Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the 2nd English Edition</td>
<td>V</td>
</tr>
<tr>
<td>Preface to the 3rd German Edition</td>
<td>V</td>
</tr>
<tr>
<td>Preface to the 2nd German Edition</td>
<td>V</td>
</tr>
<tr>
<td>Preface to the 1st German Edition</td>
<td>VI</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Basic principles and terminology in thermoforming</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Process sequence</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Positive and negative forming</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Vacuum and pressure forming</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1 Differences between vacuum and pressure forming</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 Application for pressure forming</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Forming pressure, contour-molding pressure, and contour definition</td>
<td>10</td>
</tr>
<tr>
<td>2.5 Preblow, presuction, pressure equalisation, air injection</td>
<td>12</td>
</tr>
<tr>
<td>2.6 Chill marks and blemishes</td>
<td>13</td>
</tr>
<tr>
<td>2.6.1 Chill marks on positively formed parts</td>
<td>14</td>
</tr>
<tr>
<td>2.6.2 Chill marks on negatively formed parts</td>
<td>17</td>
</tr>
<tr>
<td>2.6.3 Causes of chill marks</td>
<td>19</td>
</tr>
<tr>
<td>2.6.4 Options for reducing chill marks</td>
<td>19</td>
</tr>
<tr>
<td>2.6.5 Results of chill mark formation</td>
<td>20</td>
</tr>
<tr>
<td>2.6.6 Use of typical wall-thickness distribution in chill marks with snaps on clamshell packages</td>
<td>21</td>
</tr>
<tr>
<td>2.6.7 Conclusions with regard to chill marks</td>
<td>22</td>
</tr>
<tr>
<td>2.6.8 Blemishes and markings</td>
<td>22</td>
</tr>
<tr>
<td>2.7 Wrinkle formation during thermoforming</td>
<td>23</td>
</tr>
<tr>
<td>2.7.1 Wrinkle formation sequence in positive forming</td>
<td>24</td>
</tr>
<tr>
<td>2.7.2 Wrinkle formation in negative forming</td>
<td>26</td>
</tr>
<tr>
<td>2.7.3 Wrinkle formation on surfaces</td>
<td>27</td>
</tr>
</tbody>
</table>
3 Semi-finished thermoplastic materials ... 35
3.1 Elements and structure of thermoplastic materials 35
3.2 Absorption of moisture in semi-finished product 36
3.3 Response during heating ... 37
3.4 Expansion and sag .. 39
3.5 Forming temperature ranges .. 41
3.6 Friction properties in thermoforming .. 42
3.7 Contour definition .. 44
3.8 Molding shrinkage in thermoforming .. 45
3.9 Free shrinkage of semi-finished products 51
3.10 Effects of stresses in the extruded semi-finished product 55
3.11 Electrostatic charge .. 59
3.12 The visco-elastic properties of thermoplastic materials during thermoforming .. 60
3.13 Properties during cooling ... 62
3.14 Tolerances of semi-finished products .. 62
3.15 Manufacturing process for thermoplastic semi-finished products 63
3.16 Table for the thermoformer .. 67
3.17 Thermoplastics for thermoforming ... 71
3.17.1 Polystyrene (PS) .. 71
3.17.2 High-impact polystyrene (HIPS) .. 72
3.17.3 Styrene butadiene styrene block copolymer (SBS) 73
3.17.4 Oriented polystyrene (OPS) ... 74
3.17.5 Acrylonitrile butadiene styrene copolymer (ABS) 75
3.17.6 Acrylic styrene acrylonitrile copolymer (ASA) 76
3.17.7 Styrene acrylonitrile copolymer resin (SAN) 77
3.17.8 Polyvinylchloride (PVC–U) ... 78
3.17.9 Polyethylene, high-density (PE–HD) 79
Contents

3.17.10 Polypropylene (PP): Detailed presentation .. 80
3.17.11 Extruded polymethyl methacrylate (PMMA ex) .. 95
3.17.12 Cast polymethyl methacrylate (PMMA g) .. 96
3.17.13 Polycarbonate (PC) .. 98
3.17.14 Polyamide (PA) .. 99
3.17.15 Polyethylene terephthalate, PET: Detailed presentation ... 100
3.17.16 Polysulfone (PSU) ... 107
3.17.17 EPE and EPP foamed materials .. 108
3.17.18 Bioplastics in thermoforming ... 109
 3.17.18.1 Biodegradable plastics from renewable raw materials ... 110
 3.17.18.2 Non-degradable bioplastics .. 115
3.17.19 Multilayer, barrier and composite semi-finished materials .. 116
3.17.20 Other materials ... 125
3.17.21 Brand names .. 126

4 Heating technology in thermoforming ... 127
 4.1 Radiant heaters .. 127
 4.1.1 Heat-transfer concept with infrared radiation ... 127
 4.1.2 Heat quantity transferred by radiation .. 129
 4.1.3 Homogeneous heating with radiant heaters .. 135
 4.1.4 Ceramic, quartz and halogen heaters in comparison .. 142
 4.2 Reproducibility of heating results in radiant heaters .. 145
 4.2.1 Assessing reproducibility .. 145
 4.2.2 Compensation for uncontrollable external influences on the heating process 149
 4.2.3 Power control and temperature control in heaters .. 150
 4.3 Contact heaters .. 151
 4.4 Convection heaters ... 153
 4.5 Minimum heating time, effective heating time and residence time 154
 4.5.1 Effect of heating time on thermoforming response ... 154
 4.5.2 Positive effect of residence time ... 155
 4.5.3 Negative effect of residence time ... 155

5 Heaters in sheet-processing machines .. 157
 5.1 Basic principles of heating with isothermal control .. 158
 5.1.1 Technical terminology ... 158
 5.1.2 Details regarding temperature control with ceramic heat elements 161
 5.1.3 Advantages of heating systems with closed-loop control provided by pilot heater elements .. 162
5.2 Joystick distribution of the heating pattern .. 162
5.3 Multi-positional control .. 164
5.4 Heater-element temperature control with superimposed position
in percent .. 166
5.5 IR-sensor (pyrometer) for monitoring temperature and closed-loop
control of heaters .. 167

6 Heaters in automatic roll-fed machines .. 169
6.1 General information .. 169
6.2 Heaters regulated by pilot heater elements in automatic
roll-fed machines .. 170
 6.2.1 Heater with longitudinal control of row temperatures 170
 6.2.2 Heater panel with temperature control governing total array 171
 6.2.3 Heater with transverse row control 172

7 Heating multicoloured and preprinted materials using
IR heaters .. 173
7.1 General information .. 173
7.2 Selection of infrared heaters ... 173

8 Thermoforming process on sheet-processing machines 177
8.1 Positive forming .. 178
 8.1.1 Positive forming with mechanical prestretching 178
 8.1.2 Positive forming with preblow .. 179
 8.1.3 Positive forming with preblow against a board 182
 8.1.4 Positive forming with presuction and unreeeling of the
 blister on the mold ... 183
 8.1.5 Positive forming with presuction in a vacuum/pressure box 184
 8.1.6 Application of corner blow nozzles with positive forming ... 185
8.2 Negative forming .. 186
 8.2.1 Negative forming without plug-assist tool 186
 8.2.2 Negative forming with plug-assist tool 187
8.3 Positive-negative forming .. 189
8.4 Twin-chamber method (3K method) .. 190
8.5 Twinsheet forming .. 191
 8.5.1 Universal rules for twinsheet forming on series
 twinsheet forming machines ... 192
 8.5.2 Twinsheet forming process, UA machine with hand loading . 193
 8.5.3 Machine versions for twinsheet forming 196
8.6 Adhesive lamination ... 198
8.6.1 General information 198
8.6.2 Lamination process .. 199

9 Thermoforming process on automatic roll-fed machines, punching station with blade cut .. 203
9.1 Concept of process sequence at the forming station 203
9.2 Machine equipment with an effect on the forming procedure 207
9.3 Selecting the correct forming procedure and tool configuration 208
9.4 Information regarding ways to influence wall thickness distribution . 209

10 Thermoforming process on automatic roll-fed machines, forming and punching tools with shear cuts 215
10.1 Geometrical motion patterns of the forming and punching station ... 215
10.2 The special features of the mechanical cam control 217
10.3 Flow chart for a forming station using forming and punching tool with negative forming .. 218
10.3.1 Forming-air reduction 219
10.3.2 Downholder control ... 219
10.4 Flow chart for a forming station using forming and punching tool with shear cut for positive forming 220

11 Special procedures using combined forming and punching tools in automatic roll-fed machines 221
11.1 Applying linings to dimensionally stable containers 221
11.2 Labelling in the mold (IML In-Mold Labelling) 223
11.3 Forming and punching tool for rimless formed parts 226
11.4 Thermoforming hollow-base cups 227
11.5 Thermoforming with mold and countermold 228

12 Thermoforming transparent parts 229
12.1 Generally applicable rules for forming transparent parts 229
12.2 Special considerations for molding with sheet-processing machines . 231
12.3 Special considerations for forming with automatic roll-fed machines . 232
12.4 Sample procedures – Production of transparent parts 236
12.5 Special production process for transparent parts 241
13 Thermoforming preprinted materials 243
 13.1 General information ... 243
 13.2 Determining distortion-printing image 246

