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Preface

It is almost 25 years since the first edition of this book was published. On the one
hand, the fact that this title has continued to be consulted by readers testifies to
the timelessness and continued relevance of the material covered in this book. On
the other hand, 25 years is a rather long time in any discipline and it is thus
deemed appropriate to prepare a revised and updated edition of this work. The
philosophy and objective of this edition continue to be the same as that of the first
edition, namely, to develop a text book for graduate and/or advanced year under-
graduate students in the diverse disciplines of chemical and food engineering,
mechanical engineering, material science, and polymer and plastics technology, to
mention a few.

Rheology continues to be an important field of research and it finds applications in
a variety of industrial sectors such as polymers, foods, cosmetics, paints, healthcare
and pharmaceuticals, waste disposal of mine tailings, and biological and biomedi-
cal engineering related products and processes. Some of the currently available
books cover the new trends in research very well, while only a few books address
the applications. This book intends to bridge the gap between fundamental con-
cepts and applications. The bulk of the material presented here has been used
successfully for many years in our respective courses.

This book is designed to be used as a textbook for a graduate or advanced under-
graduate course in polymer rheology. The level is between that of introductory
texts and of highly advanced research monographs. We consider the introduction
of a treatment of rheology at this level to be very timely, for few of the existing
books bring together the fundamentals and applications of rheology. This work
aims to develop a systematic approach and a clear understanding of the envisaged
applications. The reader is expected to be familiar with introductory transport phe-
nomena, or equivalent fluid mechanics and heat and mass transfer.

The organization of this book is as follows. The text introduces the subject of rheol-
ogy via the description of unusual phenomena such as rod climbing, extrudate
swell, stable bubble shapes, segregation of particles in viscoelastic fluids, migra-
tion of particles across the streamlines, etc. In Chapter 2, material functions are
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defined for a variety of flow situations. Generalized Newtonian fluid models are
introduced, and their predictions are compared to typical experimental data for
real materials. Chapter 3 deals with the subject of rheometry. Measurements of
viscosity, normal stress differences, elongational viscosity, complex viscosity, and
yield stress, using capillary, concentric cylinder, and cone-and-plate geometries,
are reviewed in detail. Included here is also a detailed section on the measurement
of yield stress. Isothermal flows, as well as heat and mass transfer in simple geo-
metries involving generalized non-Newtonian fluids, are dealt with in Chapter 4.
The subject of linear viscoelasticity is discussed in Chapter 5, whereas Chapter 6
reviews the area of nonlinear deformation and the formulation of appropriate con-
stitutive equations. The molecular approach to the modeling is dealt with in an in-
troductory fashion in Chapter 7, and topics dealing with the rheology of suspen-
sions and immiscible polymer blends, and flow characteristics of non-Newtonian
media involving bubbles, drops, and particles, are discussed in Chapter 8, and
mixing of complex fluids in Chapter 9. Finally, we present a substantial appendix
(Chapter 10) dealing with tensor analysis, which is largely based on a text on ad-
vanced mathematics. The material presented in the first five chapters can be used
as an introduction to the subject. A more advanced course would also encompass
Chapters 6, 7, and 10, while Chapters 8 and 9 focus on major areas of applications.
In addition to the general overall updating of the contents, the specific changes
made in this edition are briefly summarized here: extensive discussion on the
available methods for the measurement of yield stress (Section 3.5.1); a new
section (Section 4.6) on non-Fickian diffusion and the its consequences on mass
transport in structured fluids; an extended section on the linear viscoelasticity of
polymer blends (Section 8.2.3); rheology of glass fiber reinforced systems (Section
8.2.5); and significantly expanded discussion on the rheology of suspensions of
interactive particles (Section 8.2.6).

