conversion systems 282
cooling 30, 254, 376
cooling part 29
cooling speed 190
cooling stage 27
cooling system in cores 226
cooling time 195, 279
cool skin 280
copolymer 12
copolymer POM 50
corona 341
corona effect 333, 351
corona treatment 260
Index

correct cavity balance 284
cost requirements checklist 130
covalent bonds 4
cracking 337
cracking of polymers 66
cracks 329, 339
crawling 340
craze 329, 349
crazing of polymers 66
creep 19, 248
creep modulus 21
cross cut test 341
cross-links 11
crystallization of polymers 33
CTI test 102
cushion 192
cycle time 190
d
defects 343
defects due to the gates 251
defects in chrome plating on plastic parts 342
deformation at constant load 241
degradation of polycarbonate 336
degree of polymerization 3
delamination 337
delta P 266, 274
delta P study 289
demolding taper 376
density 114
deposits in the mold, cause 325
deposits, recommendations to prevent 326
depth of the gate 337
deviations 263
deviations between cavities 284
dew point 317
diagram molding 277
diagram of molding area 278
dielectric constant test 102
dielectric strength 137
dielectric strength test 102
diesel effect 198, 347
differential shrinkage 359, 361
dimensional instability in parts 352
direct gate 234
dispersion 85
dissipation factor test 102
distribution channel 372
dosage 192
dosage and metering zone 168
dosage calculation 289
dosage stage 26
dosage stroke 195, 207
double bonds 4
draft angles 230, 357
drooling material 197
drop injection pressure study 289
dryers 379
dryers and dehumidifiers 305
drying of material 345
drying system 379
dull spots 363
dyes and pigments 84
drying system review and optimization 347
filling time 202, 265, 274
flame retardants 77
flaming 341
flashes 272, 277, 303, 315, 363
flash gate 234
flat nozzle 172
flexural modulus 89
flexural test ISO 178 89
flow front 353
flow restriction 352, 358
foaming agents 81
forced air heaters 345
functional group 6
functionality 6
g
gas bubbles 331
gate 318, 368, 371
gate depth 250, 348
gate, frozen 279
gate length 348
gate position 225, 319
gates and runners design 252
gates design 224
gate seal analysis 267, 354
gate seal study 278, 287, 289
gate seal study curve 279
gate section 335, 368
gates, most common 224
gates recommendations 209
gate too small 352
gate types 231
gate width 348
gate width and length 250
generic recommendations 209
glass microspheres 82
glass transition temperature 15, 94
gloss 333, 363
grain and peaks 363
grinders 306
grooves 333
gutta-percha 22
GWFT test 101
GWIT test 101
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>halogenated compounds 69</td>
</tr>
<tr>
<td>halogen-free flame retardants 79</td>
</tr>
<tr>
<td>halogens 79</td>
</tr>
<tr>
<td>HALS 75, 76</td>
</tr>
<tr>
<td>haze 155</td>
</tr>
<tr>
<td>HDT 138</td>
</tr>
<tr>
<td>HDT, DTUL 95</td>
</tr>
<tr>
<td>heat conductivity 125</td>
</tr>
<tr>
<td>heat deflection temperature 122</td>
</tr>
<tr>
<td>hesitation effect 361</td>
</tr>
<tr>
<td>heterodisperse 7</td>
</tr>
<tr>
<td>high ampere arc ignition test 111</td>
</tr>
<tr>
<td>high density polyethylene 46</td>
</tr>
<tr>
<td>high gloss 333</td>
</tr>
<tr>
<td>high-performance polymers 149</td>
</tr>
<tr>
<td>high residence time 330</td>
</tr>
<tr>
<td>high shear 344</td>
</tr>
<tr>
<td>high voltage arc resistance to ignition test 111</td>
</tr>
<tr>
<td>high voltage arc tracking rate test 111</td>
</tr>
<tr>
<td>hinges 320</td>
</tr>
<tr>
<td>holding injection pressure phase 276</td>
</tr>
