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Foreword

The polymer and plastics industries have had a profound techno-economic impact on 
society for almost a century. In fact, it has been suggested that the advent and use 
of polymers and plastics products have represented a revolutionary technological 
change. They are used in packaging, furniture, construction materials, automotive, 
aerospace, sporting goods, biomedical, electronics, communications, and so on. 
More importantly, they have adapted to the ever changing social and technologi-
cal demands. Thus, many of the current popular products, such as smart phones, 
computers, and other technological innovations would be difficult to contemplate 
in the absence of polymers. It does not seem likely that the foreseeable future will 
see a reduction in the important role that polymers and plastics will play in future 
technological development.

Cognizant of the role that polymers played and will continue to play in our lives, a 
group of polymer scientists and engineers from various countries around the world 
founded the Polymer Processing Society (PPS) in March 1985 at the University of 
Akron, Akron, Ohio, USA. According to its constitution, the goal of the PPS is to foster 
scientific understanding and technical innovation in polymer processing by providing 
a discussion forum in the field for the worldwide community of engineers and scien-
tists. Thus, PPS has attempted to achieve this goal using the following mechanisms:

1. Organization of annual and regional conferences rotating among the various 
regions of the world and the dissemination of technical content of the conferences 
in the form of proceedings.

2. The publication of the International Polymer Processing (IPP) Journal.

3. The publication of the Progress in Polymer Processing (PPP) Series.

So far, these activities have allowed the PPS and its members to exchange information 
and ideas about the evolution of the principles and methods of polymer science and 
engineering and their application to the generation of innovative products, processes 
and applications.

Since the formation of PPS, eleven PPP volumes have been published. Four dis-
tinguished leaders in the polymer processing field have served as series editors: 
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Leszek Utracki, Warren Baker, Kun Sup Hyun, and James L. White. Two years ago, 
in Nuremberg-Germany, I was asked by the Executive of PPS to serve as PPP series 
editor. At the time, I indicated that with the help of the Advisory Editorial Board, our 
colleagues in the polymer processing field, and Hanser Publications, we would aim 
to publish at the rate of about one book every year. So far, we are meeting this goal. 
Already, we have two books under preparation for publication during the next two 
years, in addition to discussion with other potential authors/editors for subsequent 
years. Of course, we would be happy to produce more than one excellent book per 
year, if the opportunity arises. I encourage prospective authors to contact me or any 
of the Advisory Board members with their ideas and suggestions.

Injection molding is the most versatile, flexible, and dynamic plastics production 
operation. It has been used to manufacture products from practically all thermo-
plastic polymers, blends, composites, and nanocomposites. The versatile injection 
molding process can be used to manufacture, repetitively at high rates, products 
with complex shapes, micro to large sizes, multilayers and colors, with or without 
inserts. The injection molded products must satisfy a multitude of specifications 
relating to shape, dimensions, dimensional and shape stability, strength, surface 
characteristics, and other specifications associated with functionality and the 
requirements of the intended application. The large number of products, molders, 
and machinery manufacturers has led to varying types and sizes of machines and to 
the development of various optimum strategies for manufacturing products meeting 
the required specifications.

A critical aspect for the success of the injection molding process depends on 
understanding and control of the various steps of the injection molding process, 
the thermo-mechanical history experienced by the polymer throughout the process, 
and the impact of this history on the characteristics of the final product. As many 
of these interactions and concepts are complex, it is very important to develop a 
monitoring strategy that permits the identification of the status and responses of 
the critical process variables. Overall, a successful injection molding process must 
be coupled to a successful process monitoring, optimization, and control strategy.

In view of the above, it is a pleasure to introduce this year the important book en -
titled Injection Molding Process Control, Monitoring, and Optimization. I am confident 
that the book will represent a major contribution to the science and practice of 
injection molding. It should satisfy some of the critical needs of injection molding 
machine manufacturers, mold and product designers, and molders. Moreover, the 
book should be helpful to researchers and teachers in the fields of injection molding 
and process control.

Finally, on behalf of the Polymer Processing Society and the PPP Editorial Advisory 
Board, I would like to express our sincerest thanks and appreciation to the authors 
for the intensive effort they made to prepare this valuable and important book. 
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We owe a lot of thanks to Dr. Mark Smith and Ms. Cheryl Hamilton and other Hanser 
staff for their efforts to ensure a timely completion of this project and for the orga-
nization of the copyediting and production of the book.

Musa R. Kamal
Series Editor



1 Injection Molding: 
Background

■■ 1.1■ Plastic Materials and Properties

Human history has been defined in terms of materials categories: the Stone Age, 
the Bronze Age, and the Iron Age. It is well accepted that we are now living in a 
polymer age. Since the 20th century, polymer materials, including plastics, fibers, 
elastomers, and proteins, have gradually appeared in almost every area of people’s 
everyday life, and there are a variety of applications in agriculture, industry, and 
even the defense industry. In all of the polymer materials, plastic is a major class.

Plastics are ubiquitous in modern society, with applications ranging from toys to 
electronic components, interior or structural parts of automobiles, and different 
components in trains and airplanes. There is hardly an area that does not use plastic 
parts in modern industry. The main advantages of plastic materials compared to 
other commonly used materials such as metal and woods are obvious. First of all, 
they have good physical or chemical properties, such as low density (light weight), 
chemical resistance, and durability, and are thermostatically and electrically insu-
lating. Second, they are economical in producing massive quantities of products. 
Third, plastic materials are normally easy to fabricate, especially compared to metal, 
and the energy cost accompanying plastics processing is also significantly reduced. 
Although plastics also have some disadvantages, such as not being biodegradable 
and promoting crude oil mining, these problems could be solved with recycling 
and the development of biodegradable plastics and other environmentally friendly 
enhancements.

The applications for plastics in modern industry and in people’s everyday life are 
almost limitless. Plastic products can be found everywhere. The largest application 
of plastics worldwide is the packaging industry, including numerous products like 
containers, bottles, drums, trays, boxes, cups and vending packaging, baby products, 
and protection packaging. The typical materials used in this area are low-density 
polyethylene, high-density polyethylene, polypropylene, polystyrene, and poly-
ethylene terephthalate.
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The second largest consumer of plastic products is the building and construction 
industry. Since plastic materials have great versatility and a combination of excellent 
strength-to-weight ratio, durability, cost effectiveness, corrosion resistance, and low 
maintenance cost, they are an attractive choice throughout the construction sector. 
Pipes, siding sheets, insulators, roofing materials, and door and window frames all 
use plastics, and the materials used are not limited to only those used in the packing 
industry, but may also be some other types, like polyvinyl chlorides.

Another important application area is electrical and electronic devices. The wires 
of most electronic devices are encased in plastic. Most outer casings of electronic 
devices, such as telephones, mobile phones, lighting fixtures, fans, computers, and 
televisions, are plastic as well. Plastic materials like polycarbonate, polyamide, 
acrylo nitrile butadiene styrene, and styrene acrylonitrile are widely used in this area.

A variety of plastics have been used in the manufacture of automobiles, trucks, 
trains for high-speed railways, and even airplanes. Nowadays many critical parts 
of the automobile are made of plastic materials, such as the steering wheels, air-in-
take manifolds, windshield wipers, bumpers, headlights, fuel pumps, and emission 
canisters. The train windows of China Railway High-speed (CRH) are made of six 
layers, where two of them are plastic materials [1]. This kind of multilayer structure 
can also be found in the aircraft windshield, for example, as illustrated in Fig. 1.1.

Glass

Interlayers

Heating SystemMoisture Seal

Edge Attachment

Figure 1.1■ Structure of Airbus SA windshield [2]

The transparent interlayers in this schematic are plastic materials used to bond the 
glass plies and other components together to form the aircraft windows. They also 
contribute to enhancing the windows’ pressure fail-safe capability and bird-impact 
resistance.

Owing to the rapid development of plastic materials and their applications in recent 
decades, this material family is still growing. In recent years, materials scientists 
and engineers developed the shape-memory plastic materials, which are polymeric 
smart materials that have the ability to return from a deformed state induced by an 
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external stimulus, such as temperature change [3], to their original or permanent 
shape. With the boom of nanotechnology, nanoplastic becomes a new engineering 
area. With the nanostructure units of nanocomposites added to the original plastic 
materials, the resulting nanoplastic can have some unique features, such as anti-
bacterial, water resistance, high temperature tolerance, and high strength [4].