Like in the case of the first edition, while making changes in this edition, we have
been strongly inspired by the monumental book Transport Phenomena (Bird,
Stewart, and Lightfoot, 1960, 2006) and by Dynamics of Polymeric Liquids, espe-
cially Volume I (Bird, Armstrong, and Hassager, 1977, 1987). While we do not try
to match the in-depth coverage of Dynamics of Polymeric Liquids, we present results
of our extensive teaching and research experience in this field in a coherent
manner, especially from the students’ perspective. In this regard, this book has a
distinct engineering flavor, covering topics such as mixing and flow of particulate
systems, which are seldom discussed in other books on rheology. Furthermore,
statements such as “it can easily be shown” have carefully been avoided as far as
possible, in favor of a fair amount of detailed explanation. Several homework prob-
lems appear at the end of most chapters. These problems are labeled by a super-
script a or b indicating the level of difficulty. The “b-problems” are the more de-
manding ones.
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In preparing this book, we have made extensive use of the research literature and
research performed in our respective laboratories by our graduate students and
research associates over the past 40-50 years. Special thanks go to Drs.C.F. Chan
Man Fong and M. Grmela, who contributed to many facets of the first edition of this
book. We acknowledge also the devotion of Ms. D. Heroux, who patiently typed and
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Introduction

Because science evolved and developed first through experimentation, it is appro-
priate to introduce the complex field of rheology by discussing some of the intrigu-
ing and paradoxical phenomena encountered with polymeric liquids and some
particulate suspensions. A similar presentation can be found in most textbooks on
rheology. For this reason, we have restricted the number of such examples in this
chapter. Some definitions and a classification are presented first.

B 1.1 Definitions and Classification

Rheology is a science that deals with the deformation of materials as a result of
an applied stress. It can therefore be considered part of continuum mechanics,
although it is also possible to relate the stress to the deformation or to the rate of
deformation via molecular kinetic theory.

Two physical laws dating back to the seventeenth century are very important in
the present context. They are:

I. Hooke’s law, describing the behavior of an elastic solid, given in shear by

:—Gdu"

7 o (1.1)

where the shear stress o,, (see Chapter 2) is related to the deformation gradi-
ent du,/dy via the constant elastic modulus G.
II. Newton’s law, describing the behavior of a linear viscous fluid, given by
dv
ny = _lu’ d; ’ (1'2)

where the shear stress o0,, is related to the rate of deformation dV,/dy, via the
constant Newtonian viscosity .
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We can consider two limiting cases of material response: that of a non-deformable
body on the one hand and that of an inviscid fluid on the other hand. For a non-
deformable body, the elastic modulus is infinite. For an inviscid fluid, the viscosity
is zero.

The behavior of real materials falls between these limiting situations. Table 1.1
summarizes the observed rheological behavior. For instance, we can say that al-
though most real materials have a finite viscosity, under certain conditions (e.g.,
flow of air over an aerofoil), the effect of viscosity is confined to a thin layer (bound-
ary layer, see Section 4.5). Beyond this, the fluid behavior can be well-represented
by an ideal inviscid fluid. However, in most confined flow situations, the effects of
viscosity cannot be ignored. At the other extreme is an ideal elastic material which
attains an equilibrium deformation when subjected to an external stress. For some
materials, these limiting behaviors are easily observed. In contrast, the viscosity of
ice or the elasticity of water may go unnoticed! In between these two extremes,
the fluid behavior gradually passes from inviscid ideal to viscous, to viscoelastic
fluid-like, to solid-like, and then to an elastic solid, as summarized schematically in
Table 1.1.

Many of the terms used in the field of rheology have been carefully defined by
Lodge (1964). We summarize here some of the important definitions.

Table 1.1 Summary of Rheological Behavior
Inviscid fluid (ideal case with  None
p=0)
Linear viscous fluid
(Newtonian behavior)

Water

Non-linear viscous material
(generalized Newtonian

Suspensions in Newtonian
media

Fluids behavior defined in
Section 1.2)
Continuum Linear viscoelastic material ~ Polymer under small
mechanics deformation
Non-linear viscoelastic Concentrated polymer
material solutions or plastics under
large deformation
Non-linear elastic material Rubber
Solids Linear elastic solid Linear Hookean spring

Non-deformable solid (ideal
case with G = =)

None
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1.1.1 Purely Viscous or Inelastic Material

A material is purely viscous or inelastic if, following any flow or deformation his-
tory: (a) the stresses in the material become instantaneously zero (or isotropic) as
soon as the flow is stopped (deformation rate set to zero); or (b) the deformation
rate (in the absence of inertial effects) becomes instantaneously zero when the
stresses are set equal to zero (or are isotropic).