<tr>
<td>hold pressure 27, 30, 188, 199, 202, 207, 209, 375</td>
</tr>
<tr>
<td>hold pressure stage 27, 203, 321</td>
</tr>
<tr>
<td>hold pressure switching 188</td>
</tr>
<tr>
<td>hold pressure time 29, 189, 353</td>
</tr>
<tr>
<td>hold pressure time with sealed gate 355</td>
</tr>
<tr>
<td>holes and craters 338</td>
</tr>
<tr>
<td>homodisperse 7</td>
</tr>
<tr>
<td>homogeneous melt 186</td>
</tr>
<tr>
<td>homogeneous thicknesses 243</td>
</tr>
<tr>
<td>homopolymer 11</td>
</tr>
<tr>
<td>homopolymer POM 50</td>
</tr>
<tr>
<td>horizontal HB test 98</td>
</tr>
<tr>
<td>hot-air ovens 345</td>
</tr>
<tr>
<td>hot ball pressure test 96</td>
</tr>
<tr>
<td>hot runner 222, 307</td>
</tr>
<tr>
<td>hot runner nozzle 254</td>
</tr>
<tr>
<td>hot wire ignition HWI 139</td>
</tr>
<tr>
<td>hot wire ignition test 110</td>
</tr>
<tr>
<td>hydraulic piston clamping system 163</td>
</tr>
<tr>
<td>hydrocarbons 5</td>
</tr>
<tr>
<td>hydrolysis 37, 38</td>
</tr>
<tr>
<td>hydrolysis stabilizers 81</td>
</tr>
<tr>
<td>hydrolyzed parts 37</td>
</tr>
<tr>
<td>hydrophilic polymers 38</td>
</tr>
<tr>
<td>hydrophobic polymers 38</td>
</tr>
<tr>
<td>hygroscopic materials 331</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>identification of plastics 36</td>
</tr>
<tr>
<td>impact modifiers 82</td>
</tr>
<tr>
<td>impact resistance 119, 246</td>
</tr>
<tr>
<td>incandescent glow wire test 100</td>
</tr>
<tr>
<td>increasing surface tension 260</td>
</tr>
<tr>
<td>injection and cavity pressures 205</td>
</tr>
<tr>
<td>injection graphs 365</td>
</tr>
<tr>
<td>injection molding machine 161</td>
</tr>
<tr>
<td>injection peak pressure 275</td>
</tr>
<tr>
<td>injection pressure 187, 194, 209</td>
</tr>
<tr>
<td>injection pressure at switching point 202</td>
</tr>
<tr>
<td>injection pressure evolution 203</td>
</tr>
<tr>
<td>injection pressure limit 274, 276, 353</td>
</tr>
<tr>
<td>injection pressure losses 280</td>
</tr>
<tr>
<td>injection process 263</td>
</tr>
<tr>
<td>injection speed 178, 198, 207</td>
</tr>
<tr>
<td>injection speed linearization study 271</td>
</tr>
<tr>
<td>injection speed machine performance 269</td>
</tr>
<tr>
<td>injection speed profile 335, 353</td>
</tr>
<tr>
<td>injection speed units conversion 289</td>
</tr>
<tr>
<td>injection stage 26</td>
</tr>
<tr>
<td>injection unit 161</td>
</tr>
<tr>
<td>in-mold rheology 288, 289</td>
</tr>
<tr>
<td>inner ring gate 235</td>
</tr>
<tr>
<td>input and output water lines 359</td>
</tr>
<tr>
<td>inputs and outputs 282</td>
</tr>
<tr>
<td>insufficient filling 355</td>
</tr>
<tr>
<td>intensification ratio 266</td>
</tr>
<tr>
<td>internal and external undercuts 246</td>
</tr>
<tr>
<td>internal micropores 365</td>
</tr>
<tr>
<td>internal stresses 343</td>
</tr>
<tr>
<td>internal voids 347</td>
</tr>
<tr>
<td>intumescence 78</td>
</tr>
<tr>
<td>ionomer 63</td>
</tr>
<tr>
<td>ISO 5271-2 88</td>
</tr>
<tr>
<td>isochronous lines 178</td>
</tr>
<tr>
<td>isocyanate 374</td>
</tr>
<tr>
<td>isotactic 12</td>
</tr>
<tr>
<td>Izod test 92</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>jetting 320, 334</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>ketones 68</td>
</tr>
<tr>
<td>key parameters 204</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>lack of adhesion 341</td>
</tr>
<tr>
<td>lack of crystallinity 324</td>
</tr>
<tr>
<td>lack of ventilation 364</td>
</tr>
<tr>
<td>lamellae 33</td>
</tr>
<tr>
<td>land channel 364</td>
</tr>
<tr>
<td>L/D ratio 167</td>
</tr>
