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Foreword to the
English Edition

It was with great enthusiasm that I agreed to compose this foreword for the second
edition of Polymer Processing: Principles and Modeling (P°M-2). In 1994, when I
arrived at the Mechanical Engineering Department of the University of Wisconsin
- Madison, it was Professor Tim Osswald who introduced me to teaching from the
first edition of this book (P°M-1). I then taught the introductory course on polymer
processing from P*M-1, twice a year, for years to come. My senior elective course
classroom was well populated by students from the departments of Mechanical Engi-
neering, Chemical Engineering, and Materials Science and Engineering. P*M-1 was
a student favourite for its readability and its expert use of terms with plain meaning,
wherever possible. [ used this first edition until, disappointingly, it went out of print.

P*M-2 expands on P*M-1 from 6 chapters to 10, and P*M-2 is reorganized, now
opting to cover rheology in one consolidated second chapter rather than postpon-
ing viscoelasticity until Chapter 6. This expansion and reorganization are clever
improvements. [ am pleased to report that Chapter 2 retains a clear explanation of
the Jaumann derivative, making Chapter 2 a gem. I see that the writing style still
employs terms with plain meaning, wherever possible. Undergraduate students, the
hardest to please, will enjoy this book.

Each chapter is designed pedagogically to sets students free to solve a broad class of
relevant problems, as it should. For instance, Chapter 7 on injection molding equips
students to solve time-unsteady processing problems, Chapter 5 on single-screw
extrusion enables students to attack problems with non-obvious coordinates
systems, and Chapter 8 on calendering teaches students how an apparently com-
plicated process geometry, cleverly chosen, may yield process working equations
of remarkable simplicity. In Chapter 6 on twin-screw extrusion, new to P°M-2, we
enjoy Vergnes’ special touch, the foremost authority on extrusion, and Chapter 8
on calendering, bears Agassant’s signature, who for decades has been the foremost
authority on this process. P> M-2 is a translation from the recent French fourth edition
[Mise en forme des polymeéres (2014)] and, as was the case for P°M-1, P°M-2 has
the readability of English first language authorship.



XXVIII Foreword to the English Edition

Our world’s polymer processing industry continues to grow steadily, to employ and
to govern our prosperity and quality of life. Creative polymer chemists and product
designers continue to challenge plastics engineers with novel combinations of
material and shape. Our need to arrive at solutions to the ensuing manufacturing
problems, in a hurry, confidently, and inexpensively, more than ever, requires our
plastics engineering community to be well versed in the fundamentals of plastics
processing. P°M-2 addresses this need expertly by empowering plastics engineers
to create knowledge about plastics processing, and thus, to fill knowledge gaps, as
they arise, in our quickly evolving world of plastics manufacturing.

A. Jeffrey Giacomin, PhD, PEng, PE

Tier 1 Canada Research Chair in Rheology
Queen’s University at Kingston, Canada



Preface to the Third
French Edition

The viscoelastic properties of long chain molecules are quite extraordinary. Even
in a highly diluted solution (100 parts per million), polyethylene oxide drastically
reduces the turbulent losses of water. It also allows tubeless siphons to function, as
discovered by James in Toronto, which are fascinating objects. The same for molten
polymers: in very slow flows, they behave like liquids. In more rapid motions, they
behave like rubber and, in flow near walls, they exhibit astonishing slip properties
that we are beginning to examine at College de France using rather sophisticated
optical techniques. All that I briefly described here has major practical implications,
in particular for the processing of plastic materials. In injection molding, extrusion,
or more sophisticated processes, consistently one has to force the liquid polymer
to rapidly adopt preset shapes—which it does not like. Hence the many defects in
the final product, such as sharkskin, which is a disaster for the manufacturer of
extruded products. Plastics engineering is, therefore, a difficult art, and the authors
describe here the basic notions based on extensive experiences, working directly with
many manufacturers. Their approach is based mainly on principles of mechanics,
but they have incorporated in their first chapters (and a few other places) a useful
introduction to the physical underlying phenomena. Of course, this introduction is
no substitute for basic textbooks such as that of John Ferry on viscoelasticity, or
that of S. Edwards and M. Doi on the behavior of entangled chains. The first edition
of this book has already been proven to be quite useful: chemical engineering com-
munities in France and Canada have heavily relied on it. This new version, which is
significantly expanded, should be of great service; I wish it great success.