Plastic is a kind of organic polymer material with giant molecules, whose basic 
components are hundreds or thousands of monomers prepared synthetically or 
semisynthetically, mostly organic molecules such as carbon, hydrogen, oxygen, or 
nitrogen. Since plastics is a material group with vast variety, it can also include 
inorganic constituents, such as sulfur, chlorine, fluorine, or bromine.

Using polyethylene (PE) as an example, Fig. 1.2(a) shows the structure of PE. This 
structure can be shown in a more concise form as Fig. 1.2(b). It is clear that the 
molecular chain is constructed of many small molecules of C2H2, i.e., ethylene 
monomers. The notation “n” in Fig. 1.2(b) represents the number of repetitive units 
in the PE structure; its value could range from a few hundred to several thousand. 
Therefore, the molecular weight of PE may also be an undetermined value with a 
statistical distribution [5].
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Figure 1.2■ Molecular structure of polyethylene (PE)

1.1.1■ Plastics Classification

Plastics may be classified in many ways, based on the molecular structure, process-
ability, method of synthesis, and so on.

1.1.1.1■ Molecular Structure

In terms of the molecular structure, plastics can be roughly divided into linear, 
branched, and cross-linked structures. A schematic illustration of these typical 
structures can be found in Fig. 1.3, where the lines represent the polymer molecules, 
and the black dots indicate the monomers [6].

A linear structure [7] has repeating units linked end-to-end together in a continuous 
length. Each monomer in the linear plastic is thus linked to only two others, resulting 
in a long and narrow molecule. Poly(vinyl chloride) (PVC), high-density polyethylene 
(HDPE), and some polyamides (nylon) are typical linear plastics.
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(a) Linear structure

(b) Branched structure

(c) Cross-linked structure

Figure 1.3■ Different structures of plastic materials

A branched structure refers to those plastic materials with branches distributed 
irregularly in the backbone molecular chain. These branches make it difficult to 
pack them in an array, so they are less dense and less crystalline and easier to 
process. The amount and type of the branches could affect some important physical 
properties of the material, such as viscosity and elasticity. Low-density polyethylene 
(LDPE) is a typical branched material. Although both HDPE and LDPE have ethylene 
as the basic unit, their structural difference leads to significantly different physical 
properties and applications.

A cross-link is a bond that links one polymer chain to another. The cross-linked 
structure contains short side chains or cross-links that connect different molecule 
chains into a network-fashion microstructure. The cross-linking structure makes 
the plastic material more elastic, meaning that when a force is exerted on the cross-
linked material it could deform and then return to its original state after the force 
is removed. Polyacrylamide and cross-linked polyethylene are typical cross-linked 
plastics [5].
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1.1.1.2■ Processability

Another classification based on processability divides the plastic materials into 
thermoplastic and thermoset. Briefly, the linear, branched, and slightly cross-linked 
plastic materials form the thermoplastics, while material that is heavily cross-linked 
after shaping of the products is known as a thermoset.

A thermoplastic is a plastic material that is solid and possesses significant elasticity 
at low temperature and can turn into a viscous liquid-like state at a high tempera-
ture, and this change is reversible. Since the thermoplastics can be softened and 
made to flow with the application of heat, they can be fabricated by processes like 
injection molding, extrusion, and blow molding. The molecular chains of a thermo-
plastic material are associated through intermolecular forces, hence allowing the 
thermoplastic to be remolded because the association force increases upon cooling 
and restores the bulk properties. This class of plastics includes PE, polypropylene 
(PP), polystyrene (PS), polycarbonate (PC), and acrylonitrile butadiene styrene 
(ABS).

Thermoset resin is a class of petrochemical in a soft solid or viscous state that changes 
irreversibly into an infusible, insoluble polymer network by curing. Curing can be 
induced by the action of heat or suitable radiation, or both. A cured thermosetting 
resin is called a thermoset. Prior to curing, the thermoset material is generally 
liquid or malleable with only partially polymerized states. The cure is actually a 
cross-linking process to form a network material. Generally, thermoset materials 
are stronger than thermoplastic materials because the molecular chain of the cured 
thermosets are connected by a three-dimensional network of bonds. However, the 
thermosets are more brittle, and their shapes are permanent, so they cannot be 
recycled to make new products. The fabrication of thermoset material must be done 
prior to the curing through, for example, reactive injection molding, transfer molding, 
extrusion, compression molding, or spin casting. Typical thermoset materials are 
polyurethanes (PU), polyimide (PI), and polyester resins.

1.1.1.3■ Method of Synthesis

All plastics are synthetic or manufactured materials, and polymerization is the most 
important process of converting monomer molecules through a chemical reaction 
into polymer chains or three-dimensional networks. Depending on the method of 
polymerization, plastics can also be classified into addition plastics and condensa-
tion plastics.

Addition plastics are formed by additional polymerizations or reactions, where many 
monomers bond together via rearrangement of bonds without the loss of any atom 
or molecule. For example, the following polymerization (Fig. 1.4) of polyethylene is 
an addition reaction [8]:



2 Feedback Control 
Algorithms Developed 
for Continuous Processes

■■ 2.1■ Introduction of Feedback 
Control Background

Control of the injection molding process not only involves sequence manipulation, 
but also some key process variable regulation. The following discussion will mainly 
focus on the process variable control. Early injection molding controllers were mainly 
constructed using simple electrical components such as timing relays and switches. 
The control is thus naturally open-loop. As the molding process becomes more and 
more complex, manufacturers require greater accuracy and tighter tolerances. All of 
the variations and disturbances during the molding process must be properly dealt 
with, so closed-loop control becomes necessary, which also triggers the application 
of computer-based controllers to the injection molding machines. It is therefore 
essential to give a brief introduction to some basic control concepts.

A controlled process is the object or process of the control; if a certain variable is 
the control goal, it can also be referred to as a controlled variable. The controlled 
process or controlled variable is the major concern of the controller. The controlling 
variable or control variable is the one that can be changed or entered from outside 
that manipulates the controlled process or variable. The value of the control variable 
is actually the control decisions to be made by the controller. Disturbances are defined 
as those variables aside from the control variable that cause the controlled process 
or variable to deviate from the set point. Using the injection molding machine barrel 
temperature control as an example, the schematic of a control loop is illustrated in 
Fig. 2.1. In this case, the controlled variables are the different zones’ barrel tempera-
tures, the control variables are the powers for different heaters, and disturbances 
are the temperature of the environment, the air flow in the factory, and others.

The control system can be categorized as manual control and automatic control. 
Some slow processes can be adjusted manually by human operators, and this kind 
of control is known as manual control. In injection molding, the manual control 
mode is still useful in sequence control during machine setting or problem solving. 



40 2 Feedback Control Algorithms Developed for Continuous Processes

During normal production, since modern injection moldings are fast processes, some 
even with a total cycle time as short as several seconds, it is extremely difficult for 
the operator to maintain the machine sequence and perform key variable control. 
The machine and process must be controlled automatically with a mechanical or 
electrical controller. The objective of the automatic controller is to manipulate the 
controlled variable to maintain the controlled variable at its set point in spite of 
various disturbances.

There are some basic elements for the automatic control system to function prop-
erly: a measurement unit, a controller, and a control actuator. The measurement 
unit often includes a sensor that converts the controlled variable to an electrical or 
some other measurable signal, and a transmitter that takes the output of the sensor 
and transforms it into a signal strong enough to send to the controller. These two 
devices are also known as the primary and secondary elements, respectively. The 
controllers, with a certain control algorithm or strategy, decide what to do to main-
tain the controlled variable at the desired value. Based on this decision, the control 
signal is sent to the final control actuator to manipulate the process. Depending 
on how the controller uses the information, the automatic process control can be 
further divided into three types, open-loop, closed-loop, and combined controls, as 
shown in Fig. 2.2.