14 Cooling the formed parts .. 251
 14.1 The demolding temperature 251
 14.2 Influencing factors affecting cooling times 252
 14.3 Cooling with the mold .. 253
 14.4 Cooling with air ... 253
 14.4.1 Current technology for air cooling in sheet-processing machines ... 255
 14.4.2 Reducing the mold temperature in conjunction with colder cooling air 257

15 Demolding ... 261

16 Stacking parts ... 265
 16.1 General information ... 265
 16.2 Stacking formed parts with changing stacking lugs 271

17 Finish-processing on thermoformed parts 273
 17.1 Separating, cutting .. 273
 17.2 Deburring .. 276
 17.3 Connecting .. 276
 17.4 Recycling ... 278

18 Punching thermoformed parts 279
 18.1 Blade cut .. 279
 18.2 Shear cut .. 286
 18.3 Comparisons of blade and shear cuts 293
 18.4 Factors affecting the punching process 296
 18.5 Angel-hair formation .. 297
 18.5.1 Reduction of angel-hair formation with blade cut 301
 18.5.2 Reduction in angel-hair formation with shear cut in forming and punching tool 302
 18.6 Rough-edged cuts – Die drool 304
 18.7 Punching forces ... 306
21.9.3 Radii ... 363
21.9.4 Tool venting, air-discharge cross-sections 364
21.9.5 Cavities ... 368
21.9.6 Materials for plug-assist tools 368
21.9.7 Plug-assist tool contours for negative forming 370
21.9.8 Plug-assist tool for positive tools 374

21.10 Tool with undercut .. 375
21.10.1 Demolding undercuts without detachable parts 375
21.10.2 Detachable parts (slider) for demolding undercuts 375

21.11 Tool design for flat formed parts with low stretch 376
21.12 Tools for forming transparent parts 377
21.13 Tools for twinsheet forming ... 379
21.14 Tools for sheet-material hinges and snap couplings 385

21.15 Forming and punching tools with shear cut in automatic roll-fed machines ... 391
21.16 Forming and punching tools with knife cut in automatic roll-fed machines .. 394
21.17 Preventative maintenance on forming tools 407

22 Temperature control for thermoforming tools 411
22.1 General information .. 411
22.1.1 Temperature control terminology 411
22.1.2 Effects of tool temperature .. 412
22.1.3 When is it possible to dispense with tool temperature control? ... 412

22.2 Temperature-control media ... 413
22.3 Materials for thermoforming tools suitable for temperature control ... 414
22.4 Cooling-circuit versions .. 414
22.4.1 Examples of circuits in thermoforming machines 415

22.5 Cooling process ... 417
22.6 The cooling requirements of a thermoformed part 418
22.6.1 The enthalpy diagram .. 418
22.6.2 Enthalpy tables ... 419
22.6.3 Required cooling power for the tool 419

22.7 Design configuration of temperature-control system for a forming tool ... 420
22.7.1 Material quantity being cooled (material throughput) 421
22.7.2 Required cooling power during production 421
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.7.3</td>
<td>Cooling-water requirement for tool cooling</td>
<td>422</td>
</tr>
<tr>
<td>22.7.4</td>
<td>Contact surface required for the cooling water</td>
<td>423</td>
</tr>
<tr>
<td>22.7.5</td>
<td>Total length of cooling passages</td>
<td>424</td>
</tr>
<tr>
<td>22.7.6</td>
<td>Water velocity</td>
<td>424</td>
</tr>
<tr>
<td>22.7.7</td>
<td>Resulting pressure drop in the tool</td>
<td>425</td>
</tr>
<tr>
<td>22.7.8</td>
<td>Pressure loss when connecting the forming tool in the machine</td>
<td>427</td>
</tr>
<tr>
<td>22.8</td>
<td>Pressure loss in the machine’s pipework</td>
<td>429</td>
</tr>
<tr>
<td>22.9</td>
<td>Pressure loss in overall temperature-control circuit</td>
<td>430</td>
</tr>
<tr>
<td>22.10</td>
<td>Testing the pumping capacity of the connected temperature control or cooling equipment</td>
<td>431</td>
</tr>
<tr>
<td>22.11</td>
<td>Assessing the test result</td>
<td>432</td>
</tr>
<tr>
<td>22.12</td>
<td>Design configuration options in heat transfer</td>
<td>433</td>
</tr>
<tr>
<td>22.13</td>
<td>The effects of air cooling on tool cooling</td>
<td>433</td>
</tr>
<tr>
<td>22.14</td>
<td>Preventive maintenance</td>
<td>434</td>
</tr>
<tr>
<td>23</td>
<td>Energy consumption in thermoforming</td>
<td>437</td>
</tr>
<tr>
<td>23.1</td>
<td>General information</td>
<td>437</td>
</tr>
<tr>
<td>23.2</td>
<td>Specific energy consumption in thermoforming</td>
<td>438</td>
</tr>
<tr>
<td>23.3</td>
<td>The share of energy costs as a proportion of the manufacturing costs for moldings</td>
<td>441</td>
</tr>
<tr>
<td>23.4</td>
<td>Options for reducing the specific energy consumption</td>
<td>444</td>
</tr>
<tr>
<td>23.4.1</td>
<td>Saving energy with electric drive units</td>
<td>446</td>
</tr>
<tr>
<td>23.4.2</td>
<td>Reduction of energy use in pressure forming</td>
<td>448</td>
</tr>
<tr>
<td>23.4.3</td>
<td>Reduction in the volume filled with compressed air, forming air reduction</td>
<td>449</td>
</tr>
<tr>
<td>23.4.4</td>
<td>Effects of pressure level</td>
<td>450</td>
</tr>
<tr>
<td>23.4.5</td>
<td>Reducing energy consumption during heating</td>
<td>454</td>
</tr>
<tr>
<td>23.4.6</td>
<td>Cost reductions with new vacuum pumps</td>
<td>457</td>
</tr>
<tr>
<td>23.4.7</td>
<td>Short cooling times reduce energy costs</td>
<td>457</td>
</tr>
<tr>
<td>23.4.8</td>
<td>Insulation of pipes?</td>
<td>459</td>
</tr>
<tr>
<td>23.4.9</td>
<td>Application of fresh-air coolers instead of refrigeration units with compressor</td>
<td>459</td>
</tr>
<tr>
<td>23.4.10</td>
<td>Offset heater starting time reduces price of power</td>
<td>459</td>
</tr>
<tr>
<td>23.4.11</td>
<td>Using energy reduction for extended downtime periods</td>
<td>460</td>
</tr>
<tr>
<td>23.4.12</td>
<td>Using the machine’s basic settings</td>
<td>460</td>
</tr>
<tr>
<td>23.4.13</td>
<td>Regular periodic maintenance</td>
<td>460</td>
</tr>
<tr>
<td>23.4.14</td>
<td>Dynamic process optimisation</td>
<td>461</td>
</tr>
<tr>
<td>23.4.15</td>
<td>The energy consumption display</td>
<td>461</td>
</tr>
<tr>
<td>23.4.16</td>
<td>Energy consumption measurements in production</td>
<td>461</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>24</td>
<td>Thermoforming faults</td>
<td>463</td>
</tr>
<tr>
<td>24.1</td>
<td>Geometrical configuration errors on the formed part</td>
<td>463</td>
</tr>
<tr>
<td>24.2</td>
<td>Faults in the material</td>
<td>468</td>
</tr>
<tr>
<td>24.3</td>
<td>Selection of the correct thermoforming machine</td>
<td>470</td>
</tr>
<tr>
<td>24.4</td>
<td>Errors during installation of the thermoforming machine</td>
<td>471</td>
</tr>
<tr>
<td>24.5</td>
<td>Faults in the thermoforming tool</td>
<td>471</td>
</tr>
<tr>
<td>24.6</td>
<td>Errors during break-in new thermoforming tools</td>
<td>473</td>
</tr>
<tr>
<td>24.7</td>
<td>Errors during sample article inspections</td>
<td>474</td>
</tr>
<tr>
<td>24.8</td>
<td>Errors during heating with infrared radiators</td>
<td>474</td>
</tr>
<tr>
<td>24.9</td>
<td>Pipe and tube cross-sections for air and vacuum</td>
<td>475</td>
</tr>
<tr>
<td>24.10</td>
<td>Preventing wrinkle formation</td>
<td>476</td>
</tr>
<tr>
<td>24.11</td>
<td>Fault diagnosis in thermoforming</td>
<td>477</td>
</tr>
</tbody>
</table>

Index .. 489
Thermoforming is understood as the process of reshaping thermoplastic materials at high temperatures in order to create formed parts.

The illustration in Figure 1.1 shows the concept of a thermoforming process relying on vacuum forming.

The stages in this process are:

- Heating the semi-finished material to its forming temperature within the elastoplastic range
- Endowing it with a shape defined by the thermoforming tool
- Cooling under forced retention, which continues until a temperature at which the formed part achieves geometrical stability is reached
- Demolding the geometrically stabilised formed part

The finished part’s wall thickness is defined by the ratio of elongation in the generated surface to the initial surface area. The wall-thickness distribution in the formed part is primarily determined by the mold and the forming procedure.

The contour definition – equating with the accuracy with which the mold’s contours are reproduced – is primarily determined by the temperature-sensitive strength of the semi-finished product during the forming process and the effective contact pressure generated between the semi-finished product and the surface of the mold.

The formed part is usually cooled on one side through contact with the mold and on the other side through atmospheric or forced-air cooling.