1.1.2 Perfectly Elastic Material

A material is perfectly elastic if the equilibrium shape is attained instantaneously
when non-isotropic stresses are applied, or if the stresses become non-isotropic as
soon as the material is deformed. Hooke’s law (Equation 1.1) describes a perfectly
linear elastic body, if the modulus G is considered constant. The behavior of a
rubber band approximates closely that of a perfectly elastic body, but a highly
non-linear one, since in this case the modulus changes with deformation.

1.1.3 Viscoelastic Material

Any material which obeys neither the purely viscous nor the perfectly elastic crite-
ria is viscoelastic. The parts of the word, viscous and elastic, describe a rheological
behavior between that of a purely viscous liquid and that of a perfectly elastic
solid. In simple terms, a viscoelastic material will not deform instantaneously
when non-isotropic stresses are applied, or the stresses will not respond instanta-
neously to any imposed deformation or deformation rate. Typical examples are
polymer solutions and plastics that are known to exhibit memory effects such as
relaxation, described in Chapter 2. The phenomena described in Section 1.2 are
mostly due to viscoelasticity.

B 1.2 Non-Newtonian Phenomena

Most polymer systems, as well as many other complex fluids, do not obey Newton’s
law of viscosity. These fluids generally exhibit a viscosity that decreases with in-
creasing rate of deformation. This is referred to as pseudoplastic or shear-thinning
behavior. Very large decreases in viscosity are observed in polymeric fluids, as
illustrated in Chapter 2. Moreover, polymeric fluids have a viscoelastic character
that is responsible for a number of spectacular phenomena not observed with New-
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tonian fluids. The design of many industrial processing operations requires taking
into account several of these phenomena.

We review here some of the more striking viscoelastic effects. An excellent presen-
tation of rheological or non-Newtonian phenomena can be found in the books of
Bird, Armstrong, and Hassager (Volume 1, 1977 or 1987) and in another book by
Boger and Walters (1993). In writing the following sections we have been largely
inspired by these authors.

1.2.1 The Weissenberg Effect

This phenomenon is illustrated schematically in Figure 1.1. If a rod is rotated in a
beaker containing a Newtonian fluid such as water, the free surface is deformed by
a centrifugal force, creating a vortex in the center. In contrast, if a rod is rotated in
a polymer solution or melt, the fluid tends to climb the rod, and an inverted vortex
is created. Weissenberg (1947) was able to explain this phenomenon in terms of
unequal normal stresses present in such materials under steady shearing condi-
tions (see Section 3.2.3).

The polymer molecules in a solution or melt form an entangled network, which,
when deformed in one direction through the action of a rotating or moving surface,
generates internal tensions in the flow direction as well as normal to the flow di-
rection. These tensions are the normal stresses mentioned in the previous para-
graph. In fact, if we could measure the pressure at point A on the rod and at point
B on the beaker, we would observe, contrary to the Newtonian case, that with the
polymeric fluid, P, > P,. This excess pressure is compensated by an extra hydro-
static head.

Q Q
N \8>

N

»A ¢B ) A (B

Figure 1.1

Shape of the liquid’s free surface
for a rotating rod in a reservoir
(a) Newtonian liquid
() (®) (b) viscoelastic liquid
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1.2.2 Entry Flow, Extrudate Swell, Melt Fracture, and
Vibrating Jet

Flow visualization of the entry flow in the case of a sudden contraction is illus-
trated in Figure 1.2. Depending on the liquid rheology and flow conditions, two
main patterns are observed. The pattern of Figure 1.2 is observed for branched
polymer melts such as low-density polyethylene (LDPE), polystyrene (PS), and
polymethyl methacrylate (PMMA). The pattern of Figure 1.2 is typical of linear
polymer melts such as high-density polyethylene (HDPE) and linear low-density
polyethylene (LLDPE), as well as Newtonian fluids at low Reynolds numbers.

Figure 1.2
Main flow patterns in sudden contraction
(a) (b flow

The size of the vortices observed for LDPE, PS, etc. (Figure 1.2a) increases first
with flow rate and eventually becomes unstable. The unstable flow in the reservoir
appears at the same moment as the helical distortion illustrated in Figure 1.4. This
has been reported by several authors (Den Otter, 1970, 1971; Ballenger et al., 1971;
Boger and Ramamurthy, 1972). For linear polyethylenes, the corner vortices are
usually not observed, and the flow pattern is that shown in Figure 1.2b.

