Leseprobe

Gerald Zickert
Leiterplatten
Stromlaufplan, Layout und Fertigung Ein Lehrbuch für Einsteiger

ISBN (Buch): 978-3-446-44289-4
ISBN (E-Book): 978-3-446-44416-4

Weitere Informationen oder Bestellungen unter
http://www.hanser-fachbuch.de/978-3-446-44289-4
sowie im Buchhandel.

© Carl Hanser Verlag, München

Die Elektronik ist unser ständiger Begleiter sowohl im beruflichen wie im privaten Umfeld. Wesentlicher Teil elektronischer Geräte ist die Leiterplatte, die mit großem Abstand das häufigste Verbindungselement der Elektronik darstellt.

Der Entwurf einer Leiterplatte beginnt mit dem Stromlaufplan, der in symbolischer Form bereits alle Bauelemente und deren Verbindungen untereinander und nach außen enthält. Mit diesen Informationen werden unter Nutzung eines Leiterplatten-Layoutsystems die Bauelemente angeordnet und Verbindungen in Form von Leitern gelegt. Dabei sind zahlreiche Restriktionen in Bezug auf die künftige Fertigung zu beachten. Der Entwurf mündet in die Erstellung der Fertigungsdaten.

Auf Basis dieser Daten werden zunächst die Leiterplatten strukturiert und für die Weiterverarbeitung vorbereitet. Danach werden die elektronischen Bauelemente bestückt und gelötet. Damit diese Fertigungsschritte kostengünstig und fehlerfrei ausgeführt werden können, müssen sie bereits beim Entwurf berücksichtigt werden, weshalb der Konstrukteur auch fertigungstechnische Kenntnisse benötigt.

Die Nutzung eines CAD-Systems ist selbstverständlich und wird produktneutral und ohne Einschränkung auf die Bedienung eines speziellen Systems dargestellt.

Ich danke dem Fachbuchverlag Leipzig und besonders Frau Franziska Jacob für die Anregung zu diesem Buch und für die Betreuung dieses Projektes.

Zwickau, Januar 2015

Gerald Zickert
Inhalt

1 Grundlagen der Konstruktion

<table>
<thead>
<tr>
<th>1.1 Technische Zeichnungen</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Ablauf und Methoden der Konstruktion</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1 Entwurfsprozess</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2 Konstruktionsprozess</td>
<td>13</td>
</tr>
<tr>
<td>1.2.3 Elektrokonstruktion</td>
<td>14</td>
</tr>
<tr>
<td>1.3 Normung</td>
<td>16</td>
</tr>
<tr>
<td>1.3.1 Begriff und Inhalt technischer Normen</td>
<td>16</td>
</tr>
<tr>
<td>1.3.2 Rechtliche Stellung der Normen</td>
<td>17</td>
</tr>
<tr>
<td>1.3.3 Normungsgremien</td>
<td>18</td>
</tr>
<tr>
<td>1.4 Rechnerunterstützte Konstruktion</td>
<td>19</td>
</tr>
<tr>
<td>1.4.1 Computer Integrated Manufacturing (CIM)</td>
<td>19</td>
</tr>
<tr>
<td>1.4.2 Inhalte der rechnerunterstützten Konstruktion</td>
<td>21</td>
</tr>
<tr>
<td>1.4.3 Rechnerunterstützte Konstruktion in der Elektrotechnik</td>
<td>23</td>
</tr>
</tbody>
</table>