This process is usually followed by various subsequent treatments, such as cutting, welding, adhesive bonding, hot sealing, painting, metallising and flocking.

The terms “vacuum forming” and “pressure forming” are also employed. This also refers to molding using vacuum and compressed air.
Advantages and disadvantages of thermoforming

A manufacturing process will only prove successful provided that it can produce parts of equal quality but at less expense, or in better quality at the same cost. There are also applications in which injection molding and blow molding compete with thermoforming. Thermoforming is usually without competition in the realm of packaging technology, except in those cases in which cardboard and paper are utilised as alternate packaging materials.

The essential benefits of thermoforming are:

- Formed parts with extremely thin walls, such as packaging units, can be manufactured using semi-finished materials with a high melting viscosity, although such parts require granulate with an extremely low melting viscosity for production with injection molding – provided that they can be manufactured at all.
- The smallest thermoformed parts assume sizes on the order of those used for medicinal tablets and button cell batteries. Large formed parts, such as garden ponds, reach sizes extending to between 3 and 6 metres in length. Formed parts in dimensions embracing multiple square metres can be produced without problems, while the process technology imposes no inherent limits on the size of the formed parts or the gauge of the semi-finished material.
- Semi-finished materials with gauges ranging from 0.05 to 15 mm are used, with foamed materials extending to 60 mm.
- Application of multilayer materials renders it possible to produce formed parts with combinations of properties regarding flexural and tearing strength, surface gloss, haptic compliance, anti-slip properties, suitability for sealing, UV resistance, barrier characteristics, embedment of granulate in a layer below the surface, inclusion of layers incorporating fibres, etc. When the individual layers fail to furnish adequate adhesion, then intermediate layers can be incorporated to facilitate bonding.
Thermoforming is suitable for processing foamed materials, fibre-reinforced materials and thermoplastic materials with laminated textiles as well as preprinted semi-finished products.

The stretching representing an intrinsic element in the process enhances the formed part’s mechanical properties by promoting orientation.

Owing to forming contact on just one side, thermoforming molds are more economical than (for instance) injection molding tools, which rely on bilateral form contact to define wall thickness.

The modest tooling costs represent a benefit of using thermoforming for limited production runs. Thermoforming’s salient assets in large production runs consist of the minimum wall thicknesses that can be achieved and the high production rates reached by the thermoforming machines.

Thermoforming machines featuring modular design configurations allow adaptation to the required production rate.

Waste materials such as the skeletal sheet webs and clamped edge strips are granulated, only to return to the processing cycle when recycled during manufacture of the semi-finished product.

The materials used in thermoforming assume the form of semi-finished products consisting of sheet material in rolls or formed into pre-cut sheets that are produced from granulate or powder in an initial shaping procedure. This entails supplementary expenditures relative to injection molding for the initial material.

In thermoforming, the semi-finished product is only in contact with one side of the thermoforming tool as an intrinsic characteristic of the process. It is for this reason that the formed part represents an accurate reproduction of the mold’s contours on only one of its sides. The contour on the opposite side is produced by the resulting elongation.

Future perspectives

Within the plastics-processing sector, it is thermoforming that represents the realm promising the highest growth rates. This applies to formed parts destined for technical applications as well as packaging.

- In its guise as a process that relies on careful craftsmanship and extensive experience, thermoforming is currently in a state of transition as it evolves into a highly controlled process.
- Sensors combine with closed-loop control technology to allow automation of the thermoforming process.
- Recycling waste materials from production, granulation and admixture to form new materials has long been the state-of-the-art in technology.
- Natural “bio” synthetics are becoming progressively more economical. The thermoforming process is predestined to apply these materials for thin-wall packaging with ever-increasing emphasis.
- Application of multilayer materials allows production of parts featuring a wide spectrum of potential applications.
- Meanwhile, in high-wage countries, the trend is continuing toward increased automation, integration of subsequent processes and higher productivity.
2.1 Process sequence

The thermoforming process consists of the following individual steps:

1. **Heating** the material to forming temperature
2. **Preforming** the heated material with prestretching
3. **Contour molding** the formed part
4. **Cooling** the formed part
5. **Demolding** the formed part

Heating
See Chapter 4 “Heating technology in thermoforming”.

Preforming
Various options for preforming are in existence, i.e.:
- Prestretching with preblow, i.e., bubble formation with compressed air
- Prestretching with presuction, i.e., bubble formation with vacuum
- Mechanical prestretching using a plug assist, also called plug-assist tool or upper plug
- Mechanical prestretching using the form itself
- Combination of the above-cited prestretching options

Contour molding
Examples of contour molding:
- Contour molding with vacuum (vacuum-forming machines)
- Contour molding with compressed air (pressure-forming machines or vacuum-forming machines with locked molds)
Contour molding with compressed air and vacuum (pressure-forming machines with supplementary vacuum connection or vacuum-forming machines with locked molds)

Contour molding with stamping. Stamping allows bilateral definition of the tool’s contours. Applied for foamed materials, more rarely for stamping and calibrating edges.

Cooling

Cooling options for the formed part, based on machine type:

- Cooling through contact with the forming tool (usually unilateral)
- Cooling with air in various versions:
 - Air is ingested from the environment with suction (standard)
 - A building-installed system delivers cool air to the fans
 - Water spray mist is blown into the air current; as this spray mist evaporates in the air stream, it cools the air. At air velocities of approximately 10 m/s and a distance between fan and formed part of roughly 1.5 m, the air cools by about 10 °C. (Notice: When the airspeeds are too high, the formed parts become wet because adequate time for evaporation of the water spray mist is not available.)
 - Free cooling in the air if procedure is without mold.

Demolding

Demolding proceeds once the thermoplastic material has cooled below its pliability temperature, i.e., it is stiff enough.

2.2 Positive and negative forming

Positive forming (Figure 2.1, a):

- Molding reflecting the outer contour of the form (simplified definition)
- The return forces in the material and the contour-molding forces are effective in the same direction.

Negative forming (Figure 2.1, b):

- Molding reflecting the inner contour of the form (simplified definition)
- The return forces in the material and the forming forces are mutually opposed.
2.2 Positive and negative forming

Figure 2.1 Positive and negative forming
a) Positive forming (schematic)
 b) Negative forming (schematic)
 \(X = \) molded dimension from mold

Table 2.1 Comparison between positively and negatively formed part

<table>
<thead>
<tr>
<th>Property</th>
<th>Positively formed part</th>
<th>Negatively formed part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy of molded image in the formed part</td>
<td>On the inside</td>
<td>On the outside</td>
</tr>
<tr>
<td>Dimensions (in drawing)</td>
<td>On the inside</td>
<td>On the outside</td>
</tr>
<tr>
<td>Thick edge sector</td>
<td>Edge thinned by stretching</td>
<td>Edge remains practically unstretched; wall thickness equals initial thickness</td>
</tr>
<tr>
<td>Thickest location(^*)</td>
<td>On base</td>
<td>On edge</td>
</tr>
<tr>
<td>Thinnest location(^*)</td>
<td>On edge (transition to sidewall)</td>
<td>On base (transition to sidewall)</td>
</tr>
<tr>
<td>Risk of wrinkle formation</td>
<td>At corners contiguous to edge</td>
<td>No wrinkle formation</td>
</tr>
</tbody>
</table>

\(^*\) If molded without preforming, with relatively low stretching ratio

Figure 2.2 a) Positively formed part with wrinkles toward the edge and chill marks at the corners marking the transitions between base and sidewalls
b) Negatively formed part without wrinkles and consistent edge thickness around entire periphery
2.7 Wrinkle formation during thermoforming

Wrinkle formation is understood as the undesired conjoining of border zones within a heated material during the forming process. Wrinkles can form in both negative and positive formed parts. Examples of wrinkles, see Figure 2.23.
2.7.1 Wrinkle formation sequence in positive forming

The wrinkle-formation sequence is illustrated in Figure 2.24.

Figure 2.24 Wrinkle-formation sequence in positive forming

Explanation of wrinkle formation in positive forming

Figure 2.25 provides a sketch explaining wrinkle formation.

1. Before the start of contour molding with vacuum or compressed air starts, the hot material is stretched like a tent between the positive form’s upper level abcd and the clamped edge ABCD.

Figure 2.25 Schematic explanation of wrinkle formation on positive form
2. The centre line of the front tent wall AadD is stretched to MO + Om during contour molding. The element portrayed in the centre stretches upward.

3. The horizontal centre line v1w1 is compressed to the reduced length v2w2 during contour molding.

Conclusion:

- During contour molding, the plastic is elongated in one direction and compressed in the other. (Wrinkles are never produced by stretching, but only through compression.)
- No wrinkles occur as long as the heated plastic remains “compressible” during contour molding.
- This compressibility depends on the visco-elastic properties of the processed material, i.e., on the type of plastic, the plastic temperature, upset ratio and the compression speed.

Wrinkles are produced when the compressibility is exceeded.

The upset ratio is greatest at the lower corner zones of positive forming; thus, the risk of wrinkle formation with rectilinear positive forms is greatest at the corners in the lower zone.

Preventing wrinkle formation in positive forming

Options for preventing wrinkles:

a) Revising the machine’s adjustment settings:

- Reduce the compression speed by lowering the cross-section for air discharge for a brief period during air suction (“prevacuum”).
- Correct the material temperature to allow compression: Heat the material to a higher temperature if it has been cooling too quickly during stretching.
- Heat the material less if it is formed too quickly during stretching.

b) Prevent wrinkles by reducing the intake zone at the corners. Blinds in the clamping frame reduce the intake zone and, thus, the upset ratio. The principle is illustrated in Figure 2.26. A becomes A1, B becomes B1, C becomes C1 and D becomes D1.