The open-loop system does not use the measurement of the controlled variable or 
any disturbances, and this kind of control is only applicable in cases with very good 
prior knowledge of the controlled process and a lack of disturbances; both cannot 
be satisfied in injection molding process control. In the closed-loop control, the con-
troller receives the signal of the measurement unit and compares it with the desired 
values to make the control decision; for example, the u in Fig. 2.2(b) is based on the 
observations of process output y. This kind of closed-loop control is also known as 
feedback control: the current control decisions are made based on the observations 
of the effects of former decisions.

It is necessary to note that in the closed-loop control scheme, there is no need for a 
complete and precise knowledge of the controlled process. The additional information 
of the disturbance loop of how d affects u can be obtained via the measurement of 
process output effects. Furthermore, all of the disturbances will eventually have 

Controller Relays
(Solid State Relays) Barrel heaters Barrel 

Temperatures

Measurement:
Thermocouples

Set 
points

Temperature 
Measurements

Temperature 
outputs

Figure 2.1■ Illustration of injection molding barrel temperature control
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certain influences on the output, and these influences can be compensated for by 
the feedback mechanism. However, in the closed-loop system, the control action 
counteracting the disturbances always lags behind the disturbance loop, and an 
open-loop system with measurement of the disturbance could be helpful in this kind 
of situation. Later in this book the combined control structure to improve control 
performance is presented.

■■ 2.2■ Traditional Feedback Control: PID

The proportional-integral-derivative (PID) controller was first developed for automatic 
ship steering, and it is the most standard feedback control algorithm that measures 
the controlled variable, calculates the error between the output and set point, and 
generates the controller output based on the proportional, the integral, and the 
derivative of the errors. The controller uses not only the current error, but also the 
past error and the current rate of change. The original form of the continuous PID 
control algorithm can be written as follows:

( ) ( ) ( ) ( )t t t t= + +òP I D
0

dd
d

t

u t K e t e e t
t

 (2.1)

Controller Actuator Process

Process Model
(Theoretical/
Empirical) 

Set 
point Output: yInput: u

Disturbance: d1 Disturbance: d2

(a)

Controller Actuator Process

Disturbance: d1 Disturbance: d2

Set 
point Output: yInput: uError: e

Measurement
Measurement: yM

(b)

Figure 2.2■ Illustration of open-loop (a) and closed-loop (b) controls
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where ( ) ( ) ( )= -set me t y t y t  is the control error at time t, t is the instantaneous 
time, t is the variable of integration, and KP, tI, and tD are the proportional gain, 

integral gain, and derivative gain, respectively. In Eq. 2.1, ( )PK e t , ( )t t tòI
0

d
t

e , and 

( )tD
d
d

e t
t

 are the proportional term, integral term, and derivative term, respectively. 

The early PID controller was mostly implemented using analog circuits, but with the 
rapid development of computer-based control technology, the digital or discretized 
PID control has become widely used in modern control engineering:

( ) ( ) ( ) ( )
=

é ù= + + - -ê úë ûåP I D
1

1
k

i
iu k K e k K e K e k e k  (2.2)

The original positon form of PID control as formulated in Eqs. 2.1 and 2.2 could cause 
some problems, such as integration windup and difficulty in doing the integration 
and derivative. A more general expression is often used in industry, known as the 
velocity form:

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

= - -
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1

1 2 1 2
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K e k e k K e k K e k e k e k
 (2.3)

The velocity form of PID control algorithm has some advantages. In particular, it 
inherently removes the integration windup problem because the integration term 
is eliminated in Eq. 2.3.

As a simple and general-purpose control algorithm, the PID may be the most 
success ful automatic controller in industry. For the injection molding process, PID 
control is commonly used in the barrel and mold temperature control. In the early 
practice, it was also used to control some key process variables, such as injection 
velocity and packing pressure. However, it also has some significant limitations. For 
example, it only works for linear and time-invariant processes and is not suitable 
for complex and nonlinear processes like injection molding, and the parameters of 
a PID controller are fixed, so it cannot be used as the core of an advanced control 
system. The PID control is suitable for continuous processes because, for a continuous 
process normally working around a certain operating point, the process dynamics 
can be linearized in a small range, and PID control can be effective under such a 
circumstance. As a typical batch process, the injection molding is stage-based and 
often operating over a wide range of conditions, and the traditional fixed parameter 
controller cannot ensure a satisfactory performance.

To illustrate the performance of a PID controller in an injection molding process 
application, a PID injection velocity control is presented below. The control exper-
iments were conducted on an industrial injection molding machine with clamping 
tonnage of 88 tons, and the hydraulic power system was controlled by a fast-response 
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servo-valve. For easy description and without loss of generality, a PI controller 
was designed and tuned for the injection velocity using the Ziegler-Nichols (Z-N) 
method [17] near the working point of 50 mm/s. The first step of the Z-N method 
is to experimentally determine the ultimate gain Kcu. The period of the resulting 
sustained oscillation is referred to as the ultimate period Pu. Then KP and KI can be 

calculated using the relations =P cu0.45K K  and D
=I P

u 1.2
tK K

P
, where Dt  is the 

sampling period. For this specific problem, the parameters were determined to be 
D =5 mst , =P 50K , and =I 4.167K .

(a)

(b)

Figure 2.3■ PI controller response to a two-step change set-point profile:  
(a) the injection velocity response, and (b) the servo-valve opening
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Figure 2.3 shows the PI controller response to a step-change velocity profile. The 
controller works well near the tuning point. However, when the set point changes 
from 50 to 10 mm/s, the PI control response oscillated strongly, due to the process 
nonlinearity. The oscillation of the response may be reduced by slowing down the 
response time of the PI controller, but a slow response is obviously undesirable 
in injection velocity control. The poor performance of the PI controller not only 
confirmed the nonlinear characteristic of the injection velocity, but also proved the 
necessity of using advanced control algorithms.

■■ 2.3■ Adaptive Control

It was shown in the previous section that the traditional fixed-parameter control 
algorithm such as PID control cannot work well for the injection molding process, 
due to the batch operation nature and the nonlinear and time-varying characteris-
tics of the process. Adaptive control is a good alternative for this kind of control. Its 
parameters are adapted in a certain way to conform to the nonlinear or time-varying 
process dynamics and provide a good control performance. There are many differ-
ent types of adaptive control schemes, such as gain scheduling, model reference 
adaptive control, dual adaptive control, and self-tuning regulators (STR). The STR, 
as an important scheme of adaptive control, is used for illustration in this book to 
control some key process variables in injection molding. The basic principle of STR 
is briefly described in the following sections, and detailed discussions can be found 
in references [18–20].

A self-tuning system is graphically shown in Fig. 2.4 [14]. The system is composed 
of two loops: an ordinary feedback-control loop, as shown with the dashed line, 
and a controller parameter-adjusting loop, as shown with the dotted-line block. The 
latter, consisting of a parametric model estimator and a controller design calculator, 
gives an online adjustment of the parameters of the feedback controller. The process 
model parameters and controller design are updated during each sampling period, 
with a specified model structure.

There are several methods for process model parameter estimation, for example, 
least mean squares (LMS), projection algorithm (PA), and stochastic approximation 
(SA). In this book, a recursive least-squares (RLS) estimator is used because of its 
good sensitivity and superior convergence property [19]. A simple but effective 
pole-placement control design is adopted for the controller design first to demonstrate 
the working procedure of the STR.
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Controller
Design

Model 
Estimator

Controller Process
Input

Reference

Controller             
Parameters

Process Parameters
Specification

Output

Figure 2.4■ Block diagram of an adaptive self-tuning regulator

2.3.1■ Model Estimation

Assuming that the process dynamics may be modeled by a discrete time autoregres-
sive with external input (ARX) model, we have

( ) ( ) ( ) ( ) ( )= - +dA z y t B z u t n e t  (2.4)

where

( ) --= + + +

a
a

1
11 n

nA z a z a z

( ) ( )- + --
-= + + + ×

b d
b

11
0 1 1

n n
nB z b b z b z z

u: inputs to the process

y: corresponding observed process outputs

z: z-transform (time-shift) operator

na, nb, and nd: the orders of A, B polynomials and process delay, respectively.