Another spectacular observation that is very important in the transformation of
plastics is the swell of the extrudate as it emerges from a capillary. This is shown
in Figure 1.3. A Newtonian fluid (C) normally shows a small decrease (< 20%) in
diameter as it emerges from the capillary. This is due to inertial effects. In contrast,
a highly elastic fluid (A), such as a polymer melt, could show a 200% to 400% in-
crease in diameter. This extrudate swell effect is very frequently referred to in the
literature as the die swell effect. For obvious reasons this terminology should be
avoided!
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Figure 1.3

Fluid extrudates from capillary tubes

A stream of a Newtonian silicone fluid shows
no diameter increase (C); a solution of 2.44 g
of polymethyl methacrylate (M,= 10° kg/kmol)
in 100 mL of dimethylphthalate shows a 200%
increase in diameter (A). Both fluids have a
similar viscosity (From Lodge, 1964, with
permission)

Qualitatively, we can explain this phenomenon through the presence of normal
stresses (extra pressure) created at the wall of the capillary. As the polymeric fluid
emerges from the capillary, this internal pressure is released, resulting in a lateral
expansion. Another important contribution is due to memory effects in polymeric
fluids that behave like rubbery materials. When entering a small capillary die from
a large reservoir, the fluid is subjected to a rapid change of shape (large deforma-
tion), and as it emerges from the die, it tends through its rubbery nature to recover
its initial shape (elastic recovery). For this reason, polymeric fluids are often re-
ferred to as fluids with memory. Other effects, such as velocity changes at the
exit and thermal gradients in the extrudate, also contribute to this phenomenon
(Tanner, 2000).

Extrudate swell is thus associated with the elastic nature of the fluid, and its mea-
surement is frequently used to characterize polymer melt elasticity in relation to
its molecular structure, molecular weight, and molecular weight distribution. Ex-
trudate swell is a phenomenon that has to be taken into account in fiber production
operations. Critical velocity gradients are also complicating and may lead to melt
fracture.

Melt fracture is observed as a polymer is extruded freely from a die at a rate ex-
ceeding a critical value. The diameter of the extrudate is no longer uniform and
may exhibit various distortions, all referred to as melt fracture. Figure 1.4 illus-
trates various shapes of melt fracture encountered under different flow conditions.

= Defects known as sharkskin are shown in Figure 1.4. This is an often periodic
instability, which depends on the flow rate, temperature, and properties of the
polymer. In (a), the extrudate is a linear low-density polyethylene (LDPE),
whereas in (b), it is a high-density polyethylene (HDPE).

= In some cases, we observe smooth surfaces followed by so-called sharkskin
zones. This is referred to as a bamboo effect (attributed to the stick-slip phe-
nomenon (c)).
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‘

= As the extrusion rate is increased, the sharkskin may disappear and the sur-
face of the extrudate may again become smooth, as shown in (d).

= Helical or screw shapes are frequently encountered in the flow of polystyrene
(e) or in the flow of polypropylene (f). The amplitude of the distortions in-
creases with increasing flow rate. As the flow rate is further increased, poly-
ethylene, polystyrene, and polypropylene exhibit chaotic distortions (g).

Other polymers may exhibit one or more of the distortions shown in Figure 1.4.

Figure 1.4

Range of shapes of extru-
dates under melt fracture
(From Agassant et al.,
1991)
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Distortions similar to melt fracture have been observed in polymer processing,
such as the calendering of polyvinylchloride (PVC). The film of PVC, usually trans-
parent, becomes partly opaque, and the surface that is not in contact with the
roller shows surface defects as the roller’s velocity increases, or if the nip between
the rollers becomes too narrow.

As a final example in this extrusion section, we show in Figure 1.5 the behavior of
a jet emerging from a nozzle subjected to a transverse vibration. The Newtonian
fluid (a) breaks into droplets. A concentrated polymer solution (c) emerges as a
structurally stable non-uniform wave. Dilute (and very dilute) polymer solutions
(b) exhibit a behavior in between. that of (a) and (c); that is, drops are connected by
a thread. Chan Man Fong et al. (1993) have presented an analysis of this problem,
involving elongational as well as oscillatory flow.