P.G. de Gennes, Nobel Prize in Physics 1991
December 1995

Translated by P.J. Carreau
August 2016
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Continuum Mechanics:
Review of Principles

B 1.1 Strain and Rate-of-Strain Tensor

1.1.1 Strain Tensor

1.1.1.1 Phenomenological Definitions

Phenomenological definitions of strain are first presented in the following examples.

1.1.1.1.1 Extension (or Compression)

In extension, a volume element of length [ is elongated by Al in the x direction, as
illustrated by Figure 1.1. The strain can be defined, from a phenomenological point
of view, as € = Al/L.

Ulx) u(
_>

v

[e)
=

Figure 1.1 Strain in extension

For a homogeneous deformation of the volume element, the displacement U on the
X du Al du

x-axisis U(x) = AIT ,and o = e Hence another definition of the strainis € = e

X X



2 1 Continuum Mechanics: Review of Principles

1.1.1.1.2 Pure Shear

A volume element of square section h x h in the x-y plane is sheared by a value a
in the x-direction, as shown in Figure 1.2. Intuitively, the strain may be defined as
y = a/h. For a homogeneous deformation of the volume element, the displacement
(U, V) of point M(x, y) is

Ly
U)=a 3V =0 (1.1)

dU
Hence, another possible definition of the strain is y = e

Yy
a
—>
7 -t
/ /
I} I}
/ /
I}
I} Ulx I
h , ) |
/ /
/ I}
I} /
’ ’
1 / X
| -
L

Figure 1.2 Strain in pure shear

1.1.1.2 Displacement Gradient

More generally, any strain in a continuous medium is defined through a field of the
displacement vector U(x, y, z) with coordinates

Ukx,y,2), VIx,y,2), Wy, 2)

The intuitive definitions of strain make use of the derivatives of U, V, and W with
respect to x, y, and z, that is, of their gradients. For a three-dimensional flow, the
material can be deformed in nine different ways: three in extension (or compression)
and six in shear. Therefore, it is natural to introduce the nine components of the

displacement gradient tensor VU:

v v au]
ox dy oz
vu=| &V VoV (1.2)
ox dy oz
aw aw aw
| dx dy oz |
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This notion of displacement gradient applied to the two previous deformations
presented in Section 1.1.1.1 leads to the following expressions:

= Extension deformation:

—8
VU=|0
10

= Shear deformation:

<

c

Il
o o o

o o O

S O =

o O O

o o o
=
w

(1.4)

If this notion is applied to a volume element that has rotated 6 degrees without
being deformed, as shown in Figure 1.3, the displacement vector can be written as

_|U(x,y) = x(cos® —1) — ysin®

. (1.5)
V(x,y) = xsinf + y(cosf — 1)
Yy 1 -\
- - \
_-- \
P ] \
c” \
M \
\\ 0 4 \\
‘\b/' l !
\ ®xy) A
\\ U ”’,
\ -
P I ;
Figure 1.3 Rigid rotation
For a very small value of 8: U(x,y)=—-y0 (1.6)
V(x,y)= x6
0 -6 0
hence vU=|6 0 O (1.7)
0 0

It is obvious from this result that VU cannot physically describe the strain of
the material since it is not equal to zero when the material is under rigid rotation
without being deformed.
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1.1.1.3 Deformation or Strain Tensor ¢
To obtain a tensor that physically represents the local deformation, we must make
the tensor VU symmetrical, as follows:

= Write the transposed tensor (symmetry with respect to the principal diagonal);
the transposed deformation tensor is

U 9V W]
o ox ox
(vuy =| UV IW (1.8)
dy dy oy
ou Jv oW
Loz 9z 9z

= Write the half sum of the two tensors, each transposed with respect to the other:

_1 t
s—E(VU+(VU) ) (1.9)
1(ou, au,
Y el At 1.10
or g 2(8xj+axij (1.10)

where U, stands for U, V, or Wand x; for x, y, or z.
Let us now reexamine the three previous cases:

= In extension (or compression):

e 00
e=(0 0 O (1.11)
0 00
The deformation tensor € is equal to the displacement gradient tensor VU.
= In pure shear:
1
0 =y O
? 14
1
€= Ey 0 0 (1.12)
0 0 O

The tensor € is symmetric, whereas VU is not. We see that pure shear is physically
imposed in a nonsymmetrical manner with respect to x and y; however, the strain
experienced by the material is symmetrical.
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= In rigid rotation:

0 0O
00 (1.13)
00

e=0
0
The definition of € is such that the deformation is nil in rigid rotation; it is physically
satisfactory, whereas the use of VU for the deformation is not correct.

As a general result, the tensor € is always symmetrical; that is, it contains only six
independent components:

= three in extension or compression: &,,, €, €,

= three in shear:¢,, = ¢

yo €

=&,,E,T€

2y ©2x Xz

yz

Important Remarks

(a) The definition of the tensor € used here is a simplified one. One can show rigor-
ously that the strain tensor in a material is mathematically described by the tensor
A (Salengon, 1988):

oU; U, oU, oU oU, oU,
A= kK= - 1.14
/ [ax ox; +§k: ox; ox; ] 2 0x, ax (L14)

1

This definition of the tensor € is valid only if the terms 0U; /0x; are small. So the
expressions for the tensor written above are usable only if €, y, 8, and so on are
small (typically less than 5%). This condition is not generally satisfied for the flow
of polymer melts. As will be shown, in those cases, we will use the rate-of-strain
tensor €.

(b) The deformation can also be described by following the homogeneous deforma-
tion of a continuum media with time. The Cauchy tensor is then used, defined by

ox;
C=F -F'with F, = 1.15
i aX (1.15)

where x; are the coordinates at time ¢ of a point initially at X,, and F'is the transpose
of F. The inverse tensor, called the Finger tensor, will be used in Chapter 2:

cl=F"-(F)" (1.16)

1.1.1.4 Volume Variation During Deformation

Only in extension or compression the strain may result in a variation of the volume.
If L, 1, [, are the dimensions along the three axes, the volume, 7/, 1is then

dq/ dar, dl, dl
X4+ LT +—Z=¢g +¢& +¢ 1.17
E7Z l l we = ( )

X y z

V=011 =
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1.1.2 Rate-of-Strain Tensor

For a velocity field u(x, y, z), the rate-of-strain tensor is defined as the limit:

t+dt

&= lim - (1.18)
dt—0 dt
where €7 is the deformation tensor between times ¢ and ¢ + dt. However, in this

t
time interval the displacement vector is dU = u dt. Hence,

var_ 1[04, aui
== —+—=|dt 1.19
v Z[an ox, (1.19)

where u; = (u, v, w) are the components of the velocity vector. The components of
the rate-of-strain tensor become

.1 aui_l_auj
&=y dx; 0x; (1.20)
As in the case of g, this tensor is symmetrical:
ou 1(ou ov) 1(ou ow)]
0x 2\dy ox) 2\odz ox
.1 ¢ 1({ou ov av 1(dv ow
=—\Vu+(Vu) )=| | —+— — —| —+— 1.21
e= 5 (Vu+(vuy) 2(8}/ axj oy 2(82 ay) (1.21)
ou w) 1ov ow)  aw
12\0z ox) 2\0z oy 0z

The diagonal terms are elongational rates; the other terms are shear rates. They are
often denoted & and y, respectively.