2 Regeln für das Anfertigen von Stromlaufplänen

<table>
<thead>
<tr>
<th>2.1 Grundlegende Gestaltungshinweise</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Formatsystem und Faltungsregeln</td>
<td>27</td>
</tr>
<tr>
<td>2.1.2 Standardschriftfeld</td>
<td>29</td>
</tr>
<tr>
<td>2.1.3 Linienarten</td>
<td>30</td>
</tr>
<tr>
<td>2.2 Grafische Symbole für Schaltunterlagen</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1 Grundsätze der Symbolik</td>
<td>31</td>
</tr>
<tr>
<td>2.2.2 Binäre Elemente</td>
<td>32</td>
</tr>
<tr>
<td>2.2.3 Analoge Elemente</td>
<td>38</td>
</tr>
<tr>
<td>2.2.4 Bibliotheken im CAD-System</td>
<td>38</td>
</tr>
<tr>
<td>2.3 Stromlaufplan</td>
<td>41</td>
</tr>
<tr>
<td>2.3.1 Gestaltung und Inhalt</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2 Anordnung der Stromkreise</td>
<td>44</td>
</tr>
<tr>
<td>2.3.3 Verteilte Darstellung</td>
<td>46</td>
</tr>
<tr>
<td>2.3.4 Referenzkennzeichen</td>
<td>47</td>
</tr>
<tr>
<td>2.3.5 Anschlusskennzeichnung</td>
<td>51</td>
</tr>
<tr>
<td>2.3.6 Angaben an Verbindungen</td>
<td>52</td>
</tr>
<tr>
<td>2.4 Stückliste</td>
<td>53</td>
</tr>
<tr>
<td>3 Aufbauprinzipien</td>
<td>58</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
</tr>
<tr>
<td>3.1 Leiterplatten</td>
<td>58</td>
</tr>
<tr>
<td>3.1.1 Materialien für Leiterplatten</td>
<td>59</td>
</tr>
<tr>
<td>3.1.2 Lagenzahl</td>
<td>60</td>
</tr>
<tr>
<td>3.2 Weitere Schaltungsträger</td>
<td>61</td>
</tr>
<tr>
<td>3.2.1 Hybrid-Schaltkreise</td>
<td>61</td>
</tr>
<tr>
<td>3.2.2 Multi Chip Modul (MCM)</td>
<td>63</td>
</tr>
<tr>
<td>3.2.3 Dreidimensionale Schaltungsträger</td>
<td>64</td>
</tr>
<tr>
<td>3.3 Bauelemente</td>
<td>65</td>
</tr>
<tr>
<td>3.3.1 Bauelemente für Durchsteckmontage</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2 Bauelemente für Oberflächenmontage</td>
<td>66</td>
</tr>
<tr>
<td>3.3.3 Chip on Board</td>
<td>71</td>
</tr>
<tr>
<td>3.3.4 Footprintbibliothek im CAD-System</td>
<td>72</td>
</tr>
<tr>
<td>3.4 Wärmeabführung</td>
<td>77</td>
</tr>
<tr>
<td>3.4.1 Physikalische Grundlagen</td>
<td>77</td>
</tr>
<tr>
<td>3.4.2 Dimensionierung eines Kühlkörpers</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Leiterbildentwurf</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Ausgangspunkt</td>
<td>85</td>
</tr>
<tr>
<td>4.2 Vorbereitung</td>
<td>86</td>
</tr>
<tr>
<td>4.2.1 Kontrolle und Vervollständigung der Footprintbibliothek</td>
<td>86</td>
</tr>
<tr>
<td>4.2.2 Optionen einstellen</td>
<td>87</td>
</tr>
<tr>
<td>4.3 Bauelemente platzieren</td>
<td>90</td>
</tr>
<tr>
<td>4.3.1 Floorplanning</td>
<td>90</td>
</tr>
<tr>
<td>4.3.2 Manuelles Platzieren</td>
<td>91</td>
</tr>
<tr>
<td>4.3.3 Automatisches Platzieren (Autoplacer)</td>
<td>93</td>
</tr>
<tr>
<td>4.3.4 Optimieren von Platzierung und Packaging</td>
<td>93</td>
</tr>
<tr>
<td>4.4 Leiter legen (interaktives Routing)</td>
<td>95</td>
</tr>
<tr>
<td>4.4.1 Werkzeuge</td>
<td>96</td>
</tr>
<tr>
<td>4.4.2 Reihenfolge</td>
<td>97</td>
</tr>
<tr>
<td>4.4.3 Routinghinweise</td>
<td>99</td>
</tr>
<tr>
<td>4.4.4 Abschließende Arbeiten</td>
<td>101</td>
</tr>
<tr>
<td>4.5 Autorouter</td>
<td>102</td>
</tr>
<tr>
<td>4.6 Multilayer</td>
<td>102</td>
</tr>
<tr>
<td>4.6.1 Durchkontaktierungen</td>
<td>102</td>
</tr>
<tr>
<td>4.6.2 Multilayeraufbau</td>
<td>103</td>
</tr>
<tr>
<td>4.7 Eigenstörsicherheit</td>
<td>105</td>
</tr>
<tr>
<td>4.7.1 Kopplungen und Gegenmaßnahmen</td>
<td>106</td>
</tr>
<tr>
<td>4.7.2 Hinweise zur Layoutgestaltung</td>
<td>108</td>
</tr>
<tr>
<td>4.7.3 Impedanzdefinierte Leiterplatte</td>
<td>108</td>
</tr>
<tr>
<td>4.8 Abgeleitete Unterlagen</td>
<td>115</td>
</tr>
<tr>
<td>4.8.1 Bohrplan</td>
<td>117</td>
</tr>
<tr>
<td>4.8.2 Bestückungsplan</td>
<td>117</td>
</tr>
<tr>
<td>4.8.3 Beschriftungszeichnung</td>
<td>118</td>
</tr>
<tr>
<td>4.8.4 Lötmaskenzeichnung</td>
<td>119</td>
</tr>
</tbody>
</table>
5 Produktionsdaten ... 126
 5.1 Leiterbild ... 126
 5.1.1 Gerber-Datenformat ... 128
 5.1.2 Extended-Gerber-Datenformat 130
 5.2 Ergänzende Produktionsdaten 131
 5.2.1 Bohrdaten .. 131
 5.2.2 Bestückungsdaten ... 132
 5.2.3 Daten für Serviceaufdruck 133
 5.2.4 Daten für den Lötmaskendruck 134
 5.2.5 Daten für den Lotpastendruck mit Schablone 135
6 Leiterplattenfertigung .. 137
 6.1 Ablauf der Leiterplattenfertigung 137
 6.2 Subtraktive Leiterbildstrukturierung 139
 6.2.1 Leiterbildstrukturierung mit dem Siebdruckverfahren 140
 6.2.2 Leiterbildstrukturierung mit Fotodruck 141
 6.2.3 Unterätzung .. 142
 6.3 Fräs-Bohr-Plotter .. 143
 6.4 Multilayer .. 144
 6.5 Bohrungen und Durchkontaktierungen 146
 6.6 Oberflächen .. 148
 6.6.1 Metallische Oberflächen 148
 6.6.2 Lötmaske .. 148
 6.6.3 Serviceaufdruck ... 148
7 Baugruppenfertigung .. 151
 7.1 Bauteile (SMD) bestücken ... 151
 7.1.1 Bestückungsautomat 151
 7.1.2 Bauteile kleben .. 152
 7.2 Lötverfahren ... 154
 7.2.1 Lot, Flussmittel und Lotpaste 155
 7.2.2 Wellenlöten .. 158
 7.2.3 Reflowlöten .. 163
 7.3 Leitkleben ... 170
 7.4 Gehäuse ... 171
 7.4.1 Aufgaben des Gehäuses 171
 7.4.2 Gehäuse aus dem 19-Zoll-Aufbausystem 173
8 Lösungen ... 180
Formelzeichen .. 193
Glossar .. 195
Literatur und Normen ... 203
Index .. 207
Regeln für das Anfertigen von Stromlaufplänen