(2

Figure 1.5 Liquid emerging from a vibrating nozzle
(a) Newtonian fluid

(b) dilute polymer solution

(c) concentrated polymer solution
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1.2.3 Recoil

One experiment that may easily be performed to show the elastic nature of poly-
meric fluids is the following. If an elastic fluid is forced down a tube by applying a
pressure gradient, the fluid will deform continuously. At a given time, the pressure
gradient is set to zero, and the fluid starts to flow in the opposite direction. Photos
of such an experiment can be found in the textbook of Fredrickson (1964). Recoil
can be quite spectacular, as shown by Professor Lodge’s experiment in Figure 1.6.

(@ (®)

Figure 1.6 Recoil in an elastic fluid

An aluminum soap solution (aluminum dilaurate in decalin and m-cresol), is being poured from
a beaker (a) and suddenly cut in midstream (b). In photo (c), we note that the liquid above the
cut snaps back into the upper beaker (From Lodge, 1964, with permission)

This phenomenon is closely related to the behavior of an elastic band when re-
leased of its tension. For viscoelastic fluids, recoil is only partial and takes a finite
time. Viscoelastic fluids are said to have a “fading memory”, in the sense that they
are more affected by a recent deformation as opposed to a deformation experienced
in the more distant past. Moreover, the effect is strongly dependent on the rate of
deformation.

1.2.4 Open Syphon

A related experiment with recoil is the open syphon illustrated in Figure 1.7. The
full beaker containing an aqueous solution of 0.75 mass% polyethylene oxide (WSR
301) is first tilted over to initiate the flow downward to the lower beaker, then it is
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set back straight. The polymer solution will continue to flow against gravity (over a
few cm) and downward until the upper beaker is almost empty. This open-syphon
phenomenon is due to the highly elastic nature of this polymer solution, which
remembers its recent state (fading memory). This flow is mostly elongational, and
as discussed in Chapter 2 (Section 2.1.4), the elongational viscosity of polymer
solutions can be quite large compared to their shear viscosity.

Figure 1.7

Open syphon

Open-syphon effect illustrated for an aqueous
solution of 0.75 mass% polyethylene oxide,
WSR 301 (From Barnes et al., 1989)

1.2.5 Antithixotropic Effect

The phenomenon of antithixotropy (sometime referred to as dilatancy) illustrated
in Figure 1.8 is quite spectacular, although rarely observed compared to thixo-
tropic effects observed for foodstuffs such ketchup, paints and other concentrated
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suspensions. In the case illustrated in the figure, under vigorous shaking of an
alkaline perbunan latex (which initially is very much a liquid), a structure is built
up. This structure is responsible for a sudden, very large increase of its viscosity
and solid-like behavior. Upon cessation of the shaking, the structure is destroyed
and the latex regains after a few minutes its natural liquid-like behavior. The same
phenomenon has been widely reported on youtube as the so-called “cornstarch
walk on water” effect (https://www.youtube.com/watch?v=RUMX_b_m3Js). People
are shown walking over a bathtub filled with concentrated solutions of cornstarch
in water.

Figure 1.8 Antithixotropic effect

Antithixotropic effect demonstrated for an alkaline perbunan liquid latex. (a) shows the liquid
latex at its rest state and (b) after vigorous shaking the behavior is that of a solid. On cessation
of shaking the latex will regain, after a few minutes, its original state (a). (From Cheng, 1973
and Walters, 1980)

1.2.6 Drag Reduction

Most of the preceding effects are observed in the low Reynolds number regime,
i.e., in the absence of inertial effects. One phenomenon that was of considerable
interest in research in the 1970s is the drag reduction obtained by adding a small
quantity of high molecular weight, linear, soluble polymers to a fluid in a turbulent
flow regime in pipes. Figure 1.9 shows a conventional friction factor-Reynolds
number plot obtained for two polymer solutions in turbulent tube flow.


https://www.youtube.com/watch?v=RUMX_b_m3Js
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Figure 1.9 Typical drag reduction data for the turbulent flow of a 100 ppm PIB solution in
cyclohexane (®) and a 100 ppm ODR solution in kerosene (O) (Adapted from Tiu et al., 1995)