Remark: Equation (1.20) is the general expression for the components of the rate-
of-strain tensor, but its derivation from the expression (1.18) for the strain tensor
is correct only if the deformations and the displacements are infinitely small (as
in the case of a high-modulus elastic body). For a liquid material, it is not possible,
in general, to make use of expression (1.19). Indeed, a liquid experiences very
large deformations for which the tensor € has no physical meaning. Tensors A, C,
or C"! are used instead.
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1.1.3 Continuity Equation

1.1.3.1 Mass Balance

Let us consider a volume element of fluid dx dy dz (Figure 1.4). The fluid density

isp(x,y, z, b).
y
17 ooy
dy T
| / ,
u(x) ! w(z) _ | julxtdy)
| X
0. _Kr(y) _________ dx [
dz w(ztdz)
o)}
z VY
Figure 1.4 Mass balance on a cubic volume element
9
The variation of mass in the volume element with respect to time is a—/;dxdydz. This

variation is due to a balance of mass fluxes across the faces of the volume element:
= In the x direction: (p(x + dx)u(x + dx) — p(x)u(x))dydz

= In the y direction: (p(y +dy)v(y +dy)— p(y)V(y))dzdx

= In the z direction: (p(z +dz)w(z +dz)- p(Z)W(Z))dxdy

Hence, dividing by dx dy dz and taking the limits, we get

a_p+i(

0 0
ot T ox pu)+g(pv)+—(pw)—0 (1.22)

0z
which can be written through the definition of the divergence as

P v (pu)=0 (1.23)

ot

This is the continuity equation.

d 9
Remark: This equation can be written using the material derivative d—‘? = a—'? +u.Vp,

leading to Ccll—/t)+pV-u=0.
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1.1.3.2 Incompressible Materials

For incompressible materials, p is a constant, and the continuity equation reduces to

V-u=0 (1.24)
This result can be obtained from the expression for the volume variation in small
deformations:

dv

7=tre=exx+syy+ezz (1.25)

1dv ou dv ow
also: ——=tré=¢,+é,+ép=—+—+—=V-1u 1.26
v dt ExT ey TE==0 "y oz (1.26)
dv )
It follows that EzO:}trezO:}V-ﬂzO (1.27)

1.1.4 Problems

1.1.4.1 Analysis of Simple Shear Flow

Simple shear flow is representative of the rate of deformation experienced in many
practical situations. Homogeneous, simple planar shear flow is defined by the fol-
lowing velocity field:

(.U
U(Y)=W(V=F) ;v=0;w=0
where Ox is the direction of the velocity, Oxy is the shear plane, and planes parallel

to Oxz are sheared surfaces; 7 is the shear rate. Write down the expression for the
tensor & for this simple planar shear flow.

VA U

®
v,

Figure 1.5 Flow between parallel plates
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Solution
1
0 =y O
2V
. 1.
€= Ey 0 0 (1.28)
0 0 0

1.1.4.2 Study of Several Simple Shear Flows

One can assume that any flow situation is locally simple shear if, at that given point,
the rate-of-strain tensor is given by the above expression (Eq. (1.28)). Then show that
all the following flows, encountered in practical situations, are locally simple shear
flows. Obtain in each case the directions 1, 2, 3 (equivalent to x, y, z for planar shear)
and the expression of the shear rate y (use the expressions of € in cylindrical and
spherical coordinates given in Appendix 1, see Section 1.4.1).

1.1.4.2.1 Flow between Parallel Plates (Figure 1.6)

The velocity vector components are u(y),v=0,w =0.

Ya

Figure 1.6 Flow between parallel plates

Solution
o Ly
2 dy
L l% 0 0 (1.29)
2dy
| 0 0 0]
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1.1.4.2.2 Flow in a Circular Tube (Figure 1.7)

The components of the velocity vector u(r,0,z) in a cylindrical frame are
u=0,v=0,w=w(r).

A7

z
—_——— e —_ = e e = ] = —. ’
Figure 1.7 Flow in a circular tube
Solution
o o lav
2 dr
€= 0 0 0 (1.30)
1d
1aw 0
2 dr

.dw
Directions 1, 2, and 3 are respectively z, r, and 6. The shear rate is y = d_ .
r

1.1.4.2.3 Flow between Two Parallel Disks

The upper disk is rotating at an angular velocity Q,, and the lower one is fixed
(Figure 1.8). The velocity field in cylindrical coordinates has the following expression:

wr,0,z):u=0,v(r,z),w=0

Figure 1.8 Flow between parallel disks

(a) Show that the tensor € does not have the form defined in Section 1.1.4.1.