Der Stromlaufplan dokumentiert die Schaltung funktional und ist der Ausgangspunkt für den Leiterplattenentwurf.

Im Mittelpunkt dieses Kapitels steht deshalb der Stromlaufplan als die zentrale planerische Unterlage der Elektrotechnik. Weitere Unterlagen der Elektrokonstruktion sind in [ZICK13] beschrieben.

2.1 Grundlegende Gestaltungshinweise

Die folgenden Hinweise für die Gestaltung von Stromlaufplänen sind allgemeingültig und damit auch für weitere technische Unterlagen zutreffend.

2.1.1 Formatsystem und Faltungsregeln

Formatsystem (DIN EN ISO 216)

Die Blattgrößen werden nach einfachen Regeln, den Grundsätzen des Formatsystems gebildet:

- Die Fläche des Ausgangsformates (A0) beträgt 1 m².
- Die Ableitung weiterer Formate erfolgt durch Halbieren.
- Die Formate sind geometrisch ähnlich, sie haben das gleiche Seitenverhältnis.
- Das Seitenverhältnis beträgt eins zu Wurzel aus zwei.
Daraus ergeben sich folgende Abmessungen für das beschnittene Blatt (Fertigblatt). Zusätzlich sind die Maße der Zeichenfläche (ohne Zeichnungsrand) und die Abmessungen des unbeschnittenen Blattes (mit zusätzlichem Rand) angegeben.

Tabelle 2.1 Papier-Endformate der A-Reihe [DIN EN ISO 5457]

<table>
<thead>
<tr>
<th>Blattgrößen Reihe A</th>
<th>Beschnittenes Blatt (Maße in mm)</th>
<th>Zeichenfläche (Maße in mm)</th>
<th>Unbeschnittenes Blatt (Maße in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 0</td>
<td>841 × 1189</td>
<td>821 × 1159</td>
<td>880 × 1230</td>
</tr>
<tr>
<td>A 1</td>
<td>594 × 841</td>
<td>574 × 811</td>
<td>625 × 880</td>
</tr>
<tr>
<td>A 2</td>
<td>420 × 594</td>
<td>400 × 564</td>
<td>450 × 625</td>
</tr>
<tr>
<td>A 3</td>
<td>297 × 420</td>
<td>277 × 390</td>
<td>330 × 450</td>
</tr>
<tr>
<td>A 4</td>
<td>210 × 297</td>
<td>180 × 277</td>
<td>240 × 330</td>
</tr>
</tbody>
</table>

Anwendung in der Elektrotechnik

Damit werden in der Elektrotechnik das Format A3 (oft auf A4 verkleinert gedruckt) und das Format A4 am häufigsten genutzt.