![Figure 2.26 Preventing wrinkle formation in positive forming, schematic](image-url)
Table 3.2 Table for the thermoformer (non-binding information) (continued)

<table>
<thead>
<tr>
<th>Thermoplastics</th>
<th>Acronym</th>
<th>Density</th>
<th>Tensile strength</th>
<th>Elasticity modulus</th>
<th>Optical transparency</th>
<th>Linear heat expansion</th>
<th>Specific heat</th>
<th>Continuous-use temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g/cm³</td>
<td>N/mm²</td>
<td>N/mm²</td>
<td>+/Yes – No</td>
<td>10⁻⁶ °C</td>
<td>kJ/kg·K °C</td>
<td>Min. Max.</td>
</tr>
<tr>
<td>Cellulose acetate</td>
<td>CA</td>
<td>1.28</td>
<td>37</td>
<td>1800</td>
<td>+</td>
<td>110</td>
<td>1.6</td>
<td>–40 80</td>
</tr>
<tr>
<td>Cellulose diacetate</td>
<td>CdA</td>
<td>1.27</td>
<td>40</td>
<td>1000</td>
<td>+</td>
<td>120</td>
<td>1.6</td>
<td>–40 60</td>
</tr>
<tr>
<td>Cellulose acetate butyrate</td>
<td>CAB</td>
<td>1.18</td>
<td>26</td>
<td>1600</td>
<td>+</td>
<td>120</td>
<td>1.6</td>
<td>–40 60</td>
</tr>
<tr>
<td>Polyvinylidene fluoride</td>
<td>PVDF</td>
<td>1.78</td>
<td>43</td>
<td>1500</td>
<td>–</td>
<td>120</td>
<td>0.96</td>
<td>–40 120</td>
</tr>
<tr>
<td>Polyetherimide</td>
<td>PEI</td>
<td>1.27</td>
<td>105</td>
<td>2800</td>
<td>–</td>
<td>56</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>PET elastomer</td>
<td>TPE-E</td>
<td>1.17</td>
<td>28</td>
<td>55</td>
<td>–</td>
<td></td>
<td>–50 105</td>
<td></td>
</tr>
<tr>
<td>Thermoplastic styrenic</td>
<td>TPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70–80</td>
<td></td>
</tr>
<tr>
<td>elastomer (blends)</td>
<td>blends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polylactic acid</td>
<td>PLA</td>
<td>1.21–1.43</td>
<td>10–60</td>
<td>3500</td>
<td>+</td>
<td></td>
<td>1.3</td>
<td>–20 60–70</td>
</tr>
<tr>
<td>Polyactic acid</td>
<td>Lignin</td>
<td>1.3–1.4</td>
<td>25–61</td>
<td>1500–6670</td>
<td>+</td>
<td></td>
<td>85–120</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Pliability temperature</th>
<th>Crystallite melting range</th>
<th>Predrying of 1.5–2 h/mm panels</th>
<th>Thermoforming temperature</th>
<th>Material factor for heating time</th>
<th>Material factor for cooling time</th>
<th>Vacuum forming</th>
<th>Pressure forming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>Bore hole</td>
<td>Slot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-GP</td>
<td>80</td>
<td>–</td>
<td>–</td>
<td>120–150</td>
<td>165–190</td>
<td>1.3</td>
<td>0.97</td>
<td>0.8 0.5 0.6 0.3</td>
</tr>
<tr>
<td>HIPS</td>
<td>80</td>
<td>–</td>
<td>–</td>
<td>120–160</td>
<td>150–200</td>
<td>1</td>
<td>1</td>
<td>0.8 0.5 0.6 0.3</td>
</tr>
<tr>
<td>SBS</td>
<td>90</td>
<td>–</td>
<td>–</td>
<td>115–125</td>
<td>140–140</td>
<td>1</td>
<td>1</td>
<td>0.8 0.4 0.6 0.3</td>
</tr>
<tr>
<td>OPS</td>
<td>99</td>
<td>–</td>
<td>–</td>
<td>115</td>
<td>115</td>
<td>1</td>
<td>0.7</td>
<td>0.8 0.4 0.6 0.3</td>
</tr>
<tr>
<td>ABS</td>
<td>100</td>
<td>–</td>
<td>75</td>
<td>130–160</td>
<td>160–220</td>
<td>1.3</td>
<td>1.3</td>
<td>0.8 0.4 0.6 0.3</td>
</tr>
<tr>
<td>ASA</td>
<td>90</td>
<td>–</td>
<td>85</td>
<td>120–160</td>
<td>160–190</td>
<td>1.3</td>
<td>1.3</td>
<td>0.8 0.4 0.6 0.3</td>
</tr>
<tr>
<td>SAN</td>
<td>95</td>
<td>–</td>
<td>–</td>
<td>135–170</td>
<td>165–190</td>
<td>1.6</td>
<td>1.12</td>
<td>0.8 0.5 0.6 0.3</td>
</tr>
<tr>
<td>PVC-U</td>
<td>90</td>
<td>–</td>
<td>–</td>
<td>120–140</td>
<td>155–200</td>
<td>1.7</td>
<td>2.55</td>
<td>0.8 0.5 0.6 0.3</td>
</tr>
<tr>
<td>COC</td>
<td>2º</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.6 0.3 0.3 0.2</td>
</tr>
<tr>
<td>PE–HD</td>
<td>105 125+15</td>
<td>–</td>
<td>–</td>
<td>140–170</td>
<td>170–200</td>
<td>2.5</td>
<td>2.5</td>
<td>0.6 0.3 0.4 0.2</td>
</tr>
<tr>
<td>PP</td>
<td>140 158+10</td>
<td>–</td>
<td>–</td>
<td>150–165</td>
<td>160–200</td>
<td>2.1</td>
<td>2.1</td>
<td>0.6 0.3 0.3 0.2</td>
</tr>
<tr>
<td>PMMA, ext.</td>
<td>95</td>
<td>–</td>
<td>–</td>
<td>140–160</td>
<td>160–190</td>
<td>1.5</td>
<td>1.5</td>
<td>0.8 0.6 0.8 0.5</td>
</tr>
<tr>
<td>PMMA, molded</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>140–170</td>
<td>170–200</td>
<td>1.6</td>
<td>1.6</td>
<td>1.0 0.8 0.6 0.3</td>
</tr>
<tr>
<td>POM</td>
<td>120 165+10</td>
<td>–</td>
<td>–</td>
<td>145–170</td>
<td>170–180</td>
<td>3.7</td>
<td>1.85</td>
<td>0.6 0.4 0.4 0.2</td>
</tr>
<tr>
<td>PC</td>
<td>150</td>
<td>–</td>
<td>–</td>
<td>150–180</td>
<td>180–220</td>
<td>1.5</td>
<td>0.9</td>
<td>0.6 0.5 0.6 0.3</td>
</tr>
<tr>
<td>PAR</td>
<td>170</td>
<td>–</td>
<td>110</td>
<td>180–210</td>
<td>210–235</td>
<td>2.6</td>
<td>2.21</td>
<td>0.8 0.5 0.6 0.3</td>
</tr>
<tr>
<td>PPE (PPO)</td>
<td>120</td>
<td>–</td>
<td>–</td>
<td>180–230</td>
<td>200–250</td>
<td>1.8</td>
<td>1.44</td>
<td>0.8 0.5 0.6 0.3</td>
</tr>
<tr>
<td>PA 6 GF15Z</td>
<td>222</td>
<td>110</td>
<td>230–240</td>
<td>240–250</td>
<td></td>
<td></td>
<td>0.8</td>
<td>0.5 0.6 0.3</td>
</tr>
</tbody>
</table>
Table 3.2 Table for the thermoformer (non-binding information) (continued)

| Acronym | Pliability temperature | Crystallite melting range | Predrying of 1.5–2 mm panels | Thermofoming temperature | Venting | Pressure forming
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>Vacuum forming</td>
<td>Pressure forming</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bore/Slot</td>
<td>Bore/Slot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hole/Slot</td>
<td>hole/Slot</td>
</tr>
<tr>
<td>PA 12</td>
<td>150</td>
<td>175+10</td>
<td>80</td>
<td>160–180</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>PET-G</td>
<td>82</td>
<td>–</td>
<td>–</td>
<td>100–120</td>
<td>1.25</td>
<td>0.8</td>
</tr>
<tr>
<td>A-PET</td>
<td>86</td>
<td>–</td>
<td>65</td>
<td>100–120</td>
<td>0.88</td>
<td>0.8</td>
</tr>
<tr>
<td>C-PET</td>
<td>86</td>
<td>225+3</td>
<td>–</td>
<td>130–145</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PSU</td>
<td>178</td>
<td>–</td>
<td>120</td>
<td>210–230</td>
<td>1.25</td>
<td>0.8</td>
</tr>
<tr>
<td>PES</td>
<td>220</td>
<td>–</td>
<td>180</td>
<td>230–270</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PPS</td>
<td>260</td>
<td>280+8</td>
<td>–</td>
<td>260–270</td>
<td>0.87</td>
<td>0.6</td>
</tr>
<tr>
<td>A/MA/B</td>
<td>88</td>
<td>–</td>
<td>–</td>
<td>135–150</td>
<td>1.3</td>
<td>0.8</td>
</tr>
<tr>
<td>CA</td>
<td>98</td>
<td>–</td>
<td>65</td>
<td>145–170</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>CdA</td>
<td>70</td>
<td>–</td>
<td>60</td>
<td>115–130</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CAB</td>
<td>120</td>
<td>–</td>
<td>90</td>
<td>140–200</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>PVDF</td>
<td>150</td>
<td>170+8</td>
<td>–</td>
<td>170–200</td>
<td>3.5</td>
<td>0.6</td>
</tr>
<tr>
<td>PEI</td>
<td>215</td>
<td>150</td>
<td>–</td>
<td>230–290</td>
<td>6.2</td>
<td>0.6</td>
</tr>
<tr>
<td>TPE-E</td>
<td>108</td>
<td>–</td>
<td>–</td>
<td>135–143</td>
<td>1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>TPS</td>
<td>–</td>
<td>120–140</td>
<td>140–165</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>PLA</td>
<td>58</td>
<td>–</td>
<td>80–100</td>
<td>90–110</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Lignin</td>
<td>–</td>
<td>150–170</td>
<td>170–190</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

