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The motivation to write this book stems from a 2016 SPE ANTEC presentation by 
the authors titled “Fundamentals of Extrusion/Compounding: Melting Mecha-
nisms − Single vs. Co-rotating Twin-screw Extruders”. Typically, there were sepa-
rate single-screw and twin-screw presentation tracks at SPE ANTEC resulting in 
little if any integrated discussion of these two processing systems. However, on the 
production floor these two technologies exist side by side. Thus, the objective of 
the presentation was to provide the compounding engineer with a practical under-
standing of the operating mechanisms for both the single and twin-screw extruder 
through a compare-and-contrast format. Subsequently, over the years since the 
presentation, individuals working as plastics and polymer materials professionals 
requested copies of the 2016 slides.

When the need to produce a homogeneous polymer melt occurs in the industrial 
environment, the product attributes, equipment capabilities, and capital cost must 
all be evaluated. For many applications both the single- and twin-screw extruder 
will produce the desired homogeneous melt needed to form the product through an 
extrusion die. Some applications such as dispersive mixing of filler, unbundling 
and wet out of fibers, as well as distribution of low-viscosity incompatible liquids 
into the polymer matrix are best accomplished in a twin-screw extruder. On the 
other hand, applications involving chemical reactions, color concentrate distribu-
tive mixing, and in-line polymer-polymer distributive mixing can be accomplished 
with either device. However, for the same production rate, twin-screw extruders 
are generally significantly smaller in diameter (for example 133 mm vs. 250 mm 
for a 4000 kg/h BO-PP line), require a smaller processing line footprint, although 
they can be more expensive than single-screw extruders. A colleague of the au-
thors who is involved with single-screw design opines that if the process requires 
a single-screw extruder more than 8 inches in diameter, he usually recommends 
that a twin-screw extruder is used. Therefore, a thorough understanding is needed 
for the concepts of solids conveying, melting, and mixing for the two types of ex-
truder to make appropriate process modeling calculations related to acquisition 
decisions. This book covers engineering and technology concepts that should aid 
the practitioner in comparing these two types of extrusion equipment relative to 

Preface



X  Preface

process requirements. Many materials are temperature sensitive so there is sub-
stantive discussion of the issues that arise when modeling temperature rise in ex-
truder channels. An extensive reference bibliography is included in each chapter 
with more about 300 literature citations included should the reader desire more 
in-depth discussion; many are from the refereed literature journals, extensively 
utilized polymer materials, and processing books, and a number of these are from 
SPE ANTEC papers written by industrial experts and are retrievable through the 
SPE library. 
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Equipment Overview

 � 1.1 Process Issues

Efficient melting of polymer pellets or powder is an essential process requirement 
to obtain a quality product from either single- or twin-screw extruders. An example 
of an issue associated with poor melting is product surface defects. Tiny unmelted 
polymer particles, gels, undispersed solid fillers, or additives often contaminate 
film products when poorly designed screws are used in production [1]. These 
 contamination particles can be caused by the incomplete melting of the resin, es-
pecially in bimodal polyolefins [2], or by not having appropriate dispersive mixing 
elements in the device [3]. A major source of gels in single-screw extruders is 
screw channels with small radii at the base of the flights; the cause and solution of 
this issue will be discussed in a later chapter. Another source of gels is contamina-
tion during shipping from poorly cleaned railcars to cardboard and trash found in 
Gaylord boxes. Although not usually a problem when using a twin-screw extruder 
to melt low-viscosity polymer powders, in single-screw extruders this type of 
 powder can cause a change in the melting mechanism, resulting in unmelted poly-
mer in the extrudate. This issue will be discussed in a later chapter. For either type 
of extruder, a source of gels in the extruded product is improperly designed extrud-
er-to-die transitions and/or transfer lines where the wall stress is not greater than 
20 kPa as the polymer flows [4]. In the twin-screw extruder, an unstable melting 
process that results in surging can occur. The melt quality can be OK, but obvi-
ously not good for any downstream handling for precise profiles, even if a gear 
pump (GP) is in place. Also, in the single-screw extruder, an improperly designed 
barrier flighted single screw will melt the polymer but often cause surging at the 
die due to resin bridging at an improperly designed inlet transition.