The friction factor and the Reynolds number are defined by

1(D 1 2
fzz[f AP/Ep(V> (1.3)
and
Re:D<V>p, (1.4)
Iz

where D and L are the tube diameter and length respectively, AP is the pressure
drop, (V) is the average fluid velocity, and p and p are the fluid density and viscos-
ity respectively. One fluid was a solution containing 100 ppm (mass parts per mil-
lion) of polyisobutylene (PIB) of a very high molecular weight (~2 x 105 kg/kmol)
in cyclohexane. The other fluid was a 100 ppm solution of a commercial organic
drag reducer (ODR) in kerosene. The molecular weight of the polymer was about
4 x 10 kg/kmol. The figure also shows the theoretical laminar result (f= 16/Re),
the empirical Blasius equation for the turbulent flow in a smooth pipe
(f=0.0791/Re®?) for Newtonian fluids, and the Virk (1975) asymptote (also known
as the maximum drag reduction, MDR) for drag-reducing fluids. Both polymer
solutions exhibit a substantial reduction of the friction in the turbulent flow re-
gime up to critical values of the Reynolds number. A reduction by a factor of about
2 with respect to the Blasius result obtained for Newtonian solvents is observed. At
a critical Reynolds number depending upon the polymer soultion, the data show
an upward turn, suggesting polymer degradation.
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Figure 1.10 compares the drag reduction with the corresponding heat transfer
reduction in turbulent flow in a tube, obtained for a 100 ppm polyacrylamide solu-
tion in water. The shear viscosity of this solution was found to be constant and
slightly larger than that of water (= 1.2 mPa-s).

2x10? A i A i A Ak
10 2x10* 3x10* 6x10* 7x10* 10*
Re = 2<V>p
9

Figure 1.10 Heat transfer (—) and pressure drop data (- - -) for water in a circular pipe
Friction factor (®) and heat transfer data (#) for a 100 ppm aqueous polyacrylamide solution
(From Del Villar et al., 1984)

The pressure drop and heat transfer are reported in terms of the friction factor f
and the heat transfer factor j, defined by

Nu

i = 1 .5
Ju RePr”? (1.5)
The Nusselt number, Nu, and the Prandtl number, Pr, are defined by
Nu="P (1.6)
k
and
C
pr— 2t (1.7)
k

where h is the heat transfer coefficient, and k and ép are the fluid thermal conduc-
tivity and the heat capacity per unit mass respectively.

Although the viscosity of the polyacrylamide solution used in experiments is
slightly larger than that of water, the friction factor for the polymer solution is
considerably lower than the expected value for water. The heat transfer reduction
when using the polymer solution is possibly more important at higher values of
the Reynolds number. For highly turbulent flow conditions, we expect the Chilton-
Colbum (1934) analogy to be valid, that is
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jn =§ (1.8)

This is observed here for water only.

This unusual drag reduction phenomenon has initiated a series of industrial and
military investigations. For example, some fire departments also attempted to
make practical use of this drag reduction phenomenon, as illustrated in Fig-
ure 1.11. The “rapid” water, containing a small amount of polyethylene oxide, turns
out to be slippery, and thus leads to safety problems. Well-known drag reducing
polymers include polyethylene oxide and polyacrylamide with molecular weight
above 10° kg/kmol. Reductions in friction by a factor of 2 to 5 are possible, but ap-
plications of drag reduction to pipeline transportation and marine applications are
severely jeopardized by the mechanical degradation of the polymer solutions over
prolonged use.

Figure 1.11 Effect of drag reduction on fire hose range (Taken from Schowalter, 1978,
with permission)

There is no clear understanding of the mechanism of drag reduction. Some re-
searchers have associated this effect with the elastic properties of the polymeric
fluids. However, at low concentrations (in the range of 10 to 100 ppm), the fluids
hardly exhibit any measurable elastic properties. A more acceptable explanation is
that those supermacromolecules have a large hydrodynamic volume in the fluid,
suppressing a considerable number of sites for the formation of eddies, thereby
reducing the turbulence intensity. Also, such large molecules may get trapped at
the wall, as a result of the wall roughness conditions. The resulting new surface
(wall plus polymer) may be smoother than the pipe wall, reducing the pumping
energy requirements.
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1.2.7 Hole Pressure Error