1) Drying time 4 h/mm
2) Depending on type, 70 ... 160 °C

Table 3.2 (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Optimum temperature for the mold</th>
<th>Material for plug-assist tool</th>
<th>Molding shrinkage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UA SB</td>
<td>RV(b) RD</td>
<td>RDKP RDK</td>
</tr>
<tr>
<td>1 Wood</td>
<td>80 / 15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2 Felt</td>
<td>70</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>3 POM</td>
<td>50</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>4 PA (PA 6GGK)</td>
<td>65</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>5 Syntact. Foam</td>
<td>85</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>6 Talcum-filled PU</td>
<td>85</td>
<td>–</td>
<td>20</td>
</tr>
<tr>
<td>7 Pertinax</td>
<td>85</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8 HytaC B1X</td>
<td>25</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>9 PTFE</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>10 COC</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11 PE-HD</td>
<td>100</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>12 PP</td>
<td>90</td>
<td>(25)</td>
<td>25</td>
</tr>
</tbody>
</table>
Effect of transport steps under a long heater

Every point on the surface of the semi-finished product must have a single temperature in the forming station. To obtain this result, it is necessary to ensure that each point in the advance-feed direction is heated with the same frequency as all others. If this is not the case, it remains possible to shield the surface from the radiant heat or to deactivate transverse heater element rows (Figure 4.14 and Figure 4.15).

Figure 4.14 Checking the heating through a whole number of advance-feed cycles (2 or 3 times)
Case: Machine tables widths wider than the mold
0, 1, 2, 3, 4 steps (countdown) in transporting
F: Forming surface (advance feed)

If the machine’s table width is wider than that of the mold, then there will be differences in how the blank is heated before it arrives in the forming station (Figure 4.14 a). If the sector of the heater in front of the forming station is covered, then all points on the blank will be heated exactly two times (Figure 4.14 b).
If the machine’s table width is narrower than that of the mold, then there will be differences in how the blank is heated before it arrives in the forming station (Figure 4.15 a). If the sector of the heater in front of the forming station is covered, then all points on the blank will be heated exactly two times (Figure 4.15 b).

The schematic explanation in Figure 4.14 and Figure 4.15 only applies to the upper heater deflection panel. In actual real-world application, there will also be a lower heater deflection panel. The procedure for heating with an upper heater and lower heater is similar, even if two heater deflection panels are not of equal length or are not perfectly aligned above each other in the advance-feed direction.

Cross-over effect with radiant heaters

When a heater panel travels from its standby position to its heating position at the start of each cycle and then returns to its standby position once the heating time has elapsed, this leads to the cross-over effect, meaning that the semi-finished product is heated for different amounts of time because the heater crosses over it. More rapid heater travel motion corresponds to reduced cross-over effect and vice versa.
The thermoforming process can be subdivided into two steps – preforming or prestretching/drawing, and the actual contour-molding process. In many cases, unassisted contour molding with vacuum or compressed air will not be able to achieve satisfactory wall-thickness distribution, and for this reason, preforming will be necessary. The objective behind preforming is to obtain a contour that comes as close as possible to the contour of the finished part. The molding’s final contour definition is produced during finish molding. In most cases, preforming has a greater influence on wall-thickness distribution than contour molding.

Preforming is always a prestretching process and can assume various forms:

- Mechanical prestretching with the actual mold
- Mechanical prestretching with a plug assist (prestrecher)
- Pneumatic prestretching with preblow or presuction
- Combination of mechanical and pneumatic prestretching

Depending on the machine’s equipment and the configuration of the forming tool, molding relies on:

- Vacuum (vacuum forming)
- Compressed air (compressed-air forming)
- Vacuum and compressed air
- Bilateral vacuum application (e.g., for foams)
- Supplementary stamping, crimping, calibrating, usually restricted to limited surface areas

Mechanical tools such as slides and plugs usually are intended to prevent wrinkles during molding. In some cases, forming relies on mechanical stretching only, without molding using vacuum or compressed air. This is the origin of what we call free-form surfaces.

The forming processes cited below will all be explained in the following combination:

- Sketch of forming process
- The essential steps in the process sequence
- Important instructions/to be observed
- Possible intervention by the machine’s operator with the resulting effect on the molding
- Required machine equipment
8.1 Positive forming

8.1.1 Positive forming with mechanical prestretching

![Diagram of positive forming with mechanical prestretching]

Preforming:
- Prestretching with the mold
- With or without preblow

Contour molding:
- With upper forming table vacuum on

Figure 8.1 Process sequence – without preblow, without upper table

Please note
- Wall-thickness distribution in the vicinity of the tip

Table 8.1 Positive forming

<table>
<thead>
<tr>
<th>Operator intervention</th>
<th>Effect on the molding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble height = 0 ... low</td>
<td>Tip thick</td>
</tr>
<tr>
<td>Bubble height corresponds to 2/3 of forming height</td>
<td>OK</td>
</tr>
<tr>
<td>Bubble height corresponds to forming height</td>
<td>Wrinkle formation risk on the surface</td>
</tr>
<tr>
<td>Cold mold</td>
<td>Tip thicker</td>
</tr>
<tr>
<td>Hot mold</td>
<td>Tip thinner</td>
</tr>
<tr>
<td>Low table speed</td>
<td>Tip thicker</td>
</tr>
<tr>
<td>High table speed</td>
<td>Tip thinner</td>
</tr>
<tr>
<td>Cold mold and low table speed, without preblow</td>
<td>Thickest tip</td>
</tr>
<tr>
<td>Hot mold and high table speed with preblow</td>
<td>Thinnest tip</td>
</tr>
</tbody>
</table>

Required machine equipment

This forming procedure can be performed on all thermoforming machines with basic equipment.
17.2 Deburring

No deburring is necessary following punching with the steel rule die, punch and die trimming tool, shear cutting or laser cutting. Deburring is performed in response to a coarse cut:

- After sawing with a cut-off saw
- After milling in some cases
- After abrasive jet machining in many cases

Deburring is carried out by hand with a deburring cutter, with electric deburring brushes, or in a fully automated process (i.e., on multi-axis machines).

17.3 Connecting

Welding

Various welding processes are available for use with thermoplastic materials:

- Friction welding
- Ultrasonic welding
- Vibration welding (angular motion friction welding)
Hot-tool welding (butt welding with heat reflectors)
- Hot-gas welding
- High-frequency welding
- Induction welding

The following welding technologies are applied with thermoformed parts:
- Ultrasonic technology
- Vibration technology
- HF (high-frequency) technology
- Hot-tool welding

Not all plastics are suitable for ultrasonic and high-frequency welding.

Adhesive bonding

Suitable, standard commercial adhesives are available for bonding. The surfaces being bonded must be clean and grease-free and should also be roughened. Plastics with “adhesive-resistant” surfaces, such as PE, PP, POM, require extensive surface pretreatments (flame treatment, electric surface discharges or chemical pretreatments). Information regarding selection of adhesives, see Chapter 3 “Semi-finished thermoplastic materials”, with the plastics discussed at this location. An adhesive manufacturer should be consulted as the need arises.

Riveting, threaded connections

Since the strength of plastics is not as high as that of metals, the employed diameters and pressure surfaces should be correspondingly larger, in a situation mirroring that encountered with wood.

Special plastic screws are available for connecting plastics.

Reinforcement

The rigidity of a formed part depends on:
- The employed plastic (Young’s modulus)
- The wall thickness produced during thermoforming
- The geometry of the formed part (length, width, height, radii, ribs, etc.)
- The application temperature

Reinforcement is logical if:

a) the rigidity obtained during thermoforming is not adequate,

b) subsequent reinforcement is more economical than application of thicker or more expensive initial material,

c) no reinforcement is supplied by a subsequent process, such as insulation, adhesive bonding, welding.
Various reinforcement options are available:
- Lamination with fibreglass
- Foam backing with integral or PU foam
- Bonding reinforcement elements
- Applying poured material (e.g., in thin corners with epoxy resin)

Surface treatment

The options for treating surfaces of formed parts are:
- Grinding, polishing
- Painting
- Embossing
- Metallising
- Galvanising
- Flocking
- Antistatic treatment (antistatic spray, antistatic bath, rinse with detergent solution)

17.4 Recycling

Direct on-site recycling of materials represents the current state of technology. Edge trim cuts during production of sheet material and presorted waste are returned for remelting and sheet extrusion following post-production granulation. Problems can arise when contamination is present if different types of plastic are mixed or when waste materials have different colours.