1



2  1 Equipment Overview

 � 1.2 Homogeneous Melt and Composition

For most polymer extrusion processes, the key to economic success is to have an 
extruder that delivers a polymer melt which is homogeneous, with respect to both 
composition and temperature, to the forming device, usually a film, strand, or pro-
file die. When developing multiphase polymer melts that often contain suspended 
solids, the twin-screw extruder is almost always the processing equipment of 
choice. To accomplish this task, the extruder—which is generally fed with polymer 
powders or pellets produced by the chemical manufacturer—conveys, “melts”, and 
mixes the fluid polymer with any other additional required material, such as solid 
filler, and delivers the mixed homogenized melt to the forming device. For exam-
ple, Campbell et al. recently investigated the mixing process of fillers ranging from 
nano- to micron-sized particles. This work has shown mixing in a co-rotating twin 
screw to be substantially influenced by the polymer rheology [5–7]. In the case of 
incorporation of solid fillers, up to a 60 volume fraction in the melt, Wetzel et al. 
found that when the loading exceeds a percolation concentration of about 15% by 
volume, the structure developed by the filler has a strong influence on the mixing 
efficiency [8–10]. Therefore, the introduction of fillers, both comingled with the 
polymer powder or pellets and downstream into the polymer melt via the twin-
screw extruder, is an important functional unit operation in the polymer industry. 
However, in this book the focus will be on developing and delivering homogeneous 
polymer melts—either from unfilled homopolymers or from previously compounded 
multicomponent polymer materials, such as particulate, fiber-filled thermoplastics 
or color concentrates—to the die. The objective of the following chapters will be to 
provide a detailed compare-and-contrast perspective of the different mechanisms 
inherent in single-screw and co-rotating twin-screw extruders as they accomplish 
this task.

 � 1.3 Extruder Mechanical Design Comparison

Before going into detail regarding conveying, melting, and mixing mechanisms 
associated with the two extruder configurations, it is useful to compare and con-
trast from a macroscopic perspective many of the design features of these two de-
vices; single-screw extruder: Figure 1.1 [11], co-rotating twin-screw extruder [12]: 
Figure 1.2.
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Figure 1.1 Typical single-screw extruder (courtesy of G. A. Campbell and M. A. Spalding, 
 Analyzing and Troubleshooting Single-Screw Extruders, 2nd ed., Hanser (2021))

Figure 1.2 Basic layout and main components of the twin-screw extruder with drive power 
available from 10 kW to 12 MW and rates from 1 kg/h to 100 t/h (courtesy of Coperion 
 Corporation)

Each extruder system consists of a motor, coupling mechanism, gearbox, process 
section, and shaping device, such as a strand, film, or profile die.

The single-screw extruder has a process section usually constructed from a single 
piece barrel and a solid screw; see Figure 1.3. The co-rotating twin-screw process 
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section, as illustrated in the bottom left-hand corner of Figure 1.2, is built up from 
modular components (both barrels and screw elements). The operating principle of 
the twin screw, as illustrated in the top right-hand corner of Figure 1.2, is based on 
two parallel screw shafts where the crest of one screw element wipes the root of 
the other [13, 14].

Solids Conveying

Section

Metering

Section

Transition or

Melting Section

Screw

Root
Flight Flight

Tip
Shank

Pocket or

Flight Start

Tip

Figure 1.3 Schematic of a typical single-flighted screw (courtesy of G. A. Campbell and 
M. A. Spalding, Analyzing and Troubleshooting Single-Screw Extruders, 2nd ed., Hanser (2021))

Both the single screw and the twin screw have similar degrees of freedom with 
respect to geometry, power transmission, and screw speed [15]; however, the 
self-wiping criterion places constraints on the overall twin-screw extruder design 
flexibility. While the single-screw extruder can have multiple different channel 
depths along the axial length of the screw profile to meet process requirements 
(Figure 1.3), the cross-sectional geometry of the twin-screw extruder is fixed at a 
constant channel depth to maintain self-wiping. The twin-screw cross-sectional 
 geometry is defined by three dimensions: screw diameter (either the outer diame-
ter (Do) or the inner (root) diameter (Di)), Do/Di ratio, and centerline distance (a) 
between the two screw shafts (Figure 1.4). Once two of the above three criteria are 
defined, the other one is fixed. For a constant centerline distance, as the Do/Di ratio 
is increased, the extruder Do increases and the Di decreases. Therefore, the diame-
ter ratio can be used as a comparative measure of the free cross-sectional area 
among twin-screw extruders, and thus of the internal free volume per unit length 
as well. The larger the Do/Di ratio, the greater the internal free volume per unit 
length of the extruder. Therefore, Do/Di is a relative measure of the maximum the-
oretical volumetric throughput capacity of the extruder. However, as is discussed 
in the next paragraph, Do/Di cannot be increased without at some point impacting 
the power transmission capacity of the screw shaft [14]. 
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Figure 1.4  
Characteristic dimensions 
of co-rotating twin screws 
( courtesy of Coperion 
 Corporation)