Introduce the process model parameter vector:

q -
é ù= ê úë û 

a b

T
1 0 1n na a b b  (2.5)

the regression vector:

( ) ( ) ( ) ( ) ( )j é ù= - - - - - - - +ê úë û 

T
d d1 1t y t y t n u t n u t n m  (2.6)

and the loss function:

( ) ( ) ( )q j q
=

é ù= -ê úë ûå
2T

1

1,
2

t

i
V t y i i  (2.7)
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The model parameter q, which minimizes ( )q,V t , the differences between the output 
observation, ( )y i , and its prediction, ( )j qT i , in the least-squares sense, is given 
recursively by

( ) ( ) ( ) ( ) ( ) ( )q q j qé ù= - + - -ê úë û
T1 1t t K t y t t t  (2.8)

( ) ( ) ( ) ( ) ( ) ( )j l j j
-é ù= - + -ê úë û

1T1 1K t P t t I t P t t  (2.9)

( ) ( ) ( )
( )

j
l

-é ù= -ê úë û
T 1P t

P t I K t t  (2.10)

The variable l in Eq. 2.9 is a forgetting factor that dictates how fast the model is 
updated. The value of l is l< £0 1. The smaller l is, the faster the estimator can 
track the model changing, and a small l will also make the estimation more sensi-
tive to measurement noises. In this project, l is set to be 0.98 for injection velocity 
control and 0.99 for packing pressure control because the selections produce good 
estimates. As a rule of thumb, the estimate is based on the last N-step results, and 
N can be calculated as below [19]:

l
=

-
2

1
N  (2.11)

2.3.2■ Pole-Placement Controller Design

A pole-placement design is adopted here as the feedback controller in STR for 
demonstration purposes, as shown in Fig. 2.5 [14]. The design is to find a controller 
that gives a closed-loop system response specified by the desired closed-loop pole 
locations. With the process described by Eq. 2.4, the controller has one output, u, and 
two inputs, the command signal, uC, and the measured process output, y. A linear 
controller relating the output to its inputs may be expressed by

( ) ( ) ( ) ( ) ( ) ( )= -CR z u k T z u k S z y k  (2.12)

where ( )R z , ( )S z , and ( )T z  are controller parameter polynomials.

Controller

Ru = Tuc – Sy B
A

uc

e

yxu

v

Figure 2.5■ Structure of pole-placement feedback controller
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The goal of the controller design is to find these three polynomials for the given 
closed-loop poles. It can be derived that the closed-loop characteristic polynomial 
is [19]

+ = CAR BS A . (2.13)

The desired closed-loop characteristic polynomial AC may be specified as

( )= = + +d 2 d
C 1 1 2A A z z p z p z  (2.14)

where   ( )zw w z-=- -0 2
1 02 cos 1hp e h , and zw-= 02

2
hp e .

The parameterA1 is equivalent to the second-order system characteristic equation 
in the s domain:

( ) zw w= + +2 2
1 0 02A s s s  (2.15)

Here zd is a deadbeat observer with all eigenvalues equal to zero. The damping factor, 
z, and natural frequency, w0, decide the closed-loop response of the system. A value 
of z larger than 1.0 yields a sluggish response, while 0 < z < 1.0 makes the responses 
exhibit oscillation and overshoot. The fastest response without overshoot is obtained 
for the critical damping factor, z =1.0. In terms of pole locations, a bigger w0 makes 
the desired poles closer to the origin in the z plane, which leads the response of the 
system to be faster but more sensitive to the model error. A smaller w0, however, 
yields a slower response that is less sensitive to the model error and signal noise. 
Once the desired closed-loop characteristic equation is determined, the controller 
polynomials ( )R z , ( )S z , and ( )T z  can be obtained by solving Eq. 2.9, which is 
known as the polynomial Diophantine equation.

2.3.3■ Solving the Diophantine Equation

The most important part of the controller design is to solve the Diophantine Eq 2.12. 
There are several alternative methods to solve this equation [19]. The first is to equate 
the coefficients of the right and left sides of the equation. This method works only 
for low-order systems, and when the model order is changed, the equation has to 
be rearranged and solved again. The second alternative, called the Sylvester matrix 
method, is to use a matrix calculation, which is computationally inefficient and not 
suitable for online implementation. The Euclidean method, a polynomial method 
based on the extended Euclidean algorithm, is a good selection in this application 
as it is the most efficient method to solve the equation. This method works for a 
wide range of model orders since it exploits the structure of the problem [19]. The 
Diophantine equation is solved using the extended Euclidean algorithm through 
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two steps [23]. The first step is to find four polynomials X, Y, U, and V that satisfy 
the following equations:

+ =AX BY G  (2.16)

+ = 0AU BV  (2.17)

where G is the greatest common divisor of A and B. If A and B were relatively prime, 
G equals one. The generalized Euclid’s algorithm is used to find polynomials X, Y, 
U, and V, as detailed in reference [21]. With the solutions of Eq. 2.20 and 2.21, the 
method proceeds to step two to find the minimum-degree solution for Eq. 2.12. The 
particular solution is given by Eqs. 2.17 and 2.18:

=0 C divR XA G  (2.18)

=0 C divS YA G  (2.19)

where div is the polynomial division operator.

The general solution is given by Eqs. 2.19 and 2.20:

= +0R R QU  (2.20)

= +0S S QV  (2.21)

where Q is an arbitrary polynomial. It has been proved that there exists a unique 
solution to Eq. 2.9 such that <deg degX B  or <deg degY A. This solution with 

<deg degY A  is obtained from Eq. 2.20 by choosing =- 0Q S divV . Thus, the solu-
tions to the Diophantine Eq. 2.12 are given by Eqs. 2.22–2.24:

=- 0 divQ S V  (2.22)

= +0R R QU  (2.23)

= 0 modS S V  (2.24)

The above procedure is theoretically suitable for all model orders. In industrial 
implementation, however, the model order is always limited to reduce computation 
resource requirements, and the process dynamics of injection molding are unlikely 
to be too high.

2.3.4■ Injection Velocity Adaptive Control Result

The adaptive controller described previously is applied to the injection velocity 
control again on the 88-ton molding machine with a hydraulic power system 



4 Two-Dimensional 
Control Algorithms

■■ 4.1■ Two-Dimensional Control Background

Injection molding is a typical batch process; it has its own characteristics in com-
parison to a continuous process. The obvious differences between a continuous 
process and a batch process like injection molding are (1) a batch process has a finite 
duration, (2) a batch process repeats itself until the specified amount of product 
has been made, and (3) a batch process is processed by an ordered set of activities. 
These characteristics make the control schemes proposed for a continuous process 
ill-suited for injection molding. Modifications of the original control algorithms 
have to be made to cope with these features. To summarize the difference between 
injection molding and a traditional continuous process, the distinctive nature of an 
injection molding process has three aspects:

1. Repetitive nature: the injection molding process repeats itself batch to batch to 
produce the same products;

2. Two-dimensional (2D) dynamic nature: there are within-batch and batch-to-batch 
dynamics in injection molding simultaneously; and

3. Multiphase nature: an injection molding process consists of more than one phase.

In this chapter, these aspects are studied extensively to introduce a new group of 
control algorithms developed specifically for batch processes like injection molding, 
that is, the 2D control algorithms.

Consider a digital injection molding controller in which for each cycle the control 
samples form a time series: if these different cycles’ (with cycle duration T and 
cycle number K) information is aligned as shown in Fig. 4.1, a two-dimensional 
system can be formed. Although cycle-wise dynamics do exist, for example, during 
the warm-up stages when the machine is slowly reaching steady operation, these 
different cycles’ time series still lack a cycle direction causality due to the indepen-
dent operation of each cycle.
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t t T

k

k

K

Figure 4.1■ Alignment of different cycles’ information

Consider an injection molding process controlled by ILC. Any cycle’s system output 
depends not only on the control action and output of the current cycle, but also the 
information from the last cycle. The cycle-wise dynamic is naturally introduced, 
and the 2D system becomes a causal system, as schematically shown in Fig. 4.2.

t t T

k

k

K

Figure 4.2■ Schematic of 2D causal system

The traditional 2D system and its analysis are designed for time-independent series, 
such as image processing. For this kind of 2D system, at current point ( ),P k t , all 
of the information about points ( ) < È <, , P i j i k j t , is known. The 2D system con-
structed with the ILC-controlled injection molding process is time dependent: only 
information about previous cycles or the current cycle’s previous sampling periods 



1114 .1 Two-Dimensional Control Background

is known. Hence, the causality, controller design, and analysis of this time-dependent 
2D system are totally different from those of the traditional one. To clearly show 
this difference, Fig. 4.3 plots the information-acquisition sequence of these systems, 
where Fig. 4.3(a) is the traditional 2D system and Fig. 4.3(b) is the 2D system of an 
injection molding process.