Mixed plastic waste, including that from recycling centres, can be processed with extrusion or pressing to produce parts for less demanding applications, primarily for garden and landscaping, but also for industry and commercial uses.

Most suppliers of sheet material on reels or in sheet panels accept returned plastic waste. In any case, it is essential to negotiate with the supplier regarding acceptance of returned waste material when requesting information on materials and placing orders. Waste materials, possibly in granulated form, are secondary raw materials and are utilised.
18.4 Factors affecting the punching process

Influences on the plastic being punched

<table>
<thead>
<tr>
<th>Property</th>
<th>Effect on ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic type</td>
<td>- Specific punching force, see Section 18.7 “Punching forces”</td>
</tr>
<tr>
<td></td>
<td>- Service life of die tool</td>
</tr>
<tr>
<td></td>
<td>- Abrasive bulking agents in the sheet material and abrasive print colours on the sheet material reduce the residence time</td>
</tr>
<tr>
<td></td>
<td>- Angel-hair formation</td>
</tr>
</tbody>
</table>

Influences on the formed part being punched and the design of the formed surface

<table>
<thead>
<tr>
<th>Property</th>
<th>Effect on ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material thickness on the punched part</td>
<td>Punching force</td>
</tr>
<tr>
<td>Total cut length</td>
<td>Punching force Other factors requiring consideration:</td>
</tr>
<tr>
<td></td>
<td>- Number and size of radii per m: Small radii increase the displacement forces and thus the required punching force.</td>
</tr>
<tr>
<td></td>
<td>- Proportion of cut length with narrow parallel cut lines (below 12 mm) of total cut length increases punching force</td>
</tr>
<tr>
<td>Punched edge tolerance</td>
<td>Selection of punching procedure</td>
</tr>
<tr>
<td>Cut quality (haptics)</td>
<td>Selection of punching procedure</td>
</tr>
</tbody>
</table>

Effects of the machine/Punching station

<table>
<thead>
<tr>
<th>Property</th>
<th>Effect on ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punching force</td>
<td>Punched length/Design of formed surface/Machine output</td>
</tr>
<tr>
<td>Punched surface</td>
<td>Punched length/Design of formed surface/Machine output</td>
</tr>
<tr>
<td>Punching station rigidity</td>
<td>With blade cut in separate punching station: Effect of the residence time of the cut line</td>
</tr>
<tr>
<td>Punching speed (cutting speed)</td>
<td>Effect of the heated punch line when the blade edge cuts more slowly</td>
</tr>
<tr>
<td>Blade cut adjustment mechanism (position of transverse and angular position of the die tool relative to the direction of production flow)</td>
<td>Punched edge accuracy Adaptive possibility with distortion (deformation) in the formed sheet-material strip</td>
</tr>
</tbody>
</table>
18.5 Angel-hair formation

Figure 18.22 shows punched edges with and without punched material strands (angel hair).

Figure 18.22 Punched edge of a container in HIPS, edge thickness 0.6 mm
22.7.1 Material quantity being cooled (material throughput)

\[m = L \cdot B \cdot s_1 \cdot \rho_m \cdot \frac{3600}{T_z} \cdot 10^{-6} \]

(22.1)

\(m \) = Material throughput per hour in kg/h.
\(L \) = Length (advance feed length or panel length), in mm (Important: Only the length being cooled, without the uncooled clamped edges)
\(B \) = Width (e.g., roll-fed sheet-material width or panel width), in mm (Important: Only the width being cooled, without the uncooled clamped edges)
\(s_1 \) = Exit thickness of the semi-finished material (sheet material or panel), in mm
\(\rho_m \) = Density of the semi-finished material (sheet material or panel), in g/cm³
\(T_z \) = Cycle time, conversion of cycles per minute to cycle time in s.:

\[T_z = \frac{60}{\text{cycles per minute}} \]

Example:

\(L = 1200 \) mm
\(B = 800 \) mm
\(s_1 = 5 \) mm
\(\rho_m = 1.05 \) g/cm³
\(T_z = 65 \) s

\[m = 1200 \cdot 800 \cdot 5 \cdot 1.05 \cdot \frac{3600}{65} \cdot 10^{-6} = 279.14 \text{ kg/h} \]

(22.2)

22.7.2 Required cooling power during production

\[Q = m \cdot \Delta H \cdot k \cdot S \]

(22.3)

\(Q \) = Cooling power, in kJ/h
\(m \) = Material throughput per hour in kg/h
\(\Delta H \) = Enthalpy difference during the cooling period, in kJ/kg
See graphic in Figure 22.3 or the values in tabular form
\(k \) = Factor for proportional cooling through contact with the forming tool (without air cooling)
 - For machines without air cooling (RDM, RDKP, etc.) \(k = 1 \)
 - For machines with air cooling (UA) \(k = 0.5 \ldots 0.7 \)
\(S \) = Factor reflecting heat loss
 - for tool temperature of 15 \ldots 50 °C, \(S = 0.1 \ldots 0.95 \)
 - for tool temperature of 50 \ldots 100 °C, \(S = 0.95 \ldots 0.85 \)
 - for tool temperature of 100 \ldots 140 °C, \(S = 0.85 \ldots 0.75 \)
When a tool is extremely hot, it will lose a portion of its heat to the environment. Accordingly, less cooling power must be conducted to the tool in the cooling water.

Example (continued):

\[m = 279.14 \text{ kg/h} \]
\[\Delta H = 198 \text{ kJ/kg} \]
\[k = 0.6 \]
\[S = 0.9 \]

\[Q = m \cdot \Delta H \cdot k \cdot S \]
\[= 29.845 \text{ kJ/h} = 8.3 \text{ kW} \] (22.4)

It is now possible to examine the cooling power of an available cooling device using the calculated cooling power. This value can also be employed to evaluate the heat exchanger if the heat from the forming tool is not directly discharged with the cooling water, but instead with the heat exchanger of a temperature-control unit. This is indicated under “cooling power” for temperature-control units with heat exchangers. If the total heat is discharged through two or more temperature-control units, then this fact must also enter consideration.

22.7.3 Cooling-water requirement for tool cooling

The required cooling water can be calculated with the following formula:

\[V = \frac{1}{60 \cdot \Delta T_m} \cdot \frac{Q}{c_m \cdot \rho_m} \] (22.5)

For water:

\[V = \frac{1}{250.8} \cdot \frac{Q}{\Delta T_m} \] (22.6)

- \(V \) = Total volumetric flow rate for cooling water, in litres/min.
- \(Q \) = Cooling power, in kJ/h
- \(\Delta T_m \) = Difference in entry and exit temperatures of cooling medium (water), in °C
 - For forming and punching tools (RDM) \(\Delta T_m = 1 \text{ to } 2 \text{ °C} \)
 - For other forming tools (UA, RV, RDKP, etc.) \(\Delta T_m = 3 \text{ to } 10 \text{ °C} \)
- \(c_m \) = Specific heat of heat-transfer medium, in kJ/kg K
 - For water, \(c_m = 4.18 \text{ kJ/kg K} \)
- \(\rho_m \) = Density of cooling medium in g/cm³
 - For water, \(\rho_m = 1 \text{ g/cm³} \)
Example (continued):

\[Q = 29,845 \text{ kJ/h} \]
\[\Delta T_M = 7.5 \, ^\circ \text{C} \]

\[V = \frac{1}{250.8} \cdot \frac{Q}{\Delta T_M} \]

\[= 15.9 \text{ litres/min} \] \hspace{1cm} (22.7)

22.7.4 Contact surface required for the cooling water

The cooling water's contact surface can be calculated with the following formula. The calculations apply only for clean cooling passages without deposits.

\[A = \frac{Q}{3600 \cdot \alpha \cdot \Delta T_{MF}} \] \hspace{1cm} (22.8)

- \(A \) = Contact surface of cooling water, in m\(^2\)
- \(Q \) = Cooling power, in kJ/h
- \(\alpha \) = Heat transfer coefficient, in kW/m\(^2\) \(^\circ \text{K} \)
 - For water, \(\alpha = 2.3 \) to 3.5 kW/m\(^2\) \(^\circ \text{K} \)
- \(\Delta T_{MF} \) = Temperature differential between tool surface and heat-transfer medium (\(^\circ \text{C} \))

The temperature differential varies according to the tool material, the distance between the tool's surface and the cooling passage, and the ratio of cooling time to cycling time. The recommended temperature differentials for thermoforming tools lie between 8 and 15 \(^\circ \text{K} \) with sheet-processing machines and between 12 and 25 \(^\circ \text{K} \) with automatic roll-fed machines.