This experiment illustrates non-Newtonian and viscoelastic effects associated with
pressure measurements using pressure transducers. Typically, a wall pressure
measurement, P,,, is made by taking a reading at the bottom of a well. As shown in
Figure 1.12, the measured pressure gives the correct result for a Newtonian fluid
(N) but is too low for the polymer solution (P). As discussed in Chapter 3, the pres-
sure measured at the wall surface for the flow of a viscoelastic fluid is the sum of
the thermodynamic pressure, P, and a normal stress component, g,,. The pressure
measured at the bottom of the well, as shown in Figure 1.12, will thus be lower
than that measured by a transducer, flush-mounted at the wall of the flow section.

P=P, P+o,>P,

) ®

Figure 1.12 Hole pressure error

The arrows in the polymer solution indicate how an extra tension along a streamline tends to lift
the fluid out of the cavity resulting in a low pressure reading (Adapted from Bird, Armstrong,
and Hassager, 1987)

The hole pressure error for different geometries is related to shear and normal
stresses developed in the fluid. For example, for a circular hole, the hole pressure
error is associated with the shear stress, the primary normal stress difference, and
the secondary normal stress difference.

While the current consensus on the secondary normal stress difference seems to
be that this quantity is about ten times smaller in magnitude than the primary
normal stress difference, as well as being opposite in sign, its history has been
quite turbulent. In 1950, Weissenberg postulated the secondary normal stress
difference to be zero. Since then, experimenters have found the secondary normal
stress difference to be positive, again zero, and now negative. The fact that the
magnitude of this quantity is rather small is probably a major cause of the difficul-
ties associated with its measurement. In addition, the secondary normal stress
difference is believed to have little bearing on most viscoelastic phenomena.
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However, one notable exception where the secondary normal stress difference
plays an important role is in the wire coating process. If, because of a disturbance,
the wire finds itself off center, a force will act to bring the wire back into a central
position, provided the secondary normal stress difference is negative.

1.2.8 Mixing

Non-Newtonian and elastic effects are also responsible for rather striking flow pat-
terns associated with mixing operations. Figure 1.13 illustrates the difference in
flow patterns in the vicinity of a sphere rotating in a viscoelastic solution.

Figure 1.13

Flow patterns near a sphere rotating in a viscoelastic fluid
(a) inertial forces dominate

(b) elastic forces dominate

(a) (b) (From Ulbrecht and Carreau, 1985)

Another striking as well as detrimental phenomenon is the one shown in Fig-
ure 1.14. This figure illustrates the existence of stagnant zones when a polymer
solution is mixed by a helical ribbon agitator. Because there is no macroscale mix-
ing going on in a stagnant zone, a situation such as the one depicted in Figure 1.14
could be associated with extremely long mixing times, before a homogeneous prod-
uct results.

Figure 1.14 Conical stagnant zone observed in a 2 mass% aqueous solution of sodium
carboxy methyl cellulose. A decoloration process is used to determine the mixing time
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Keirstead et al. (1980) reported large differences in mixing effectiveness depend-
ing on the direction of rotation. They reported a difference in mixing time of one
order of magnitude between rotations in the helix and counterhelix directions,
when mixing ammonium nitrate gels at 200 rpm.

1.2.9 Bubbles, Spheres, and Coalescence

A variety of industrial phenomena rely on mass transfer resulting from liquid-gas
contact. The shape of the bubbles is very much affected by the type of fluid. Fig-
ure 1.15 illustrates the shapes of bubbles of different volume in a viscoelastic poly-
acrylamide (PAA) solution and in a Newtonian glycerine solution. Different degrees
of magnification were used in order to better portray the shapes, especially for the
small volume bubbles. Note the striking difference in bubble shape between (c)
and (d). They both portray a 1.0 mL air bubble, rising in a viscoelastic solution in
(c), and in a Newtonian fluid in (d). Bubble shapes, except for very small volume
bubbles, are not stable in Newtonian fluids. Several snapshots of bubbles of the
same volume would result in very different pictures (De Kee and Chhabra, 1988;
Chhabra, 2006). In viscoelastic fluids, the shapes are stable and vary with increas-
ing volumes, from spherical, to a prolate teardrop, to an oblate cusped teardrop,
and finally to a spherical cap shape (Chhabra and De Kee, 1992).