(b) The sheared surfaces are now assumed to be parallel to the disks and rotate at
an angular velocity Q(z). Calculate v(r, z) and show that the tensor & is a simple
shear one.
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Solution
(a) )
fov_v)
2\or r
€= l &_Z 0 li (1.31)
2ar r 20z
10v
0 - 0
| 20z |
av v .. .
(b) If v(r, z) = rQ)(z), then - =0 and & is a simple shear tensor. The shear rate
dv  dQ T
is y= @ r— and directions 1, 2, and 3 are 0, z, and r, respectively.

dz dz

1.1.4.2.4 Flow between a Cone and a Plate

A cone of half angle 6, rotates with the angular velocity Q. The apex of the cone
is on the disk, which is fixed (Figure 1.9). The sheared surfaces are assumed to be
cones with the same axis and apex as the cone-and-plate system; they rotate at an
angular velocity Q(0).

Z A

Figure 1.9 Flow in a cone-and-plate system

Solution

In spherical coordinates (r, 6, ¢), the velocity vector components are u =0, v =0,
and w = r sinf Q(60).

0 0 0
£=|0 0 Ling &2 (1.32)
27 do
0 Lsing®2
27 do

Q
The shearrateis y = sin@cfi—g , and directions 1, 2, and 3 are ¢, 8, and r, respectively.

11




12

1 Continuum Mechanics: Review of Principles

1.1.4.2.5 Couette Flow

A fluid is sheared between the inner cylinder of radius R, rotating at the angular
velocity €, and the outer fixed cylinder of radius R, (Figure 1.10). The components
of the velocity vector u(r, 6, z) in cylindrical coordinates are u = 0, v(r), and w = 0.

z4

Figure 1.10 Couette flow

Solution
i ifdv vy ]
28dr r
b= L[V _Y 0 0 (1.33)
2\dr r
0 0 0]

.odv v . . .
The shear rate is y = d_ ——, and directions 1, 2, and 3 are 0, r, and z, respectively.
ror

1.1.4.3 Pure Elongational Flow

A flow is purely elongational or extensional at a given point if the rate-of-strain
tensor at this point has only nonzero components on the diagonal.

1.1.4.3.1 Simple Elongation
An incompressible parallelepiped specimen of square section is stretched in direc-

tion x (Figure 1.11). Then & = 1ﬂ is called the elongation rate in the x-direction.

Write down the expression of €.
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Figure 1.11 Deformation of a specimen in elongation

Solution

Assuming a homogeneous deformation, the velocity vectoris u = (u (x) ,V ( y) W (z))

and
d . ldl
B_a=2L (1.34)
dx [ dt
. . . . dv dw
The sample section remains square during the deformation, so — =—. Incom-
dv dv dw a dy  dz
pressibility implies & +2— =0. Therefore, — =—=—-— and
ly dy dz 2
a 0 0
e=[0 -< o (1.35)
2
o o -<
2

1.1.4.3.2 Biaxial Stretching: Bubble Inflation

The inflation of a bubble of radius R and thickness e small compared to R is con-
sidered in Figure 1.12.

a) Write the rate-of-strain components in the r,0,¢ directions.
b) Write the continuity equation for an incompressible material and integrate it.

¢) Show the equivalence between the continuity equation and the volume con-
servation.



14

1 Continuum Mechanics: Review of Principles

)

z A

R

r
Q

Y

>

x B
Figure 1.12 Bubble inflation

Solution

(a) The bubble is assumed to remain spherical and to deform homogeneously so
that the shear components are zero. The rate-of-strain components are as follows:
_lde
Cedt
_ 1 d(27R) 1dR
2R dt Rt

1 d(2nRsinb) 1 dR

= In the thickness (r) direction: &

= In the O-direction: Eo0

= In the p-direction: Epp = 7 2RSind 7 = Rt
2
(b) For an incompressible material, l%+E% =0, which can be integrated to
e

obtain R%e =cst.

(c) This is equivalent to the global volume conservation: 47R’e = 47R e, .