Faltung auf Ablageformat (DIN 824)

Je nach Art der Zeichnungsablage stehen drei Faltungssysteme zur Verfügung:

- Form A mit herausgefaltetem Heftrand,
- Form B mit angeklebtem Heftrand,
- Form C ohne Heftrand für die Aufbewahrung, z.B. in Klarsichthüllen.
2.1 Grundlegende Gestaltungshinweise

Die **Faltungsregeln** ergeben sich aus einfachen und sinnvollen Grundsätzen:

- Das Schriftfeld ist ohne Entfalten sichtbar (liegt oben).
- Das Entfalten ist ohne Ausheften möglich (Formen A und B).
- Es wird auf das Format A4 gefaltet, evtl. mit Heftrand.
- Die Faltung wird erst längs, dann quer ausgeführt.

In der Elektrotechnik wird neben dem Format A4 vorzugsweise das Format A3 mit der Faltung nach Bild 2.3 angewendet.

2.1.2 Standardschriftfeld

In DIN EN ISO 7200 werden beispielhaft zwei Schriftfeldvarianten zur Anwendung in allen Arten von Dokumenten auf allen Gebieten der Ingenieurwissenschaften angegeben. Neben diesen Beispielen werden nur wenige und sinnvolle Vorgaben gemacht, was einen großen Gestaltungsspielraum ermöglicht.

<table>
<thead>
<tr>
<th>Verantwortl. Abt.</th>
<th>Techn. Referenz</th>
<th>Dokumentenart</th>
<th>Dokumentenstatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erstellt durch:</td>
<td>Titel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genehmigt von:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firma (Eigentümer)</td>
<td>Benennung</td>
<td></td>
<td>Sachnummer</td>
</tr>
</tbody>
</table>

Bild 2.2 Varianten der Faltung

Bild 2.3 Faltung für A3 nach Form A

Bild 2.4 Schriftfeld nach DIN EN ISO 7200 in Kompaktform
2.1.3 Linienarten

Grundsätzlich werden die Pläne der Elektrotechnik in schwarzener Farbe auf weißem Hintergrund und mit überwiegend einheitlicher Linienbreite angefertigt. Die Linienbreite ist in Abhängigkeit von Größe und Inhalt der Zeichnung aus der Reihe (.../0,25/0,35/0,5/0,7/1,0/1,4/2,0/...) auszuwählen, wobei schmale, breite und sehr breite Linien zueinander im Breitenverhältnis 1 : 2 : 4 liegen sollen. Zusätzlich wird zwischen Volllinie, Strichlinie und Strich-Punkt-Linie unterschieden.

schmale Volllinie:
elektrische Leitungen
Stromkreise
Schaltzeichen
Bauteile, Symbole

(sehr) breite Volllinie:
Busleitungen

schmale Strichlinie:
Abschirmung

schmale Strich-Punkt-Linie:
Umrandung von Baugruppen

Bild 2.5 Anwendung der Linienarten
2.2 Grafische Symbole für Schaltunterlagen

Schaltzeichen sind Symbole, Grafiken o. Ä. zur Darstellung elektrischer oder elektronischer Bauelemente und Einrichtungen.

2.2.1 Grundsätze der Symbolik

Sind für eine Anwendung mehrere Symbole angegeben, werden bei der Auswahl nachstehende Regeln beachtet:

- Es wird die einfachste Form gewählt, die für die beabsichtigte Aufgabe ausreichend ist.
- Soweit angegeben, wird die bevorzugte Form genutzt.
- Die Symbolverwendung muss im gesamten Zeichnungssatz einheitlich sein.

Beispiele für Symbole

Hinsichtlich der Ausführung ist das Folgende zu beachten:

- Die Darstellung erfolgt im ausgeschalteten bzw. stromlosen Zustand.
Symbole werden vorzugsweise senkrecht oder waagerecht angeordnet. Für Brücken-
schaltungen ist auch die Drehung in 45°-Schritten möglich. Jedes Symbol kann gespie-
gelt werden.

Die Linien, Texte und Flächen werden schwarz dargestellt. Die Linien haben überwie-
gend die gleiche Linienbreite.