<tr>
<td>length or land of the gate 319</td>
</tr>
<tr>
<td>light stabilizers 75</td>
</tr>
<tr>
<td>limited oxygen index (LOI) 142</td>
</tr>
<tr>
<td>linear 11</td>
</tr>
<tr>
<td>linear low density polyethylene (LLDPE) 47</td>
</tr>
<tr>
<td>liquid crystal polymer (LCP) 59</td>
</tr>
<tr>
<td>LLDPE 47</td>
</tr>
<tr>
<td>LOI test 99</td>
</tr>
<tr>
<td>low density polyethylene 46</td>
</tr>
<tr>
<td>lubricants 75</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>machine injection speed performance study 289</td>
</tr>
<tr>
<td>machine nozzle 369</td>
</tr>
<tr>
<td>machine portability 282, 289</td>
</tr>
<tr>
<td>masterbatch 85</td>
</tr>
<tr>
<td>material degradation 372</td>
</tr>
<tr>
<td>materials drying 316</td>
</tr>
<tr>
<td>material selection 134</td>
</tr>
<tr>
<td>material viscosity 208</td>
</tr>
<tr>
<td>matte surface 363</td>
</tr>
<tr>
<td>maximum available pressure 281</td>
</tr>
<tr>
<td>maximum peripheral screw speed 194</td>
</tr>
</tbody>
</table>
maximum recommended moisture 346
maximum shear friction recommended 285
Maxwell-Voigt model 19
mechanical toggle clamping system 163
medium or high impact PS (HIPS) 52
melt flow index 116
melt flow rate (MFR) test 104
melting temperature 16, 94
melt temperature 184, 206, 322
melt temperature measurement 322
melt temperature recommendations 209
melt volume index 115
metal or plastic inserts 320
MFI 355
microbubbles 350
microcraters 357
microstreaks 380
mineral additives 83
mineral fillers 83
moisture 37
mold care 326
mold cooling 226
mold deposits, types of 325
mold design 182
mold design guide 218
molding processor 264
mold surface temperature 323
mold temperature 190, 191, 206, 383
mold temperature recommendations 209
mold temperatures setting 196
molecular orientation 335
molecular weight 7, 371
monomers 3
multiple machine drying system 289

O
open nozzle 172
optical brighteners 86
optimum injection speed range 269
optimum time for holding pressure 279
orientation 344
oriented material layers 337
outer ring gate 235
overdrying 327
overlarged jump gate 236

P
painting 339
parameters deviations 192
part dimensions 199
parting lines 303
part molded with stress 339
part requirements checklist 129
part temperature 207
part weight control 279
PC-ABS 355
peaks 343
percentages of pressure loss 280
peripheral screw speed units conversion 289
peripheral speeds 387
peripheral screw speed recommendations 209
pin gate 236
pin point gate 232
plasma 341
plasticization 37, 38
plasticizers 76
plasticizing capacity 167
plastics 3
plastic parts design 239
platen 303
plating process 343
PMMA 361
polar moment of inertia 240
polyacetals 23
polyamides (PA) 54
polybutylene terephthalate (PBT) 56
polycarbonate 58, 356, 367
polydispersity 7
polyester 56, 316
polyester polyl 62
polyether polyl 62
polymethylsulfone (PESU) 64
polyethylene 23
polyethylene terephthalate (PET) 56
polymerization 3
polymers 3
polyurethane (polyurethane) (PMMA) 58
polyethylene 374
polyolefins 46
polyoxymethylene (POM) 50
polyphenylene oxide (PPO) 57
polyphenylene sulfide (PPS) 63
polyphenyl sulfone (PPSU) 64
polypropylene (PP) 49
polystyrenes (PS) 51
polysulfone (PSU) 65
polyurethane (TPU) 61
POM 357
POM foaming test 257
POM homopolymer 31, 257
portability 282
portability spreadsheet 283
post-shrinkage 324
PP copolymers 49
precious runners 279
preliminary investigation of failures 309
pressure drops 280
pressure evolution 187
pressure-limited process 274, 280, 365
pressure multiplier 176