B 1.2 Stresses and Force Balances

1.2.1 Stress Tensor

1.2.1.1 Phenomenological Definitions

1.2.1.1.1 Extension (or Compression) (Figure 1.13)

An extension force applied on a cylinder of section S induces a normal stress o, = I/S.

0 O

Figure 1.13 Stress in extension




1.2 Stresses and Force Balances

1.2.1.1.2 Simple Shear (Figure 1.14)
A force tangentially applied to a surface S yields a shear stress T = F/S.

The units of the stresses are those of pressure: pascals (Pa).

» F

F <

Figure 1.14 Stress in simple shear

1.2.1.2 Stress Vector

Let us consider, in a more general situation, a surface element dS in a continuum.
The part of the continuum located on one side of dS exerts on the other part a force
dF. As the interactions between both parts of the continuum are at small distances,
the stress vector T at a point O on this surface is defined as the limit:

T= lim — (1.36)

At point O, the normal to the surface is defined by the unit vector, n, in the outward
direction, as illustrated in Figure 1.15.

Figure 1.15 Stress applied to a surface element

The stress components can be obtained from projections of the stress vector:
®* Projectiononn: 0, =T-n
where o, is the normal stress (in extension, ¢,, > 0; in compression, o, < 0).

= Projection on the surface: 7 is the shear stress.

15
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1.2.1.3 Stress Tensor

The stress vector cannot characterize the state of stresses at a given point since it
is a function of the orientation of the surface element, that is, of n. Thus, a tensile
force induces a stress on a surface element perpendicular to the orientation of the
force, but it induces no stress on a parallel surface element (Figure 1.16).

777 N o g

Figure 1.16 Stress vector and surface orientation

The state of stresses is in fact characterized by the relation between T and n and,
as we will see, this relation is tensorial. Let us consider an elementary tetrahedron
OABC along the axes Oxyz (Figure 1.17): the x, y, and z components of the unit normal
vector to the ABC plane are the ratios of the surfaces OAB, OBC, and OCA to ABC:

OBC OCA OAB
n=——n, = n, =
ABC ABC ABC

T(T.T,T.)

n(71y,ny, 1)

z

Figure 1.17 Stresses exerted on an elementary tetrahedron

Let us define the components of the stress tensor in the following table:

Projection on of the stress vector exerted on the face normal to
Ox Oy 0z

Ox Oyx Oy Oyz

Oy Oyx Oy Oy

Oz Ox Uzy 0,
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The net surface forces acting along the three directions of the axes are as follows:
I.(ABC)-0,(0BC) -0 ,(0AC) -0, (0AB)
T,(ABC)-0,,(0BC)-0,,(0AC) -0, (0AB)
T,(ABC)-0,,(0BC)—-0 ,(0AC)-0 ,(0AB)
with OA, OB, OC being of the order of d; the surfaces OAB, OBC, and OCA are of the
order of dz; and the volume OABC is of the order of d°. The surface forces are of the

order of Td” and the volume forces of the order of Fd° (e.g., F = pgfor the gravitational
force per unit volume).

When the dimension d of the tetrahedron tends to zero, the volume forces become
negligible compared with the surface forces, and the net forces, as expressed above,
are equal to zero. Hence, in terms of the components of n:

I,=o0,n,+0,n +0,.n
I,=0,n +o,n +0,n, (1.37)
I =o,n, + o,n,+0,n,
This result can be written in tensorial notation as
T=0-n (1.38)

where @ is the stress tensor, which contains three normal components and six shear
components defined for the three axes. As in the case of the strain, the state of the
stresses is described by a tensor.

1.2.1.4 lIsotropic Stress or Hydrostatic Pressure

The hydrostatic pressure translates into a stress vector that is in the direction of n
for any orientation of the surface:

T=—pn (139)

The corresponding tensor is proportional to the unit tensor I:

-p 0 O
=0 -p 0 |=—pI (1.40)
0O 0 -p

1.2.1.5 Deviatoric Stress Tensor

For any general state of stresses, the pressure can be defined in terms of the trace
of the stress tensor as

1 0u+ayy+azz

p:—gtroz— 3 (141)

17
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The pressure is independent of the axes since the trace of the stress tensor is an invari-
ant (see Appendix 2, see Section 1.4.2). It could be positive (compressive state) or rel-
atively negative (extensive state, possibly leading to cavitation problems in a liquid).