2.2.2 Binäre Elemente

Durch die Anwendung einfacher Bildungsregeln nach DIN EN 60617-12 ist es möglich,
binäre Elemente selbst zu gestalten bzw. vorgegebene Darstellungen korrekt zu interpre-
tieren.

Die *grundlegende Form* des Symbols für ein binäres Element ist ein Rechteck. Im Rechteck
wird die logische Funktion angegeben, links sind die Eingänge, rechts sind die Ausgänge.

![Grundform des Symbols für ein binäres Element](image1)

Es werden *grafische Anschlusskennzeichnungen* verwendet, wenn es eine Signalwandlung
zwischen externem und internem Pegel gibt.

![Externer und interner Pegel](image2)

Für die Anschlusskennzeichnung stehen mehrere Möglichkeiten zur Verfügung.

![Beispiele für grafische Anschlusskennzeichnungen](image3)
Zusätzlich zu diesen grafischen Anschlusskennzeichnungen wird die Funktion des jeweiligen Anschlusses durch eine Buchstabenkennzeichnung, das Funktionsanschlusskennzeichen, angegeben.

Tabelle 2.2 Beispiele für Funktionsanschlusskennzeichnungen

<table>
<thead>
<tr>
<th>Buchstabenkennzeichnung</th>
<th>Beschreibung</th>
<th>Buchstabenkennzeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, S</td>
<td>Rücksetz-, Setzeingang</td>
<td>EN</td>
<td>Freigabe-Eingang (Enable)</td>
</tr>
<tr>
<td>J, K</td>
<td>Eingänge am J-K-Trigger</td>
<td>→, ←</td>
<td>Schiebeeingang (re., li.)</td>
</tr>
<tr>
<td>D</td>
<td>Eingang am D-Trigger</td>
<td>+, −</td>
<td>Zähleingang (vor, zurück)</td>
</tr>
</tbody>
</table>

Zusätzlich können Abhängigkeiten zwischen den Anschlüssen gekennzeichnet werden.

Kombination von Elementen

Unter bestimmten Bedingungen können zur Platzersparnis oder zur besseren Übersichtlichkeit die Darstellungen binärer Elemente miteinander und ineinander kombiniert werden. Diese Kombination ist jedoch nicht für alle binären Schaltungen, sondern nur für komplexe und in dieser Kombination handelsübliche Schaltkreise möglich.

Wenn zwischen den Elementen keine Logikverbindung besteht und sie nebeneinander im Signalfluss liegen, können sie „vertikal“ aneinandergesetzt werden. Haben die Elemente die gleiche Funktion, muss diese nur im ersten Element angegeben werden.

![Bild 2.10 Kombination von Elementen (vertikal)]

Wenn zwischen den Elementen mindestens eine Logikverbindung besteht und sie damit im Signalfluss hintereinander liegen, können sie „horizontal“ aneinandergesetzt werden und so einen gemeinsamen Block bilden.

![Bild 2.11 Kombination von Elementen (horizontal)]
Haben die miteinander kombinierten Elemente ein gemeinsames Steuersignal, so wird dieses an einen zusätzlichen Steuerblock gelegt, der vorzugsweise am oberen Ende der Kombination platziert wird. Das Element, das dem Steuerblock am nächsten liegt, ist das niederwertigste Element\(^1\) der Anordnung.

![Bild 2.12 Steuerblock](image)

Ist ein gemeinsamer, von allen Elementen der Kombination abhängiger Ausgang vorhanden, wird dieser am Ausgangsblock dargestellt. Der Ausgangsblock wird am Ende der Anordnung, gegenüber dem evtl. vorhandenen Steuerblock, angeordnet. Alternativ kann er auch im Steuerblock platziert werden.

![Bild 2.13 Ausgangsblock](image)

Kennzeichnung von Abhängigkeiten

Hierzu erfolgt die

- Kennzeichnung der steuernden Anschlüsse (Ein-, Ausgänge) mit einem Buchstaben für die Funktion und einer Kennzahl und die

- Kennzeichnung der gesteuerten Anschlüsse (Ein-, Ausgänge) mit der gleichen Kennzahl (mehrere durch Komma getrennt).

Die Abhängigkeiten werden zusätzlich zu eventuellen Funktionsanschlusskennzeichen angegeben.