In this chapter, a 2D generalized, predictive, iterative learning control (2D-GPILC) 
based on a 1D model is introduced first, followed by a 2D dynamic matrix control 
(2D-DMC) also based on a 1D model. The system identification of the 2D model is 
applied, followed by a 2D generalized predictive control (2D-GPC) based on the 2D 
model.

(a) 
t t T

k

k

K

: Current Point              : Unknown point           : Known point

(b) 
t t T

k

k

K

: Current Point              : Unknown point           : Known point

Figure 4.3■ Comparison of information-acquisition sequence:  
(a) traditional 2D system, and  
(b) 2D system of an injection molding process controlled by ILC
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■■ 4.2■ Two-Dimensional Generalized Predictive 
Iterative Learning Control

4.2.1■ 2D-GPILC Control Algorithm

The control algorithm is introduced briefly here. The detailed derivation and analysis 
were given in references [64–67].

A SISO batch process can be described by the following controlled autoregressive 
integrated moving-average (CARIMA) model:

( ) ( ) ( ) ( )( ) ( )- -S = D +1 1:     P t k t t k kA q y t B q u t w t  (4.1)

= = 0,1, , ; 1, 2,t T k

where t and k represent the discrete-time and cycle/batch index, respectively; T is 
the time duration of each cycle; ( )ku t , ( )ky t , and ( )kw t  are the input, output, and 
disturbance of the process at time t in the kth cycle, respectively; -1

tq  indicates 
the time-wise unit backward-shift operator; ( )-1

tA q  and ( )-1
tB q  are both operator 

polynomials:

( )- - - -= + + + +

1 1 2
1 21 n

t t t n tA q a q a q a q  (4.2)

( )- - - -= + + +

1 1 2
1 2

m
t t t m tB q b q b q b q  (4.3)

and Dt  represents the time-wise backward difference operator, or 

( )( ) ( ) ( )D = - -, , 1,t f t k f t k f t k .

For the above repetitive process, introduce an ILC law with the form

( ) ( ) ( ) ( ) ( )- -S = + - - - +ILC 1 1:     1 1k k k k ku t u t u t u t r t  (4.4)

( )= =- 0 0, 1, 0,1, ,u t t T

where ( )kr t  is referred to as the updating law, to be determined online based on the 
MPC philosophy, and ( )0u t  is the initial profile of iteration. Letting -1

kq  represent 
the cycle-wise unit backward-shift operator, ( )ku t  and ( )kr t  have the following 
relationship:

( )
( ) ( )

( )
- -

= × ×
- -1 1

1 1
1 1

k k
k t

u t r t
q q

 (4.5)

which is a 2D system with 2D integral transformation.
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Control law Eq. 4.4 can be expressed equivalently as

( )( ) ( )( ) ( )-D =D +1t k t k ku t u t r t  (4.6)

or

( )( ) ( )( ) ( )D =D - +1k k k k ku t u t r t  (4.7)

where Dk  represents the cycle-wise backward difference operator, or 

( )( ) ( ) ( )D = - -, , , 1k f t k f t k f t k .

Substituting Eq. 4.7 into Eq. 4.1 leads to the following 2D system:

( ) ( ) ( ) ( ) ( ) ( ) ( )( )- - -
- -S = + +D1 1 1

2 1:     D P t k t k t k k kA q y t A q y t B q r t w t  (4.8)

Here ( )kr t , ( )ky t , and ( )( )Dk kw t  represent the input, output, and disturbance of 
the system, respectively.

To ensure smooth operations along both the time and cycle directions, the following 
quadratic cost function is defined as the general control performance index over 
one cycle for the 2D system of Eq. 4.8:

( )

( )
( )( )
( )( )
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where the notations are

( ) ( ) ( ) ( )( )
{ }

1

2 1 1 21

                , , ,

t
k k k kt f t f t f t

f y u r e

= +

Î

f 

 (4.10)

and ( )1

1
|

ˆ t
k k t n t+

+f  indicates the prediction vector of the kth cycle over the time-wise 
prediction horizon based on the history information before time t of the kth cycle, and

( ) ( ) ( )1 1 1

1 1 1
| |ˆ ˆt t t

k k t n r t n k k t nt t+ + +
+ + += -e y y  (4.11)
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■■ 5.3■ Multivariate Statistical Analysis Methods 
for SPM

Principal component analysis (PCA) and partial least squares (PLS) are the most 
popular multivariate statistical approaches for process monitoring, which will be 
extensively studied and applied to an injection molding process.

5.3.1■ Principal Component Analysis and Partial Least Squares

Given a two-dimensional data matrix ´Î n mX R , where n is the number of samples 
and m is the number of process variables, PCA decomposes X as

=

= = = + + +å 1 1 2 2
1

m
T T T T T

j j m m
j

X TP t p t p t p t p  (5.1)

where ´Î 1n
j Rt  is the latent variable vector, also called the principal component (PC) 

vector or score vector; ´Î 1m
j Rp  is the loading vector that can project the original 

process data into the score space and contain the variables’ correlation information; 
T and P are the score matrix and loading matrix, respectively. In the decomposition, 
scores are made to be orthogonal to each other, which means = 0T

i jt t  when ¹i j . At 
the same time, the loading vectors are orthogonal to each other, satisfying = 0T

i jp p  
when ¹i j  and =1T

i jp p  when =i j . Therefore,

=j jXt p  (5.2)

=T XP  (5.3)

Algebraically,  jt  is equal to the jth largest eigenvalue lj of the covariance 

matrix S=
-
1

1
TX X

n
, and jp  is the corresponding eigenvector. Note that 

> > >      1 2 mt t t  because of l l l> > >1 2 m . It is easy to understand 
that the first several PCs contain the most variance information of X, and the last few 
PCs may contain only noises. This indicates that the majority of variance information 
can be extracted by retaining the first few orthogonal PCs, and the dimension of 
original variables can be largely reduced accordingly.

By retaining only the first A PCs, X can be approximated by

=

= =å
1

ˆ
A

T T
j j

j
X TP t p  (5.4)

=T XP  (5.5)

=ˆ TX XPP  (5.6)
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where ´Î n AT R  is the score matrix in PC subspace, ´Î m AP R  is the corresponding 
loading matrix, and ´Îˆ n mX R  is the reconstruction of the original data matrix X. 
Equation 5.4 interprets the PCA model from the aspect of matrix decomposition, 
while Eq. 5.6 is from the aspect of data reconstruction. The loading matrix P  is the 
core, which can be considered as the parameter matrix of a PCA model.

Then,

= +ˆX X E  (5.7)

= +

= = å

1

m
T T

j j
j A

E TP t p  (5.8)

where ´Î n mE R  is the residual matrix, ´ -Î ( )n m AT R  is the score matrix in residual 
subspace, and ´ -Î ( )m m AP R  is the corresponding loading matrix. From Eqs. 5.4, 5.5, 
and 5.8, it is clear that the PC subspace spanned by P  and the residual subspace 
spanned by P  are orthogonal to each other.

Several algorithms, such as singular value decomposition (SVD) and nonlinear 
iterative partial least squares (NIPALS), can be used to calculate the loading matrix 
[91]. There are many methods to determine the number of retained PCs, among 
which the cross-validation method [92] is the most popular.

Different from PCA, PLS works on two data matrices, the process data matrix 
´Î xn mX R  and the product quality data matrix ´Î yn mY R , where n is the number 

of samples, mx is the number of process variables, and my is the number of quality 
variables. PLS extracts the variation of X and gives as much prediction to Y as pos-
sible at the same time.