Do /Di has several additional influences on the extruder design and operating con-
ditions. In addition to being a comparative measure of internal free volume, Do /Di 
defines the average shear rate constant for the extruder geometry. The average 
shear rate constant is determined by integrating the shear rate as a function of the 
channel depth over the entire screw profile. The average shear rate of a fully filled 
channel can then be determined by multiplying this constant by the screw rpm. 
This average shear rate can be used to compare extruders with different diameter 
ratios as well as extruders run at different rpm values. For example, as Do /Di is 
increased, the channel depth of the extruder increases and the shear rate constant 
decreases. Finally, as Do /Di increases, the shaft diameter available for power trans-
mission is reduced; see Figure 1.5. This creates a conflicting scenario. An extruder 
with a small Do /Di has reduced free volume, but significant power transmission 
design capacity. On the other hand, a larger-Do /Di extruder has a greater volu-
metric throughput capacity, but geometric constraints limit the shaft diameter and 
therefore the power transmission capacity. Consequently, an appropriate balance 
between required power transmission capability and available free volume must be 
determined so that neither one is a process-limiting parameter. The ideal situation 
exists when a process is simultaneously power-limited, and volume-limited.

Figure 1.5  
Relationship between Do/Di ratio and free 
volume (courtesy of Coperion  Corporation)
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As an example of the power/volume trade-offs discussed above, Table 1.1 shows 
the difference in free cross-sectional area, average shear rate, and power/volume 
ratio expressed as torque capacity/centerline distance cubed (M/a3) of two cur-
rently available co-rotating twin-screw extruders with the same centerline distance 
but Do /Di ratios of 1.55 and 1.80, respectively. As expected, the power/volume ra-
tio of the extruder with the 1.80 Do /Di ratio is lower than that of the 1.55 Do /Di 
 extruder, due to shaft limitations.

Table 1.1 Impact of Do/Di on Free Cross-Sectional Area and Average Shear Rate

Machine Size Do/Di Free Cross- 
Sectional Area 
[cm2]

Average Shear 
Rate (300 rpm) 
[s−1]

Torque/Center-
line3 (M/a3)  
[N·m/cm3]

ZSK-92 1.55 46.0 100 18.0
ZSK-98 1.80 62.9  60 11.3

While both extruders could be used for similar processing tasks, the processing 
length, screw configuration, and operating conditions would need to be different. 
However, when power versus volume is considered, the 1.55 Do /Di extruder would 
be capable of the highest rates for energy-intensive processes such as processing 
glass-filled nylon, but the 1.80 Do /Di extruder would win out for processing low 
bulk density material not requiring a significant energy input, such as 60% talc-
filled PP.

 � 1.4  Extruder Screw Design/Unit Operations 
Comparison

The single-screw extruder is generally divided into three primary sections/unit 
operations (Figure 1.3): section 1, solids conveying; section 2, melting/mixing; and 
section 3, metering. Additional unit operations, such as enhanced melt-mixing and 
discharge pressurization elements, are often incorporated into the metering sec-
tion. Much of the mixing, such as dispersion of color concentrates, is accomplished 
in the melting section of the single screw.