This can be used to calculate the product for round passages of \(d \cdot l \):

\[(d \cdot l_{total}) = \frac{Q}{3.6 \cdot \pi \cdot \alpha \cdot \Delta T_{MF}} \] \hspace{1cm} (22.9)

- \((d \cdot l_{total}) \) = auxiliary parameter, in mm \(\cdot \) m; here, the definitions are \(d \) for the cooling passage diameter in mm and \(l_{total} \) for the total length of the cooling passage
- \(Q \) = Cooling power, in kJ/h
- \(\alpha \) = Heat transfer coefficient, in kW/m\(^2\) \(^\circ \text{K} \)
 - For water, \(\alpha = 2.3 \) to 3.5 kW/m\(^2\) \(^\circ \text{K} \)
- \(\Delta T_{MF} \) = Temperature differential between tool surface and heat-transfer medium (\(^\circ \text{C} \))
Table 24.3 Faults during thermoforming (vacuum and pressure forming)

<table>
<thead>
<tr>
<th>Cause</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inadequate impact resistance in material</td>
</tr>
<tr>
<td>Faults during heating</td>
<td></td>
</tr>
<tr>
<td>Sheet material breaks during unwinding</td>
<td>1</td>
</tr>
<tr>
<td>Material is (demonstrably) not warmed consistently</td>
<td>2 x</td>
</tr>
<tr>
<td>Material too cold in vicinity of edge</td>
<td>3</td>
</tr>
<tr>
<td>Material displays considerable sag</td>
<td>4 x</td>
</tr>
<tr>
<td>Material sags more on one side</td>
<td>5</td>
</tr>
<tr>
<td>Bubbles on the surface of the material</td>
<td>7 x</td>
</tr>
<tr>
<td>Material wrinkles during heating</td>
<td>8</td>
</tr>
<tr>
<td>Material produces considerable gaseous emissions</td>
<td>9</td>
</tr>
<tr>
<td>Errors during transport</td>
<td></td>
</tr>
<tr>
<td>Material slips from toothed chain during transport</td>
<td>10</td>
</tr>
<tr>
<td>Material greatly constricted in transport direction</td>
<td>11</td>
</tr>
<tr>
<td>Material escapes from clamping frame</td>
<td>12</td>
</tr>
<tr>
<td>Material displays excessive sag</td>
<td>13</td>
</tr>
<tr>
<td>Faults during preforming</td>
<td></td>
</tr>
<tr>
<td>Unilateral bubble formation (preblow)</td>
<td>15</td>
</tr>
<tr>
<td>Bubble formation too small (despite maximum preblow settings)</td>
<td>16</td>
</tr>
<tr>
<td>Material tears upon contact with tool</td>
<td>17</td>
</tr>
<tr>
<td>Material adheres during tool immersion</td>
<td>18</td>
</tr>
<tr>
<td>Faults during molding</td>
<td></td>
</tr>
<tr>
<td>Molding contours with inadequate definition</td>
<td>20</td>
</tr>
<tr>
<td>Edge zone or parts in edge zone not well defined</td>
<td>21</td>
</tr>
<tr>
<td>Creases on the surface ("surface wrinkles")</td>
<td>22</td>
</tr>
<tr>
<td>Creases in the corners ("corner wrinkles")</td>
<td>23</td>
</tr>
<tr>
<td>Terminal vacuum not reached (vacuum forming)</td>
<td>24</td>
</tr>
<tr>
<td>Forming air escapes (pressure forming)</td>
<td>25</td>
</tr>
<tr>
<td>Markings from plug-assist tool</td>
<td>26</td>
</tr>
</tbody>
</table>

478 24 Thermoforming faults
Table 24.3 Faults during thermoforming (vacuum and pressure forming) (continued)

<table>
<thead>
<tr>
<th>Cause ...</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>No roller preheating (automatic reel-fed machine)</td>
<td>No roller preheat temperature too low</td>
</tr>
<tr>
<td>Roller preheat pattern</td>
<td>Poor roller heating</td>
</tr>
<tr>
<td>Poor heating pattern</td>
<td>Heaters display excessive output disparities</td>
</tr>
<tr>
<td>Poor reflection in heated edge</td>
<td>No pneumatic assist during heating (sheet radiation too intense)</td>
</tr>
<tr>
<td>Excessive heater temperature (tool radiation too intense)</td>
<td>Inadequate heating arrangement on material</td>
</tr>
<tr>
<td>Heating time too long</td>
<td>Heating time too short</td>
</tr>
<tr>
<td>Material too hot</td>
<td>Material too cold</td>
</tr>
<tr>
<td>Contact surface of material against forming tool too hot</td>
<td>Contact surface of material against plug-assist tool too hot</td>
</tr>
<tr>
<td>Sheet too low in direction of sheet material transport</td>
<td>Sheet length not aligned with advance feed length</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faults during heating</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet material breaks during unwinding</td>
<td>2 x x</td>
</tr>
<tr>
<td>Material is (demonstrably) not warmed consistently</td>
<td>3 x x x x x 3</td>
</tr>
<tr>
<td>Material too cold in vicinity of edge</td>
<td>4 x x x x x x 4</td>
</tr>
<tr>
<td>Material displays considerable sag</td>
<td>5 x x x x x x x x 5</td>
</tr>
<tr>
<td>Material sags more on one side</td>
<td>6 x x x x 6</td>
</tr>
<tr>
<td>Bubbles on the surface of the material</td>
<td>7 x x 7</td>
</tr>
<tr>
<td>Material wrinkles during heating</td>
<td>8 x 8</td>
</tr>
<tr>
<td>Material produces considerable gaseous emissions</td>
<td>9 x x x x 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors during transport</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material slips from toothed chain during transport</td>
<td>11</td>
</tr>
<tr>
<td>Material greatly constricted in transport direction</td>
<td>12</td>
</tr>
<tr>
<td>Material escapes from clamping frame</td>
<td>13</td>
</tr>
<tr>
<td>Material displays excessive sag</td>
<td>14 x x x x x x 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faults during preforming</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral bubble formation (preblow)</td>
<td>16 x x</td>
</tr>
<tr>
<td>Bubble formation too small (despite max. preblow settings)</td>
<td>17 x x</td>
</tr>
<tr>
<td>Material tears upon contact with tool</td>
<td>18 x x</td>
</tr>
<tr>
<td>Material adheres during tool immersion</td>
<td>19 x x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faults during molding</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molding contours with inadequate definition</td>
<td>21 x x x x x x x x 21</td>
</tr>
<tr>
<td>Edge zone or parts in edge zone not well defined</td>
<td>22 x x x x</td>
</tr>
<tr>
<td>Creases on the surface (“surface wrinkles”)</td>
<td>23 x</td>
</tr>
<tr>
<td>Creases in the corners (“corner wrinkles”)</td>
<td>24</td>
</tr>
<tr>
<td>Terminal vacuum not reached (vacuum forming)</td>
<td>25 x x</td>
</tr>
<tr>
<td>Forming air escapes (pressure forming)</td>
<td>26 x x</td>
</tr>
<tr>
<td>Markings from plug-assist tool</td>
<td>27</td>
</tr>
</tbody>
</table>
Index

3K method 190
6-position switching 164

A
ABS 75
Absorption of IR radiation 128
AB stacking 271
Adhesive bonding 277
Adhesive lamination 198
Adjustable mold substructure 357
Adjustable substructures 357
Aftershrinkage 45
Air consumption 453
Air cooling 253
Air-discharge cross-sections 364
Air-discharge passage 365
Air-discharge passage system 365
Air draught 142
Air-permeable panel material 342
Air support 56
Air support during heating 383
AlOx 119
Alternating stacking 272
Aluminium-ceramic investment casting 341
Aluminium tools 340
Aluminium with resin front cast coating 341
Amorphous 35
Angel hair 297
Anisotropic contraction 333
Arithmetical average surface roughness Ra 361
ASA 76
Assessing suitability for stacking 265
Averaged roughness depth Rz 361

B
Backin 340
Banded 325
Barrier 116
Barrier properties 118
Basic settings 460
Biodegradable plastics 110
Bio-PE 116
Bio-PET 115
Bioplastics 109
Bio-PP 116
Blade cut 279–280
Blade-cut tools 282
Blister contours 466
Blocking properties 105
Blow pins 384
Brand names 126
Breaking in 473
Bubbles 37, 232

C
CA 115
Calculating wall thickness 33
Calenders 64
Camper window 239
Cardboard-plastic composite 324
Casting semi-finished products 65
Causes of distortion 334
Cavities 368
Central cooling air 254
Centre-alignment edge 270
Changing the contour of the plug-assist tool 372
Checking for homogeneous heating 139
Check water quality 409
Chill marks 13, 258
Clamped edge distortion 333
Clamshell packages 21
Claw-type vacuum pump 457
Clearances for negative forming segment 346
Clearances for positive forming segments 345
Clearances to the clamping frame 345
Cockpit windows 241
Coefficient of thermal linear expansion 39
Compact technology 396
Comparison of heater elements 143
Comparison of radiant heaters 142
Compensation 39
Compensation during heating 149
Composite semi-finished materials 116
Configurable fans 254
Contact heater plate 152
Contact heaters 151
Continuous fibres 122
Continuous-use temperature 55
Contour definition 44, 58
Contour molding 5
Contour-molding pressure 11
Contours for package hinges 386
Contour shields 346
Control zone 159
Convection heaters 153
Conversion Rz to Ra 361
Cooler molds 260
Cooling 6, 62, 251
Cooling devices 251
Cooling power with air 255
Cooling with ice water 253
Copper-beryllium alloys 342
Corner blow nozzles 185
Corner wrinkles 374
Corrosion prevention 408
Cover shield 398
Cover tool 393
CPET 100
Crease geometry 387
Creasing 387
Creasing force 388
Creasing force determination 389
Cross-over effect 140
Cup rim geometries 397
Cup rims 397
Cut location 398
Cutting boards 281
Cutting forces for blade-cut tools 306
Cutting geometries 280
Cutting play 398
Cutting punch 398