The PLS model can be formulated as

=

= + = +å
1

A
T T

j j
j

X TP E Et p  (5.9)

=

= + = +å
1

A
T T

j j
j

Y UQ F Fu q  (5.10)

e= +j j jbu t  (5.11)

Equations 5.9 and 5.10 describe the inner projection structures in X and Y, where 
T  and P  are the score matrix and loading matrix decomposed from X; U  and Q  
are the score matrix and loading matrix decomposed from Y; and E and F are the 
residual matrices. Equation 5.11 describes the outer projection structure between 
X and Y, where = / ( )T T

j j j j jb t u t t  is the regression coefficient between the latent 
variable tj derived from X and the latent variable uj derived from Y.
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The PLS model given by Eqs. 5.9–5.11 can be written in a compact way as

= Q + *TY X F  (5.12)

where Q is the regression parameter matrix and *F  is the residual matrix.

The detailed properties, the calculation methods of PLS (e.g., NIPALS), and the 
methods to choose the number of latent variables (cross-validation, jackknife, and 
so on) can be found in the references [93–95]. In addition, Dayal and MacGregor 
[96] have developed another algorithm called Kernel PLS to compute the model 
parameters.

5.3.2■ PCA/PLS-Based Statistical Process Monitoring

After PCA modeling, the loading matrix P  is obtained based on the histori-
cal process data. When online process monitoring is conducted, a new sample 

= ,1 ,[ , , ]new new new mx xx  is measured and projected onto the score subspace using 
the loading matrix P  to get its score vector tnew and the residual vector enew by

=new new Pt x  (5.13)

= =ˆ T T
new new newP PPx t x  (5.14)

= - = × -ˆ ( )T
new new new new PPe x x x I  (5.15)

where I is an ´m m  identity matrix.

For process monitoring, two multivariate statistics are calculated: the Hotelling T2 
statistic and the SPE (or Q) statistic.

The Hotelling T2 summarizes the systematic variation information extracted in 
score variables:

l
-

=

= =å
2

,2 1

1

A
new iT

new new
i i

t
T St t  (5.16)

where = ,1 ,[ , , ]new new new At tt , tnew,a (a = 1,…,A) is the ath score variable, 
l l= 1( , , )AS diag , la is the ath largest eigenvalue of the covariance matrix 

S=
-
1

1
TX X

n
, and X is the normal history data used in PCA modeling.

Taking the assumption that scores of normal process data obey a multivariate normal 
distribution, the control limits of T2 can be calculated using F distribution:

a-
-

-
2

, ,
( 1)~ A n A

A nT F
n A

 (5.17)
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where a is the significance level, and FA,n–A,a is the critical value of F distribution 
with significance level of a and degrees of freedom of A and n–A, whose value can 
be found in a statistical table.

The SPE statistic measures the projection of a sample vector onto the residual 
subspace:

=

= = -å 2
, ,

1

ˆSPE ( )
m

T
new new new j new j

j
x xe e  (5.18)

where ,new jx  is the jth element in newx , and ,n̂ew jx  is the corresponding reconstructed 
value using the developed PCA model. The SPE statistic measures variability that 
breaks the normal process correlation, which often indicates an abnormal situation.

With the assumption that residuals are normally distributed when the process is 
fault free, the control limits of SPE can be derived as [91]:

a
a

q q
q

q q

æ ö÷ç - ÷ç ÷= + +ç ÷ç ÷ç ÷÷çè ø

0

1
2

2 0 2 0 0
1 2

1 1

2 ( 1)
SPE 1

hC h h h
 (5.19)

where q l
= +

= =å
1

( 1,2,3)
m

i
i j

j A
i , 

q q

q
= - 1 3

0 2
2

2
1

3
h , and aC  is the critical value of the 

normal distribution under the significance level of a.

The Hotelling T2 statistic measures the distance between newt  and the origin of 
historical normal scores in T . If a sample exceeds the T2 limit, it does not break 
the correlation structure but shifts away from the normal PC subspace. In process 
monitoring, the values of these two statistics are plotted in the Hotelling T2 and 
SPE control charts and compared with the corresponding control limits. If any of 
them exceeds the control limits, the process is considered to be out of control, and 
a fault is alarmed.

Like PCA, the above T2 and SPE statistics are also commonly applied for PLS-based 
process monitoring. But, more often, PLS is used for online quality prediction, which 
will be introduced in Chapter 7.

After a fault has been detected by the T2 or SPE control chart, it is desirable to find 
out the cause of the fault. A contribution plot [97] is widely applied, which shows the 
contribution of each process variable to the detected fault using a bar chart. Variables 
with large contributions need to be investigated since they are affected by the fault 
significantly. It should be noted that a contribution plot cannot diagnose the fault 
cause definitely. Process knowledge is always required to assist the contribution 
plot for fault identification.
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The contribution of xnew,j to the ath PC score tnew,a can be derived as [98],

=
, ,

, ,
,

,new a new j

new j a j
t x

new a

x pC t  (5.20)

where pa,j is the ath element in the jth column in the loading matrix P. The confidence 
limits for contribution plots can be used to identify a set of faulty variables [99].

For SPE, the contribution of xnew,j is given as

-
= - ×

,

2
, ,

, , ,

ˆ( )
ˆ( )

SPEnew j

new j new j
SPE x new j new j

x x
C sign x x  (5.21)

5.3.3■ Multiway PCA/PLS

PCA and PLS can only deal with two-dimensional data matrices. For an injection 
molding process that is a typical batch process, process data are usually represented 
by a three-dimensional data matrix ´ ´Î I K JX R , where I is the number of normal 
batches, J is the number of process variables, and K is the number of total sampling 
intervals in a batch. To apply multivariate statistical methods like PCA or PLS for 
process monitoring, a three-dimensional data matrix should be transformed into 
a two-dimensional data matrix. Figure 5.5 shows two meaningful ways of matrix 
unfolding.
Figure 5.5(a) is called batch-wise unfolding. It keeps the dimension of batches, and 
merges variable and time dimensions, where kX  is the time-slice data matrix of 
the kth sampling time. Each row of the unfolded two-dimensional matrix ´Î I JKX R  
contains all data within a batch. Different from batch-wise unfolding, variable-wise 
unfolding, as shown in Fig. 5.5(b), keeps the dimension of variables and merges the 
other two dimensions, generating a two-dimensional matrix ´Î KI JX R . Each sam-
pling point of each batch is considered as an object. Batch-wise unfolding is more 
popular than variable-wise unfolding because batch variation is the main concern 
in batch process monitoring.
Based on batch-wise unfolding, multiway PCA (MPCA) and multiway PLS (MPLS) 
were proposed [100, 102]. The basic idea of MPCA is to perform PCA on the unfolded 
data matrix ´Î I JKX R , supposing X has been normalized, while MPLS does a 
regression between the unfolded process data matrix ´Î xI J KX R  and quality data 
matrix ´Î yI JY R , where Jx is the number of process variables and Jy is the number 
of quality variables.
MPCA is essentially similar to PCA. The only difference lies in that MPCA is able 
to deal with three-dimensional process data, which makes PCA available for batch 
process monitoring. The main principle of MPCA can be expressed as the following 
three steps, which are shown in Fig. 5.6:
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Figure 5.5■ Three-dimensional matrix unfolding:  
(a) batch-wise unfolding; (b) variable-wise unfolding

1. Unfold the three-dimensional data matrix X  into two-dimensional data matrix X 
using batch-wise unfolding.

2. Calculate the score vector ´Î 1I
a Rt  and corresponding loading vector ´Î 1JK

a Rp  
(a = 1,…, A; A is the number of retained PC).

3. Transfer the one-dimensional loading vector pa into a two-dimensional matrix, 
´Î J K

aP R .

The MPCA model is defined as
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= Ä + = Ä + = +
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■■ 9.3■ Neural Network Model 
of Average-flow-length

It is not economical and practical for all molds to be fitted with a capacitive trans-
ducer as developed in the preceding section. This section discusses the model of 
the average-flow-length for injection velocity profiling. A first-principles model for 
the filling process has been under active research over the last three decades. It has 
been developed from simple one-dimensional models [181–197] to two-dimensional 
models [198–206] and more complete and complicated three-dimensional models 
[207–210]. The complexity of those first-principles models precludes any analytical 
solution. Numerical methods such as finite element methods have to be employed in 
solving those models. In those models, mold geometry has to be carefully modeled. 
This type of first-principles model is ill-suited for online prediction of melt flow 
behaviors. In modeling nonlinear and complex processes, a neural network approach 
has become a popular tool due to its fast computing and learning-by-example features. 
To profile the injection velocity, a soft-sensor scheme using neural networks was 
introduced to correlate the melt-front area (or average-flow-length) during filling 
with other measurable variables. With the developed capacitive transducer, a soft 
sensor based on the actual experimental data can be built.