Figure 1.6 Two-stage single-screw profile
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Additionally, the three screw sections have separate heater zones on the barrel to 
provide energy to the screw where required, as seen in Figure 1.1, and to remove 
energy (providing cooling) when the polymer’s viscosity leads to unacceptable 
high melt temperatures. There are, however, two-stage single-screw designs (Fig-
ure 1.6) that have an increased channel depth following the first metering section 
to allow additional material to be introduced, but this design is usually used to 
volatilize and remove low molecular weight contaminants such as moisture. The 
process section for a co-rotating twin-screw compounding line can require the 
same three primary unit operations, solids conveying, melting/mixing, and meter-
ing/conveying, when used for processes that require no compounding of multiple 
components or other complex processing functions. Such an application is melting 
nylon pellets for a monofilament spin line. However, more typically, the compound-
ing process can be broken down into unit operations as depicted in Figure 1.7. 
These are: introduction of the feed material, solids conveying, melting (softening, 
phase transformation), additive incorporation, mixing (dispersive, distributive), 
 atmospheric venting, mixing, degassing/devolatilization, discharge pressuriza-
tion, and discharge shaping [16].

Figure 1.7 Typical co-rotating twin-screw compounding line unit operations  
(courtesy of Coperion Corporation)

Most single-screw extruders have one of two typical screw designs: single-flighted, 
Figure 1.3, or barrier screws, Figure 1.8. The barrier flight is undercut from the 
main flight to allow molten resin to transfer from the solids-conveying channel to 
the melt channel. The entrance transition to the solids channel of the barrier screw 
must be carefully designed or the pellets will bridge when they leave the screw 
feed section.
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Feed MeterBarrier Section

Barrier
Flight

Solids
Channel

Melt
Channel

Main
Flight

Figure 1.8 Schematic for a barrier melting section (courtesy of G. A. Campbell and 
M. A.  Spalding, Analyzing and Troubleshooting Single-Screw Extruders, 2nd ed., Hanser (2021))

As illustrated in Figure 1.3, the single flight consists of a single helix along the 
length of the shaft. This first section of the screw, the feed zone, is normally flood 
fed from the hopper and has a deep channel depth to effectively take in and convey 
the lower bulk density solid feed. The next section, the melting zone, has a de-
creasing channel depth along the down-channel axial direction to compact and 
subsequently melt the feedstock. The final section, the metering zone, conveys the 
melted polymer and generates the required pressure to force the polymer melt 
through the shaping device attached to the end of the extruder barrel. The pitch, or 
lead, of this screw is normally constant along the entire length of the screw; how-
ever, the pitch may be changed in differing sections of the screw to control the 
solids feed rate in the feed section or to increase the pressure development in the 
metering section. The pitch, or lead, is determined by the distance between two 
consecutive flights along the axial direction of the screw of the same helix and if 
the pitch/lead is equal to the barrel diameter, the screw is referred to as a square-
pitched screw. The screw can have more than one flight (helix or start). Multiple 
flights are most common in large-diameter screws in the metering sections to 
 enhance pressure development to overcome the back pressure from the die.

For the twin screw, elements are often constructed with a single, double, or triple 
helix; see Figure 1.9. So far, no commercial twin screw has incorporated more than 
the triple helix design. Figure 1.10 illustrates a two-flighted (helix) geometry. As 
shown, the pitch is the distance between the first and the third crest. The proper 
definition is that pitch is equal to the axial distance traveled when tracing the crest 
over 360 degrees.

 

1-flighted 2-flighted 3-flighted

Figure 1.9 Examples of twin-screw single-, double-, and triple-flighted cross-section geometry 
(courtesy of Coperion Corporation)
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Figure 1.10 Pitch defined for the two-flighted twin-screw profile (courtesy of Coperion 
 Corporation)

For many polymers, this barrier screw design (Figure 1.8) has a higher melting 
rate than the basic screw design because the solid bed is kept closer to the moving 
surfaces of the screw, thus producing more dissipative energy to enhance melting. 
As discussed in detail in Campbell and Spalding [11], in the solids-conveying 
 section, plastic materials, usually in the form of pellets or powders, are flood fed 
continuously through a hopper into the extruder. Then, the polymer moves 
down-channel, pushed by the rotating flights of the screw. Because of heat conduc-
tion through the barrel wall and mechanical friction, the solid polymers are heated 
and softened first at the polymer barrel interface after the solid bed is compacted. 
As soon as the temperature of the solid polymer reaches its melting point (for crys-
talline polymers) or softening point (for amorphous polymers), a viscous polymer 
melt is formed in the so-called delay zone, that is, before the section of the screw 
where the core/root is increasing in diameter. The detailed theory of how the melt 
encapsulates the solid bed will be presented in a later chapter. Most of the bed 
heating is viscous dissipation caused by the shearing action in the film due to the 
relative motion of the screw surfaces and the solid bed motion relative to the sta-
tionary barrel. This energy is then conducted into the solids, melting crystalline 
resins and softening amorphous resins to the point that they will flow in the shear 
field next to the barrel. In the melt-conveying (metering) section, polymer melt is 
“pressurized” and readied to be pumped through the die. For a single-screw ex-
truder with a properly designed screw geometry, the metering section is the 
rate-controlling part of the screw and the transition and feed sections must be 
properly designed to complement the dynamics in the metering section.