D
Damage 41
Deactivated heater 131
Deactivated heater element 134
Deburring 276
Decoration 315
Delivery of central cooling air 256
Demolding motion 263
Demolding process 261
Demolding temperature 251, 261
Demolding undercuts 262
Depolymerisation 155
Detachable parts 375
Determining distortion-printing image 249
Determining the contour of the plug-assist tool 371
Determining the size of the material 349
Die drool 304
Digital printing 326
Direction of extrusion 53
Direction of orientation 59
Distance between heater elements 132
Distortion 258, 329
Distortion printing 246, 322
Distribution of energy consumption 442
Double cut 301
Downholder 401
Downholder activation 401
Downholder control 219
Downholder pressure stages 220, 402
Downholders 30
Downtime periods 460
Draft angles 32
Drill holes 364
Dry offset 327
Dynamic process optimisation 461

E
Effective heating time 154
Electrical conductivity 409
Emissions factor of the surface of a heater element 134
Emissions level 129
Energy consumption 437
Energy consumption display 461
Energy consumption measurements 451, 461
Energy costs 441
Energy recovery 447
EPE 108
EPET 100
EPP 108
Evenly heated 136
EVOH 84, 119
Expansion 39
Extrusion 64

F
Fabric 122
Fastening knob versions 390
Fault diagnosis 477
Faults in the material 468
Faults in the thermoforming tool 471
Felt 117, 369
Fibre-reinforced 121
Filled 82
Finish-processing 273
Flocked 321, 327
Flow chart 218, 220
Foamed material 85
Format printing 243
Forming-air reduction 219, 407, 449
Forming and punching tool with blade cut 285
Forming and punching tool with shear cut 291
Forming pressure 8, 10
Forming ratio 31, 61
Forming surface 29
Forming temperature range 41
Forming temperature ranges 89
Forming transparent parts 229
Free blowing 236
Free shrinkage 51
Free suction 236
Fresh-air coolers 459
Friction properties 42
Full-surface printing 320

G
Galvanized 328
Geometrical configuration errors 463
Grained 320
Grid 61
Guillotine shearing table 312

H
Halogen heater 142
Heat deflection for clamping frames 455
Heated wooden molds 241
Heater element’s distance 132
Heater element size 134
Heat expansion 87
Heating 37
Heating multicoloured materials 173
Heating techniques 127
Heating technology 127
Heating with isothermal control 158
Heat transfer 127

Heat transfer 127
Index

Height transitions 467
Helicopter windows 241
High-gloss coating 117
Hinge production 389
HIPS 72
Hole punch 314
Hollow base 227
Hollow ceramic element 142
Horizontal cut-off saw 273
Hydrographic 328
Hygroscopic 36

I
ILLIG RDKP machine 356
ILLIG RV machine 354, 355
ILLIG SB machine 353, 354
ILLIG UA machine 355
IML 223
IML-T 324
Influencing wall thickness distribution 209
Infrared radiation 127
Infrared sensor 167
In-line thermoforming 92
Insert technology 395
Intake zone 466
Internal stresses 56
Interrupted welded seam 383
IR sensor 168
IR sensor with power-controlled heaters 168
Isotherms 159

J
Joint zone 468
Joystick distribution of the heating pattern 162

K
Knife cut 391, 394
Knit fabric 122

L
Labelling 223
Laminated 323
Laminated wood 369
Lamination options in edge zones 200
Lamination process 199
Lateral stretching ratio 464
Lignin 114
Long fibres 122
Longitudinal row control 170

M
Machine capability 124
Machining allowances 466
Markings 23
Material displacement during punching 307
Materials for plug-assist tools 368
Materials for the forming segment 338
Metallised 321
Metallising 119
Metal spray coating 340
Migration 120
Minimum heating time 154
Modified 83
Moisture 36
Moisture bubbles 36
Mold and countermold 228, 236
Molding shrinkage 45, 58
Mold insert 399
Mold temperature 257
Multilayer 85, 116
Multilayer semi-finished materials 117
Multi-positional control 160, 164

N
Nickel electroplating 342
Non-degradable 115

O
Offset heater starting time 459
Offset stacking lugs 271
OPS 74
Orientation 53, 59, 64

P
PA 99
Painted 327
Pallet 465
PAN 120
PBS 113
PC 98
PE 79
Permeability 118
Permeation 118
PET 100, 101
PET-A 100
PET-C 100
PET-G 100
PETG 100
PHA 111
pH value 409
Pilot heater element 142
Pipe and tube cross-sections 475
PLA 110
Plenum passage 365
Plug-assist tool 404
Plug-assist tool materials 405
PMMA 95–96
Polyurethane resin 369
POM 370
Positive and negative forming 7, 178
Positive or negative forming 343
Potentially achievable forming ratios 464
Power control 150, 160
Power output of heaters 128
Power reduction 161
PP 80
Preblow 12
Preforming 5, 177
Preheating for automatic roll-fed machines 456
Preprinted 321, 323
Pressure amplifier 403
Pressure equalisation 12, 261
Prestretching 177
Presuction 12
Presuction and unreeling 183
Preventing wrinkle formation 476
Primer 119
Print image versions 243
Printing ink 243
Process for lamination with collapsing stroke 201
Processing shrinkage 260, 348
Pronounced potential influence on wall-thickness distribution 212
PR/SEC 439
PS 71
PSU 107
PTFE 370
Punching 279
Punching stroke 398
Push button negative section 21
Push button positive section 21
PVC 78
PVDC 84, 119

Q
Quartz heater 142

R
Ra 361
Radiant heaters 127
Radiated heat output 129
Radii 363
Raising the forming segment 377
RDM forming station 215
RDM tool 394
Recommendations for roughnesses 362
Recommended venting holes 366
Recovery properties 55
Rectilinear interlacing of fabric 122
Recycling 278
Recycling material 117
Reducing chill marks 19
Reducing energy consumption 444–446, 454
Refinement processes 65
Reflection 136
Reflective surfaces 138
Reflectors 136
Reinforced 83
Reinforcement 277
Releasing the formed part 262
Relocating the welding plane 381
Reproducibility of heating results 145
Required cross-section 366
Residence time 154–155
Resin 369
Resin front cast coating 340, 341
Resin tools 339
Ribs and 468
Rimless formed parts 226
Rotary die cutting machine 274
Roughness 362
Roughnesses from processing 362
Rough trim cut 275
Rules of thumb for demolding 263
Rz 361

S
Sag 39, 54
Sample article inspections 474
SAN 77
SBS 73
Scattered printing 243, 322
Scrap zone 466
Sealing locations on substructures 358
Sealing wall 401
SEC value 438
Selecting the correct forming procedure 208
Self-adhesive labels 325
Semi-crystalline 35
Semi-finished products in multiple layers 65
Separation and open tears 23
Serrated knife 384
Shear cut 286
Sheet extrusion 84
Sheet-material hinge 385
Short cooling period 458
Short fibres 121
Shrink label 326
Side clearance in the stack 266
Sidewall draft 345, 359
Sidewall inclination angles 266
Silk screen printing 326
SiOx 119
Skeleton tool 237
Sleeve 326
Slider 375
Slots 364
Slotted nozzles 364
Snap buttons 390
Snap coupling 385, 389
Specific energy consumption 438
Stacking interval 266
Stacking method 272
Stacking undercut 268, 269
Stack length 267
Stamped 323
Stamping 177
Steel rule cutting lines 282
Steel rule die cut 391, 394
Steel tools 342
Strength 59
Stresses 40, 55
Stretch 61
Stretching 65
Stretching ratio in lateral negative sectors 464
Stretch in printed pattern 345
Substructure 351
Superimposed position in percent 166
Superimposed power control 160
Surface roughness 360
Surface structures 322
Surface treatment 278
Surface wrinkles 27
Suspension hole for packaging 311
Switching mechanism 217
Syntactic foams 369
T
Table for the thermoformer 67
Teflon 370
Temperature control 150, 160
Temperature control with ceramic heat elements 161
Temperature differential in semi-finished product 131
Temperature gradient 38
Temperature profile relative to semi-finished product gauge 146
Temperature reduction 161
Temperature stabilisation 151
Tension in the semi-finished material 331
Thermoforming 1–3
Thermoforming process 177
Thermoplastic material of reference 39
Thickness tolerances 62, 63
Three-dimensional cuts 275
Tilting motion 216
Tilt mechanism technology 216
Tolerances 62
Tool base 403
Tool configurations 204, 205
Tool set 28
Tool venting 364
Toothed chains 203
Total array control 171
Total hardness 409
Total shrinkage 45
TPO 85
TPS 110
Transparent 229, 377
Transparent cups 233
Transverse row control 172

Tray tool 391–393
Trimless 332
Twin-chamber method 190
Twinsheet forming 191, 379

U
Undercuts 375
Undulations 40
Universal flow chart 207
Universal tool 350
Upholder 30
UV resistance 117

V
Vent cross-sections 33
Visco-elastic 60

W
Wall-thickness distribution 56
Welded seam 380
Welding 276
Whole number of advance-feed cycles 140
Wind deflector 239
Windows 238
With protective film 231
Wooden tools 339, 360
Wrapping 325
Wrinkle formation 23, 57
Wrinkle formation in negative forming 27
Wrinkle formation in positive forming 24
Wrinkle formation on surfaces 27