9.3.1■ Inputs and Output of the Neural Network Model

Different from the model based on simulation data as described in Eq. 9.5, nozzle 
pressure was used to replace the gate pressure as one input for the relatively con-
venient instrumentation at the nozzle. Furthermore, nozzle temperature, which was 
ignored in the simulation, was also included as an additional input; it could affect 
the melt viscosity and consequently the melt flow. Those changes resulted in the 
following relation for modeling the average-flow-length:

( )-= D D D D1, , , , , , , ,n n n n n n n nafl f afl NP NP SD SD IV IV NT NT  (9.6)

where subscript n represents the nth sampling instant during filling, and symbol D 
stands for the variable increment during the past sampling instant. In the equation, 
NPn is the nozzle pressure representing the driving force for mold filling; DNPn 
represents the additional force required for the average-flow-length increment; SDn 
is the screw displacement, which represents the total amount of melt in the mold; 
DSDn denotes the amount of melt entering the mold during the last time increment; 
IVn is the screw injection velocity, which will directly affect the melt-front velocity 
and consequently influence the average-flow-length; DIVn is the injection velocity 
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increment; and NTn and DNTn are nozzle temperature and its increment, respec-
tively. Injection time is not a separate input as it can be inferred from the screw 
displacement and injection velocity. Treated as a black box input-output relation, 
this model was represented by a neural network.

The neural network model has nine inputs, as listed in the right side of Eq. 9.6, and 
its output is the average-flow-length of the current sample. To derive a more general 
model and also to facilitate the neural network learning, all of the input and output 
variables have been normalized to be in a range of 0–1. The neural network output 
becomes the normalized average-flow-length, which represents the relative flow 
length in percentage. Similar is the screw displacement input, SDn. Divided by the 
injection stroke required for the mold filling, it is also normalized in a percentage 
form. The other inputs, such as the nozzle pressure, nozzle temperature, and injec-
tion velocity, are divided by their maximums provided by the injection molding 
machine during filling. After normalization, all of the input and output variables 
become dimensionless.

9.3.2■ Architecture of the Neural Network Model

Architecturally, neural networks can be categorized into two types [211]: feed-for-
ward and recurrent.

The feed-forward neural network, shown in Fig. 9.7(a), is widely used, typically 
consisting of three types of layers: input layer, hidden layer, and output layer. The 
neurons in each layer of a feed-forward network have only the output signals of the 
preceding layer as their inputs. The nodes in the input layer supply the input signals 
to the nodes in the second layer (the hidden layer). The outputs of the second layer 
act as inputs to the third layer (the output layer).

Figure 9.7■ Neural network architectures
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A recurrent neural network, on the other hand, distinguishes itself from a feed-for-
ward network in that it has at least one feedback loop. For example, a recurrent 
neural network consists of a layer of neurons, some of which feed their outputs back 
as the inputs to neurons in the previous layer, as illustrated in Fig. 9.7(b). Owing to 
its particularly recurrent structure, the recurrent network can store information for 
future reference and thus is able to learn temporal as well as spatial patterns. This 
makes it useful in signal processing and prediction, where time plays a dominant role.

In Eq. 9.6, the average-flow-length of the nth sample, afln, depends on not only the 
information of the same sample, but also the last measurement -1( )nafl . The recurrent 
neural network, depicted in Fig. 9.8, is a suitable structure to model such a dynamic 
relation. Training of such a recurrent neural network, however, is difficult, as most 
existing training algorithms are derivative-based. For a feed-forward network, it 
is easy to obtain the error derivative with respect to each weight, but for a recur-
rent network, the training becomes complicated due to the interaction among the 
parameters of different times; as a result, the training tends to be trapped at local 
minimums. A feed-forward neural network structure is, therefore, recommended for 
the training of recurrent networks in many cases [212–216]. A feed-forward neural 
network shown in Fig. 9.9, consisting of two hidden layers with 15 neurons in the 
first layer and 20 in the second, is used in the training stage. It has been shown 
that a two-hidden-layer neural network can approximate any continuous nonlinear 
relations [213]. The number of neurons used is obtained based on a combination of 
experience and trial-and-error tests.

Recurrent
NN
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n–1

afln

n
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n

n

n

n

n
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NT
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Figure 9.8■ Structure of recurrent neural network model



3059 .3 Neural Network Model of Average-flow-length

Feedforward
NN

afln–1

afln

SDn

IVn

NPn

NTn

∆NPn

∆SDn

∆IVn

∆NTn

Figure 9.9■ Structure of feed-forward neural network model

9.3.3■ Training Algorithm

During the training stage, the weights and biases of the network were iteratively 
adjusted to minimize a defined network objective function, typically the mean 
squared error (MSE): the average squared error between the network outputs and 
the target outputs. A prescribed set of well-defined rules for the solution of the 
training problem is called a training algorithm. As one can expect, there are many 
algorithms that can be used for the network training, differing from each other in the 
way in which the weights are adjusted. The Levenberg-Marquardt (LM) algorithm, 
a training algorithm well known for its fast convergence speed and small residual 
training error [215–218], was employed in this work. The updating rule of the LM 
algorithm is represented as

( )m
-

D = +
1T TW J J I J e  (9.7)

where DW is the weight increment, J the Jacobian matrix of derivatives of each 
error with respect to each weight, I the identity matrix, m a scalar, and e the cal-
culated MSE. When m is zero, the LM becomes a Gauss-Newton method using an 
approximate Hessian matrix; when m is large, the LM becomes the gradient descent 
method with a small step size. As the Gauss-Newton method is faster and more 
accurate in approaching the error minimum, m is adjusted in such a way to shift 
the LM toward the Gauss-Newton method as quickly as possible. The value of m is 
decreased after each successful step (reduction in MSE) and is increased only when 
a tentative step increases the error. In this way, it ensures a rapid reduction of the 
objective function. This method has a faster converging rate and a smaller residual 
training error compared with the commonly used back-propagation (BP) algorithm 
in network training [217].
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9.3.4■ Data Collection of Training and Validation Samples

The training and validation data were collected from experiments conducted on the 
reciprocating-screw injection molding machines using mold inserts with the capaci-
tive transducer. The material used in the experiments was high-density polyethylene 
(HDPE) (Marlex, HMN6060).

Two sets of mold inserts were designed for the experiments. The first set, containing 
nine different inserts, are shown in Fig. 9.10. This set of inserts covers the basic mold 
shapes that the melt flow typically encounters, including constant area, gradually 
increasing/decreasing area, and abruptly increasing/decreasing area. A complex 
mold may be considered as a combination of those basic shapes. This set of mold 
inserts is referred to as Molds 1 to 9; they were used to generate the training data 
samples for the network.

Another set of molds with the same thickness but more complex geometry was also 
designed, as illustrated in Fig. 9.11, and referred to as Molds 10 and 11 for valida-
tion data generation. These molds combine several basic shapes of the first set. For 
example, the cross section of Mold 10 first decreases before it becomes a constant, 
similar to the shape of the first part of Mold 3; the middle section of Mold 10 is 
similar to Mold 9 before it is restored to the shape of the last part of Mold 3. Similarly, 
Mold 11 is geometrically similar to the combination of Molds 6 and 8. The design 
objective of this second set of molds is to demonstrate that the neural network model 
trained with data from the first simple set of molds can be used to predict the flow 
behavior for complex molds like Molds 10 and 11.