Co-rotating twin-screw extruder screw configurations, as pointed out previously, 
are constructed from modular component elements assembled in a specific se-
quence to implement the unit operations required to accomplish the process task. 
Figure 1.11 illustrates a barrel and screw configuration sequence for homopoly-
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mer powder to pellet conversion. In general, there are two types of elements: 
 conveying elements, whose primary function is to transport material in the 
down-channel direction, and kneading blocks, whose function is to impose a 
“stress” on the material to perform some energy-intensive task such as melting, 
dispersion, or homogenization. Figure 1.12 displays several types of conveying 
 elements (top row) and kneading blocks (bottom row).

Figure 1.11 Barrel and screw configuration sequence for homopolymer powder to pellet 
 conversion (courtesy of Coperion Corporation)

Figure 1.12 Basic elements of the twin-screw compounder; top row: conveying elements, 
 bottom row: kneading blocks (courtesy of Coperion Corporation)

Twin-screw conveying elements are inherently different from the conveying ge-
ometry of the single screw. Single-screw extruders screws typically have a con-
stant pitch, but a depth that varies from the feed intake zone (deep) to the metering 
discharge zone (shallow); see Figure 1.3. On the other hand, twin-screw extruder 
conveying elements maintain a constant channel depth, but vary the pitch. Stan-
dard screw bushings are constructed with pitches ranging from approximately 
0.5 D to 2.0 D, where D is the machine diameter; see Figure 1.13. Large-pitch ele-
ments (1.5 D to 2.0 D) might typically be used in feed or devolatilization areas of 
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the extruder. Medium-pitch elements (approximately 1.0 D) are used to transport 
material between unit operations (i. e., feeding, mixing, and vacuum devolatiliza-
tion). Narrow-pitch elements (0.5 D to 0.7 D) are used in areas where compaction 
of material and 100% fill is desired, such as to build melt pressure before kneading 
blocks or the die. Up to approximately 2.5 D, a greater element pitch results in in-
creased down-channel material conveying. This results in a decrease in residence 
time, degree of fill, as well as a narrower residence time distribution. However, 
while there is an increased drag flow capacity associated with a greater pitch, 
there is also an increased sensitivity to pressure flow. That is, as the pitch of an 
element is increased, the drag flow conveys material in the down-channel direction 
at a faster rate. However, if there is a restrictive force placed in the flow path, the 
greater-pitch element is less effective in building up the pressure necessary to 
push material past the restriction [17]. See Section 6.5.3 for a more detailed dis-
cussion. Reverse pitch elements are used to generate back pressure and therefore 
create sections of 100% fill which, for example, can be used to separate unit opera-
tions or totally fill a mixing section.

Large pitch
(feeding/venting)

Medium pitch
(conveyance)

Narrow pitch
(pressurization &

heat transfer)

Figure 1.13 Typical utilization for large (~1.5–2.0 × screw diameter), medium (~1.0 × screw 
diameter), and narrow (~2/3 × screw diameter) pitch conveying elements  
(courtesy of Coperion Corporation)

The basic building blocks for mixing in the co-rotating, intermeshing-type twin-
screw extruder are kneading blocks and special mixing bushings. Special bush-
ings include slotted elements, toothed mixing elements and blister rings, or the 
self-wiping equivalent element [18–22]. Standard conveying-type screw bushings 
are also used in certain circumstances.

Just as screw bushings are characterized by pitch (i. e., flight angle), kneading 
blocks can be characterized by individual disc length (width), Figure 1.14, and 
stagger angle between successive discs, Figure 1.15. Kneading blocks introduce 
both a distributive and a dispersive mixing component into the system. The rela-
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