pressurized water 325
previous calculations 194
process optimization 310
process outputs 265, 282
process start-up 193
process validation 282
process window 267, 276, 277
process window study 289
progressive filling 280
progressive mold filling 202
progressive mold filling setting 201
proper crystallization 324
properly adjusting the mold temperature 324
properly dehumidifying 317

N
Newtonian area 272
nitrided screw 169
notches, influence 245
nozzle 171, 304
nozzle diameter 252, 366
nucleating agents 81
Index

purging or cleaning 255
PVT graphs 25

R
radiation 107
radii 310, 349
ratio dosage/screw 175
reaction to fire 101
refraction of light 334
refractive index 108
refrigeration system 304
regrind, amount 330
relative temperature index, RTI 125
relative temperature index test 112
relative viscosity method 267
relaxation 20, 248
residence time 335, 383
residence time of material 175, 195
residence time recommendations 209
residual stress 108, 339
resin handling 307
reverse taper nozzle 172
rheology 13
rheometer 115
ribs and reinforcements designs 239
ribs design 240
rigidity 248
RTI test 96
runners 318, 374
runners and gates systems 250
runners and sprue 370
runners design 220, 221
runners ejectors 364

S
saving material solutions 241
scientific method 264
scientific molding 263
scratch resistance test 93
screw 167, 303
screw holes 249
screw mechanism 169
screw non-return valve hermeticity study 289
screw peripheral speed 185
sector regulations checklist 130
semi-crystalline 9
semi-spherical facilitator 351
servo-electric clamping 164
sharp corners 244, 334, 337, 357
sharp edges 349
shear 337
shear calculation 286
shear rate 14, 285
shear stress at the gates 284
shear stresses 280
Shore A 91
Shore D 91
short hold pressure times 321
short parts 277
shrinkage 209, 230, 279, 384
silica 305
silver marks 337, 369
silver streaks 330, 331
sinkings 340
sink marks 277, 320, 328
slips additive 81
slots and undercuts 246
small gates 318
small holes 338
snap-fit 247
solvent 339
specific injection pressure 177
specific units 282
specific volume 25, 26
speed profile 180
spherical nozzle 172
spherulites 34
spiral effect 253, 284, 353
splay 337, 369
spots 343
spots and markings near the gate 335
sprue diameter 252
sprue diameter, small 250, 319
stabilizers 74
start-up and fine-tuning of injection machines 201
steel selection 219
steps for analysis 311
strain 88
strain at break 118
streaks 315, 330, 357, 367
streaks caused by moisture 330
streaks caused by trapped air 331
stress 88
stress concentrators 245, 346
stress cracking 110, 338, 349
styrene acrylonitrile (SAN) 53
styrene butadiene copolymer (SBC) 62
submarine or tunnel gate 232
subrunner 250
substrate 339
suction 198, 368
surface orientation 183
surface resistivity 124, 135
surface resistivity test 103
surface scratching 338
surface tension 258, 341
switching point 202, 278, 353
switching point to holding pressure 344
switching pressure 200
switching to hold pressure stage 199
syndiotactic 12
systematic progressive 272

T
Taber test 90
tab gate 233
tangential screw speed 185
tangential speed 186
taper nozzle 172
target factor values checklist 131
technical specifications checklist 130
Teflon 23
temperature 196
tensile modulus 118
tensile stresses 241
tensile test 88, 118
theoretical clamping force estimation 289
thermal conductivity 123
thermodynamics 25
thermographic analysis 359
thermoplastic copolymer elastomer ether ester (TPC ET) 60