The injection velocity range for the machine was limited, due to its limited hydraulic 
power. Eleven different injection velocity profiles were designed to cover as wide 
as possible molding conditions for each mold, as illustrated in Fig. 9.12. They could 
be classified into three types: constant, step-change, and ramp profiles. There were 
five constant profiles, in which the injection velocity was set at 10 mm/s, 15 mm/s, 
20 mm/s, 25 mm/s, and 30 mm/s, respectively. The step-change group consisted of 
two step-up and two step-down profiles, including 10 to 30 mm/s, 15 to 25 mm/s, 
25 to 15 mm/s, and 30 to 10 mm/s. The step change was introduced at different 
times for different velocities and molds, but all around the time when the mold was 
half filled. For two ramp profiles, 10 to 30 mm/s ramp-up and 30 to 10 mm/s ramp-
down, the ramp started at the point when the melt just entered the mold cavity; 
prior to that, the velocity was set at a constant rate for filling of sprue and runner. 
During filling, the sampling rate was set at 5 ms, which could guarantee that more 
than 150 samples could be collected, even for the fastest filling case. To avoid the 
local-minimum problem, different initial values were given in the network training; 
the results with the small errors were employed for prediction.
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9.3.5■ Model Performance

Different from the training stage, the recurrent neural network model structure 
should be used for the soft-sensor prediction because the preceding average-flow-
length is not available. This results in an output error different from that of the 
training, even for the training samples. Because of this, small training errors may 
not necessarily guarantee a good approximation. Errors for both the training and 
validation samples are given in the following.

Figure 9.13 compares the predicted average-flow-length and the actual measurement 
of the capacitive transducer for Molds 1 to 9 with constant 20 mm/s injection velocity. 
With different mold geometry, the curve shapes of the average-flow-length are also 
different; they can be well predicted with a small error for all nine training molds.

The average-flow-length curve is influenced by not only the mold geometry, but also 
the injection velocity profile. Figure 9.14 presents the results with a step-change 
profile, in which the injection velocity changes from 30 mm/s to 10 mm/s during 
filling. Though the shapes are very different from those in Fig. 9.13, good agreement 
between network predictions and actual data can be obtained. This suggests that the 
neural network model has been well trained to predict the velocity change.

Experimental data from Molds 10 and 11 with 11 different injection velocity profiles 
are shown in Figs. 9.15 and 9.16, respectively. Although a slightly larger discrep-
ancy exists between the predicted results and the CT measurements in comparison 
with those of the training samples, we still can see that the network outputs are in 
agreement with the true measurements in nearly all cases. The results of Mold 11 
are better than those of Mold 10, possibly because Mold 11 is geometrically more 
similar to the training molds. If we define a geometry set to include the basic geome-
try elements appearing in the molds, we can see that both Mold 10 and Mold 11 are 
composed of seven geometry elements along the melt flow path. All seven geometry 
elements of Mold 11 have appeared in the training molds. Mold 10, however, is dif-
ferent from the training geometry set in the early converging and the last diverging 
sections. Though similar geometry elements are also present in Mold 3, the converge 
and diverge rates of the cross section in Mold 10 are larger. This suggests that the 
performance of the developed neural network model can be improved for prediction 
of the average-flow-length if the geometry set for training can be further enriched.
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Figure 9.13■Results of different molds under a constant 20 mm/s profile  
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in Eq. 10.13, represents the ratio of relative volume change over relative pressure 
change. It relates to the material compression capability. Wide ranges are selected 
for these two coefficients to allow wide application conditions. In the tests, ea is set 
as 30% and eb 20%.

A simplified flowchart of the online detection system is illustrated in Fig. 10.3. 
Different detection algorithms and paths are taken for the different packing cases. 
The system first determines if the packing pressure is constant. This can be prior 
known information, or it can be determined by the detection system by comparing the 
pressure measurements. Packing ceases when the corresponding conditions are met.

10.1.3■ Tests of Constant Packing Pressure Cases

Most existing machines have the packing pressure set at a constant during pack-
ing-holding. The detection of the gate freezing-off point with a constant packing 
profile is first conducted. A box mold with a spider gate as shown in Fig. 10.4 is used 
for the tests. The tests are conducted with different materials, including high-den-
sity polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), 
and polystyrene (PS). In the following, unless otherwise specified, the results are 
obtained with the box mold, HDPE, and a 200°C nozzle heater temperature setting. 
In all experiments, the screw rotation speed during plastication is set at 80 RPM, the 
injection velocity 30 mm/s, and the sampling period of packing 15 ms. The end of 
packing is determined online by the detection system, and the results are compared 
with the established offline measurements.

Figure 10.4■ Geometry of box mold
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Gate Freezing Detection for a Constant Packing Pressure
The first test is conducted with a closed-loop packing-holding control at a 300 bar 
constant pressure. The threshold representing SMALL in Rule 3 is set at 10%. The 
gate freezing-off point is detected to be 10.7 s by the autodetection system, according 
to Rule 3. The screw displacement is shown in Fig. 10.5, in which both the raw and 
filtered data are illustrated. A small delay is introduced by the filter, but it does not 
affect the detection result significantly. In addition, to avoid the possible pressure 
variation around the V/P transfer, data for the first half-second of packing are not 
used in the detection. As previously analyzed, the figure indicates that the screw 
displacement levels off just before packing ends. The corresponding normalized 
standard deviation, defined in Eq. 10.17, is illustrated in Fig. 10.6, in which the 
values larger than one are truncated for better illustration. As suggested by the 
proposed Rule 3, a rapid decrease of the defined standard deviation can be observed 
just before the packing stops.

To evaluate the developed detection system, a number of moldings are made with the 
same pressure setting but different packing times. Their part weights are measured 
and compared with that of the autodetection system, as listed in Table 10.1. It can 
be seen that the part weight increases with the packing time, and the increase in 
packing time from 10 s to 14 s is small. The part weight of the autodetection system 
is 47.78 g, the same as that packed for 14 s. This suggests that the gate has already 
frozen when packing beyond the time suggested by the online detection system. On 
the other hand, a significant weight difference between that of the autodetection and 
those packed under 10 s indicates that gate has not frozen before 10 s of packing.

In the detection system, a threshold representing SMALL for the normalized standard 
deviation used in Rule 3 was set at 10%. Experiments have also been conducted to test 
the sensitivity of the detection system with different thresholds. The results show 
that the system is not very sensitive to the threshold, as the part weight variation is 
small. The best threshold can be determined by finding the minimal packing time 
but with a maximum weight. This system has also been successfully tested with 
different packing pressures and different molds. Detailed results can also be found 
in reference [226].

Table 10.1■ Part Weight Comparison of 300 bar Constant Packing Pressure

Results with fixed packing time Results of detection system
Packing time (s) 3 6 9 10 14 10.7

Part weight (g) 45.85 46.90 47.60 47.72 47.78 47.78
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Figure 10.6■ Plot of normalized standard deviation

Online Detection Results during Warm-Up Period
In practice, the machine takes a number of cycles to reach the steady state after it 
starts. This is referred to as the warm-up period. Typically, the part weight varies 
during this period if it is packed with a fixed length. The gate freezing time during 
this transient period may vary cycle to cycle. The autodetection system can compen-
sate for the warm-up by automatically varying the packing time to keep a relatively 
constant part weight.

Experiments are conducted for a series of cycles immediately after the machine 
starts. The autodetected gate freezing-off times, together with the corresponding 
part weights, are shown in Fig. 10.7.
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Figure 10.7■ Variations of packing time and part weights cycle to cycle

As the mold coolant temperature is controlled by a cooling system, the cycle vari-
ations are not large. At the very beginning of the molding, an increasing trend for 
packing time and a decreasing trend for part weight can be observed. The increase 
in the gate freezing-off time is due to fact that the gate becomes warmer from cycle 
to cycle, which in turn slows down the gate freezing; the decrease in the part weight 
is a result of the increasing mold temperature, which consequently reduces the part 
shrinkage. After several cycles, the part weight obviously becomes steady, with a 
variation less than 0.1%.

The packing times and part weights of the last 10 cycles of Fig. 10.7 are listed in 
Table 10.2. The detected packing time varies from 10.4 s to 11.1 s, but the part 
weights are very close, with a maximum relative variation less than 0.084%, indi-
cating good performance of the developed system.

Table 10.2■ Online Detection Results of Different Cycles

Cycle number Detected packing time (s) Part weights (g)
30 10.6 47.79

31 10.7 47.80

32 10.4 47.80

33 10.7 47.78

34 10.4 47.76

35 10.9 47.77

36 10.9 47.78

37 10.8 47.78

38 11.1 47.77

39 10.9 47.78
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