\(^1\) Im binären Zahlensystem \(2^0 = 1\)
Index

3D-MID 64
3D-Molded Interconnect Devices 64
19-Zoll-Aufbausystem 173

A
Abbruchstelle 52
Abhängigkeit 34
Ablageformat 28
Aktivator 157
analoges Element 38
Analyse 13
anisotrop leitfähiger Klebstoff 171
Anschlussform
- Ball Grid Array 70
- BGA 70
- Gull-Wing 69
- J-Lead 69
- Land Grid Array 70
- LGA 70
Anschlusskennzeichnung 51, 52
- Funktions- 33
- Produkt- 51
ANSI 19, 195
Aufgabenstellung 14
Aufkupfern 147
Aufschwimmen 167
Autoplacer 93
Autorouter 102

B
Ball Grid Array 70, 168
Bauelement
- Chip Scale Package 70
- CSP 70
- Durchsteckmontage 65
- Flat Chip 67
- MCM 70

- MELF 67
- Metal Electrode Face Bonded 67
- Multi Chip Modul 70
- Oberflächenmontage 66
- Plastic Labeled Chip Carrier 69
- PLCC 69
- QFP 69
- Quad Flat Pack 69
- Small Outline Integrated Circuit 69
- Small Outline Transistor 68
- SO-IC 69
- SOT 68
- Surface Mounted Device 66
- Through Hole Technology 65
Baugruppe 174
Baugruppenträger 174
Bauteilliste 85
Bestückung
- automatisch 151
- halbautomatisch 151
- Hand- 151
Bestückungsautomat 151
Bestückungsdaten 132
BGA 70, 168
Bibliothek 38
- Footprint- 72
- Symbol- 40
- Typ- 40
binäres Element 32
bleifreies Lot 156
Blendetabelle 128
Blind-Via 103
Bohrdaten 131
Bohrplan 117
Braunoxidieren 145
Buried-Via 103
CAD 19, 20
CAE 20
CAM 20
CAP 20
CAQ 20
CEN 18
CENELEC 18
Chemisch-Zinn 148
Chip on Board 71
Chip Scale Package 70
Chip & Wire 71
CIM 20
coated Microstrip 112
COB 71
Cofired Ceramic 63
Computer Aided Design 19, 20
Computer Aided Engineering 20
Computer Aided Manufacturing 20
Computer Aided Planning 20
Computer Aided Quality Assurance 20
Computer Integrated Manufacturing 20
coplanar Impedance 110
CSP 70

Darstellung
- verteilte 43, 44
Design Rule Check 101
Desmear 146
differential-coplanar Impedance 110
differential Impedance 110
digitales Element 32
DIN 18
Dispensen 154, 164
DKE 18
DRC 101
dual Stripline 114
Durchkontaktierung 102, 146
- blinde 103
- durchgehende 103
- verdeckte 103

Eigenstörsicherheit 105
Einbaubedingung 14
elektrische Konsistenzprüfung 102
Elektro-CAD 23
elektromagnetische Verträglichkeit 105
embedded Microstrip 111
EMV 105
Enterprise-Resource-Planning 20
Entwurfsprozess 13
ERP 20
Europakarte 177
eutektischer Punkt 155
Excellon-Format 131
Extended-Gerber-Datenformat 130

Faltung 28
Faltungsregel 29
FED 19
Fertigungsdaten 126
Flat Chip 67
Flip Chip 71
Floorplanning 90
Flussmittel 156
- Aktivator 157
- Flussmittelbasis 157
- Klassifizierung 157
Fluxer
- Schaum- 159
- Sprüh- 160
Footprint 72, 86
Footprintbibliothek 72
Format 28
Formatsystem 27
- A-Reihe 27
Fotodruck 141
Fotoresist 141
Fräs-Bohr-Plotter 143
FR-Klassifizierung 59
Frontplatte 175
Funktionsanschlussekennzeichen 33
Index 209

G

galvanische Kopplung 106
Gate-Swapping 93
Gehäuse 171, 174
GenCAD-Format 132
geometrische Abstandsprüfung 101
Gerber-Datenformat 128
- Blendentabelle 128
- Extended 130
- Formatparameter 129
Gestaltung 15
Grabsteineffekt 166
Gull-Wing 69

H

HAL 148
Handbestückung 151
Höhenheit 176
Hot Air Leveling 148
Hybrid-Schaltkreis 61
- Cofired Ceramic 63
- Dickschichttechnik 61
- Dünnschichttechnik 62

I

IEC 18
Impedance
- coplanar 110
- differential 110
- differential-coplanar 110
- single ended 110
impedanzdefinierte Leiterplatte 108
Impedanzklasse 110
Impedanztyp 110
induktive Kopplung 107
Infrarotlöten 165
IPC 19
ISO 18
Isolationsfräsen 143
Isolierstoffträger
- flexibel 60
- starr 59
isotrop leitfähiger Klebstoff 170