thermoplastic elastomer (TPE–V) 59
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermoplastics</td>
<td>8</td>
</tr>
<tr>
<td>thermoregulators</td>
<td>307</td>
</tr>
<tr>
<td>thermostable</td>
<td>10</td>
</tr>
<tr>
<td>thickness, changes</td>
<td>243</td>
</tr>
<tr>
<td>thickness design</td>
<td>242</td>
</tr>
<tr>
<td>thickness of ribs</td>
<td>239</td>
</tr>
<tr>
<td>thickness problems</td>
<td>242</td>
</tr>
<tr>
<td>thick to thin</td>
<td>320</td>
</tr>
<tr>
<td>thick to thin rule</td>
<td>351</td>
</tr>
<tr>
<td>time-dependent process</td>
<td>279</td>
</tr>
<tr>
<td>time of arc resistance test</td>
<td>111</td>
</tr>
<tr>
<td>titanium nitride</td>
<td>326</td>
</tr>
<tr>
<td>toggle kinematics</td>
<td>197</td>
</tr>
<tr>
<td>torsion resistance</td>
<td>240</td>
</tr>
<tr>
<td>TPC-ET</td>
<td>345</td>
</tr>
<tr>
<td>TPU</td>
<td>373</td>
</tr>
<tr>
<td>transparent polymers</td>
<td>156</td>
</tr>
<tr>
<td>trapped air</td>
<td>338, 377</td>
</tr>
<tr>
<td>traverse optimal temperature test</td>
<td>289</td>
</tr>
<tr>
<td>trials injection molding parameters</td>
<td>314</td>
</tr>
<tr>
<td>template</td>
<td></td>
</tr>
<tr>
<td>troubleshooter questions</td>
<td>311</td>
</tr>
<tr>
<td>tubular frames</td>
<td>249</td>
</tr>
<tr>
<td>tubular parts</td>
<td>320</td>
</tr>
<tr>
<td>turbulent flow</td>
<td>304, 359</td>
</tr>
<tr>
<td>typical problems in plastics injection</td>
<td>315</td>
</tr>
<tr>
<td>ultrasound</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>UL94</td>
<td>97</td>
</tr>
<tr>
<td>UL temperature</td>
<td></td>
</tr>
<tr>
<td>unbalanced runners</td>
<td>220, 252, 372</td>
</tr>
<tr>
<td>uncompensated shrinkage</td>
<td>377</td>
</tr>
<tr>
<td>unfilled part</td>
<td>351</td>
</tr>
<tr>
<td>universal process data sheet</td>
<td>289</td>
</tr>
<tr>
<td>UV protection</td>
<td>76</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>vacuoles</td>
<td>318, 329, 346</td>
</tr>
<tr>
<td>vacuum problems</td>
<td>375</td>
</tr>
<tr>
<td>vaporization</td>
<td>38</td>
</tr>
<tr>
<td>venting</td>
<td>227, 255</td>
</tr>
<tr>
<td>venting channels</td>
<td>386</td>
</tr>
<tr>
<td>venting depth for amorphous plastics</td>
<td>228</td>
</tr>
<tr>
<td>venting depth for semi-crystalline plastics</td>
<td>227</td>
</tr>
<tr>
<td>venting depth recommendation</td>
<td>256</td>
</tr>
<tr>
<td>venting for runners</td>
<td>228</td>
</tr>
<tr>
<td>venting in ejectors</td>
<td>229</td>
</tr>
<tr>
<td>venting length</td>
<td>256</td>
</tr>
<tr>
<td>venting recommendations</td>
<td>209</td>
</tr>
<tr>
<td>Vicat softening temperature</td>
<td>121</td>
</tr>
<tr>
<td>Vicat test</td>
<td>95</td>
</tr>
<tr>
<td>viscosity</td>
<td>13, 269</td>
</tr>
<tr>
<td>viscosity curve</td>
<td>273</td>
</tr>
<tr>
<td>volume resistivity test</td>
<td>104</td>
</tr>
<tr>
<td>volume shrinkage</td>
<td>321</td>
</tr>
<tr>
<td>vulcanization</td>
<td>22</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>warpage</td>
<td>338</td>
</tr>
<tr>
<td>warping</td>
<td>320, 360</td>
</tr>
<tr>
<td>water influences</td>
<td>37</td>
</tr>
<tr>
<td>water in polyamides</td>
<td>37</td>
</tr>
<tr>
<td>weathering test</td>
<td>105</td>
</tr>
<tr>
<td>weight at switch point</td>
<td>266</td>
</tr>
<tr>
<td>weld lines</td>
<td>183, 190, 332, 350, 356</td>
</tr>
<tr>
<td>white streaks</td>
<td>331</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>yield point</td>
<td>118</td>
</tr>
<tr>
<td>yield stress</td>
<td>117</td>
</tr>
</tbody>
</table>