The stress tensor can be written as a sum of two terms, the pressure term and a
traceless stress term, called the deviatoric stress tensor ¢”:

o=-pl+o’ (1.42)

Examples

= Uniaxial extension (or compression):

20 0 0
o, 00 3
o=| 0 0 0|=>p=-21 ¢=| 0 -Zn (1.43)
0 00 3 3
0 o %u
L 3 .
= Simple shear under a hydrostatic pressure p:
-p T 0 07 O
o=|17 -p 0 |=>0a =7 00 (1.44)
0 0 -p 0 00O

More generally, we will see that the stress tensor can be decomposed into an iso-
tropic arbitrary part denoted as p’I, and a tensor called the extra-stress tensor ¢’
The expressions of the constitutive equations in Chapter 2 will use either the devi-
atoric part of the stress tensor ¢ for viscous behaviors or the extra-stress tensor ¢’
for viscoelastic behaviors (in this case, ¢’ is no longer a deviator, and p’ is not the
hydrostatic pressure).

1.2.2 Equation of Motion

1.2.2.1 Force Balances

Considering an elementary volume of material with a characteristic dimension d:

= The surface forces are of the order of dz, but the definition of the stress tensor is
such that their contribution to a force balance is nil.

= The volume forces (gravity, inertia) are of the order of d3, and they must balance
the derivatives of the surface forces, which are also of the order of .

We will write that the resultant force is nil (Figure 1.18).
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dz )

z

Figure 1.18 Balance of forces exerted on a volume element

The forces acting on a volume element dx dy dz are the following:

= The mass force (generally gravity): F dx dy dz

= The inertial force: py dx dy dz = p (du/dt) dx dy dz

= The net surface force exerted by the surroundings in the x-direction:
[0 (x+dx) =0 (0)]dydz +[ 0, (y +dy) =0, (y) |dzdx + [0 . (z + d2) - 0. (2) | dxdy
and similar terms for the y and z-directions.

Dividing by dx dy dz and taking the limits, we obtain for the x, y, and z components:

do, 0d0, do,.
F —-py, + + + =0

ox ay 0z
do do do
F — a e 2 -0 1.45
TP Ty ez (143)
aozx aaly aazz
F, —-py,+ + + =0
ox dy 0z

The derivatives of g; are the components of a vector, which is the divergence of the
tensor ¢. Equation (1.45) may be written as

V-6+F-py=0 (1.46)
This is the equation of motion, also called the dynamic equilibrium. It is often conve-
nient to express the stress tensor as the sum of the pressure and the deviatoric stress:

-Vp+V-0'+F-py=0 (1.47)
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1.2.2.2 Torque Balances

Let us consider a small volume element of linear dimension d; the mass forces of the
order of d® induce torques of the order of d*. There is no mass torque, which would
result in torques of the order of d® (as in the case of a magnetic medium). Finally,
the surface forces of the order of d@* induce torques of the order of d3, so only the
net torque resulting from these forces must be equal to zero.

If we consider the moments about the z-axis (Figure 1.19), only the shear stresses
o,,and o, on the upper (U) and lateral (L) surfaces of the element dx dy dz lead to
torques. They are obtained by taking the following vector products:

0 0, dxdz 0
O, | dy|X 0 = 0 (1.48)
0 0 —0,,dxdydz
dx 0 0
o, | 0 |x|lo,dvdz |= 0 (1.49)
0 0 o0, dxdydz
AY
d
y: O3/y O-zy
i Oxy
L) . o
Ozxgq | s
Oil < '( ! IU.x
| Ozx X
ot | dx
< Oy, (L)
dz )7 % _voy
z

Figure 1.19 Torque balance on a volume element

A torque balance, in the absence of a mass torque, yields o,, = g,,. In a similar way,
0,, =0, and 0,, = 0,,. The absence of a volume torque then implies the symmetry
of the stress tensor. Therefore, as for the strain tensor &, the stress tensor has only
six independent components (three normal and three shear components).
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