J

J-Lead 69

K

kapazitive Kopplung 106
Klebepunkt 152
Klebstoff
- anisotrop leitfähig 171
- isotrop leitfähig 170
Klebstoffauftrag 153
Konstruktion 13
- rechnerunterstützte 19
Konstruktionsphasen 13
Konstruktionsprozess 13
Konvektion 78, 79
Konvektionslöten 165
Kopplung 105
- galvanische 106
- induktive 107
- kapazitive 106
- Strahlungs- 107
Kühlkörper 81

L

Lage
- Entwurfs- 88, 116
- Leiterplatten- 60, 87, 88
- Signal- 60, 88
- Versorgungs- 60, 88
Land Grid Array 70
Lastenheft 14, 180
Layoutsystem 24
Legierung 155
Leiter 59
Leiterabstand 89
Leiterbildstrukturierung 139
Leiterbreite 88
Leiter legen 95
- automatisch 102
- interaktiv 95
- Regeln 99
- Reihenfolge 97
- Werkzeuge 96
Leiterplatte 58, 175
- doppelseitig 60
einseitig 60
impedanzdefinierte 108
Mehrlagen- 60, 103
Leiterplattenentwurf 24
Leitkleben 170
LGA 70
Linienart 30
Liquidustemperatur 155
Lot 155
bleifrei 156
Lotbrücke 162
Löten 154
BGA 168
Dampfphasen- 166
Infrarot- 165
Konvektions- 165
Reflow- 163
Selektiv- 161
Wellen- 158
Lotfänger 162
Lötfehler
Aufschwimmen 167
Grabsteineffekt 166
Lotbrücke 162
Reflowlöten 166
Schatteneffekt 163
Wellenlöten 162
Lötmaske 134, 148
Lötmaskenzeichnung 119
Lotpaste 158
Lotpastenauftrag 164
Lotpastendruck 135
Lotpastenzeichnung 120
Lötpunkt
Reflowlöten 165
Wellenlöten 161
Lötzwelle 160
Multi Chip Modul 63, 198
Multilayer 60, 103, 144
Multilayer-Bauplan 105, 145
Negativ-Verfahren 140, 142
NEMA 19
Netzliste 85
Norm 16
Normung 16
Normungsarbeiten 16
P
Pad 76
Padstack 76, 86
Pastenauftrag
Klebstoff- 153
Lot- 164
PCB 58
PDM 20
Pflichtenheft 14, 180
Pin-Swapping 93
Plan 12
Plastic Lead Chip Carrier 69
Platzieren 90
automatisches 93
Planierungs- 88
PLCC 69
PLM 20
Positiv-Verfahren 140, 141
PPS 20
Prepreg 103
Printed Circuit Board 58
Printed Wiring Board 58
Product-Lifecycle-Management 20
Produktanschlusskennzeichen 51
Produktionsmanagement 20
Produktionsdaten 126
M
Mapping 40, 45
MCM 63, 198
MELF 67
Metal Electrode Face Bonded 67
Microstrip 110
mil
1/1000\ 59
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktionsplanung und -steuerung 20</td>
</tr>
<tr>
<td>Projektmanagement 14</td>
</tr>
<tr>
<td>PWB 58</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>QFP 69</td>
</tr>
<tr>
<td>Quad Flat Pack 69</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Raster</td>
</tr>
<tr>
<td>- Platzierungs- 88</td>
</tr>
<tr>
<td>- Routing- 88</td>
</tr>
<tr>
<td>Rechnerunterstützte Konstruktion 19</td>
</tr>
<tr>
<td>Referenzkennzeichnung 47</td>
</tr>
<tr>
<td>- Kennbuchstabe 48</td>
</tr>
<tr>
<td>- Produktaspekt 48</td>
</tr>
<tr>
<td>- Zählnummer 50</td>
</tr>
<tr>
<td>Reflowlöten 163</td>
</tr>
<tr>
<td>Resist 141</td>
</tr>
<tr>
<td>- Negativ- 141</td>
</tr>
<tr>
<td>- Positiv- 141</td>
</tr>
<tr>
<td>RoHS 156</td>
</tr>
<tr>
<td>RoHS-2 156</td>
</tr>
<tr>
<td>Routing 95</td>
</tr>
<tr>
<td>- Auto- 102</td>
</tr>
<tr>
<td>- interaktiv 95</td>
</tr>
<tr>
<td>- Regeln 99</td>
</tr>
<tr>
<td>- Reihenfolge 97</td>
</tr>
<tr>
<td>- Werkzeuge 96</td>
</tr>
<tr>
<td>Routingraster 88</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Schablonendruck 153, 164</td>
</tr>
<tr>
<td>Schaltschrank 174</td>
</tr>
<tr>
<td>Schaltzeichen 31, 40</td>
</tr>
<tr>
<td>Schatteneffekt 163</td>
</tr>
<tr>
<td>Schaumflaxter 159</td>
</tr>
<tr>
<td>Schriftfeld 29</td>
</tr>
<tr>
<td>Schutzgas</td>
</tr>
<tr>
<td>- Reflowlöten 165</td>
</tr>
<tr>
<td>- Wellenlöten 161</td>
</tr>
<tr>
<td>Selektivlöten 161</td>
</tr>
<tr>
<td>Serviceaufdruck 133, 148</td>
</tr>
<tr>
<td>Siebdruck 140, 153, 164</td>
</tr>
<tr>
<td>Sieb&Meyer-Format 131</td>
</tr>
<tr>
<td>single ended Impedance 110</td>
</tr>
<tr>
<td>single Stripline 113</td>
</tr>
<tr>
<td>Skizze 11</td>
</tr>
<tr>
<td>Small Outline Integrated Circuit 69</td>
</tr>
<tr>
<td>Small Outline Transistor 68</td>
</tr>
<tr>
<td>SMD 66</td>
</tr>
<tr>
<td>SO-IC 69</td>
</tr>
<tr>
<td>Solidustemperatur 155</td>
</tr>
<tr>
<td>SOT 68</td>
</tr>
<tr>
<td>Spannungsversorgung 45</td>
</tr>
<tr>
<td>- Schaltkreise 45</td>
</tr>
<tr>
<td>- Zweileitersystem 45</td>
</tr>
<tr>
<td>Sprühflutzer 160</td>
</tr>
<tr>
<td>Steckplatte 174</td>
</tr>
<tr>
<td>Steckverbinder 175</td>
</tr>
<tr>
<td>Stempelverfahren 153</td>
</tr>
<tr>
<td>Strahlungsaustauschkonstante 81</td>
</tr>
<tr>
<td>Strahlungskopplung 107</td>
</tr>
<tr>
<td>Stripline 110</td>
</tr>
<tr>
<td>Stromlaufplan 24, 43</td>
</tr>
<tr>
<td>- Anordnung der Stromkreise 44</td>
</tr>
<tr>
<td>- Inhalt 44</td>
</tr>
<tr>
<td>Strukturierung</td>
</tr>
<tr>
<td>- Fotodruck 141</td>
</tr>
<tr>
<td>- Leiterbild- 139</td>
</tr>
<tr>
<td>- Siebdruck 140</td>
</tr>
<tr>
<td>Stückliste 53</td>
</tr>
<tr>
<td>Surface Microstrip 110</td>
</tr>
<tr>
<td>Surface Mounted Device 66</td>
</tr>
<tr>
<td>Symbol 31, 40</td>
</tr>
<tr>
<td>- analoges Element 38</td>
</tr>
<tr>
<td>- Anwendung 31</td>
</tr>
<tr>
<td>- Ausführung 31</td>
</tr>
<tr>
<td>- Ausgangsblock 34</td>
</tr>
<tr>
<td>- binäres Element 32</td>
</tr>
<tr>
<td>- Steuerblock 34</td>
</tr>
<tr>
<td>Symbolbibliothek 40</td>
</tr>
<tr>
<td>Synthese 13</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>technische Zeichnung 11</td>
</tr>
<tr>
<td>Teilungseinheit 176</td>
</tr>
<tr>
<td>Temperatur</td>
</tr>
<tr>
<td>- Liquidus- 155</td>
</tr>
<tr>
<td>- Solidus- 155</td>
</tr>
<tr>
<td>thermischer Widerstand 78</td>
</tr>
</tbody>
</table>
Through Hole Technology 65
THT 65
Typbibliothek 40

U
Umgebungsbedingung 14
Unterätzung 143
Unterlagen der Elektrotechnik 12

V
Verbindung
 - Abbruchstelle 52
Verfahren
 - Negativ- 140, 142
 - Positiv- 140, 141
verteilte Darstellung 43, 44
Via 102
 - Blind- 103
 - Buried- 103
 - Through-Hole- 103
Vorheizung
 - Reflowlöten 165
 - Wellenlöten 160

W
Wärmeabführung 77
Wärmeleitung 78, 79
Wärmestrahlung 78, 80
Wärmestrom 78
Wärmeübergangskoeffizient 80, 81
Wellenlöten 158
Widerstand
 - thermischer 78

Z
Zeichenregel 12
Zeichnung
 - technische 11
Zustandsdiagramm 155