©

| |
(@ (O] ®

Figure 1.15 Shapes of bubbles in a polyacrylamide solution (1 mass% in a 50 mass% mixture
of glycerine and water): (a) 0.01 mL; (b) 0.1 mL; (c) 1.0 mL; (e) 2.0 mL; (f) 10 mL; and

(d) a1 mL bubble in a Newtonian 40 mass% aqueous glycerine solution (From Dajan, 1985 and
D. De Kee et al., 1990)



1 Introduction

Figure 1.16 illustrates the coalescence phenomena of bubbles in a viscoelastic
fluid. Photo (a) shows the simultaneous injection of two bubbles. Photos (b) and (c)
illustrate the capture of the trailing bubble in the wake of the leading bubble, and
then the film drainage after the bubbles make contact. Photo (d) illustrates the
tremendous deformations associated with bubble capture, shown here for the
simultaneous injection of three bubbles. If the time required for the film to drain
and thin after bubble contact is made exceeds the period of contact, coalescence
will not occur. This is usually the case for equal-volume bubbles.

(b)

© (d

Figure 1.16 Bubble coalescence (From Dajan, 1985 and De Kee et al., 1990)

(a) Simultaneous injection of two air bubbles V; = 3.5 mL and V, = 9.3 mL in the 1.0 mass%
PAA fluid of Figure 1.14. The initial separation between the bubbles is 24 mm

(b) A 1.0 mL bubble moves into the wake of a 4.7 mL bubble. The initial separation between the
bubbles was 9 mm. The fluid is again the 1.0 mass% PAA fluid

(c) Bubble contact for the system in frame (b)

(d) Bubble deformation and capture following a three-bubble injection in a 1 mass% aqueous
carboxy methyl cellulose solution. Each bubble had a volume of 7.5 mL and their initial
separation was 30 mm

Figure 1.17 illustrates the motion of a sphere falling in a Newtonian (a) and in an
elastic (b) fluid. We can observe the successive positions of the spheres. In the case
of the Newtonian fluid, a constant velocity is obtained, whereas in the elastic fluid
we observe a deceleration over the distance of the tube.



1.2 Non-Newtonian Phenomena

Figure 1.17

Motion of a sphere of radius 11.3 mm and density
8 x 10° kg/m? in a Newtonian fluid

(a) of viscosity 3 Pa-s and in an elastic Boger fluid

(b) of viscosity 3 Pa-s and relaxation time of 0.05 s
(a) (b) (From Jones et al., 1994, with permission)

The above are only a few examples of the different behavior exhibited by polymeric
materials as compared to Newtonian fluids. We could easily discuss several more
of these effects. However, the idea is on the one hand to draw attention to the strik-
ing differences between the behaviors of Newtonian and non-Newtonian materials,
and on the other hand to suggest that there is probably a variety of flow phenom-
ena involving viscoelastic liquids that is still to be discovered and explained.



Material Functions
and Generalized
Newtonian Fluids

It has been shown that even for the most complicated constitutive equations for
fluids, there are special flows for which the response functional manifests itself
through three viscometric functions only (Coleman, Markovitz, and Noll, 1966). A
constitutive equation relates the stress to the deformation or to the rate of deforma-
tion. One of these viscometric functions is a non-linear (non-Newtonian) shear vis-
cosity, the other two are differences of normal stresses. The answer to the question
whether these viscometric functions are independent of each other is of theoretical
as well as practical value. In this chapter, we define a variety of important material
functions which we will encounter throughout the book. Frequently used viscosity
models are presented, and some useful relations between material functions are
given.

B 2.1 Material Functions

2.1.1 Simple Shear Flow

Simple shear (viscometric) flow is defined as follows: a fluid is contained between
two flat parallel plates (infinite in the x- and z-directions), as illustrated in Fig-
ure 2.1.
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Figure 2.1 Sketch defining unidirectional shear flow

We can imagine the liquid to be composed of several thin sheets of fluid, arranged
parallel to the plates. Under static conditions (both plates are stationary), the ve-
locity profile (assuming we can talk about a velocity profile under static condi-
tions) is represented by a vertical line. If suddenly we decide to set the lower plate
in motion in the positive x-direction, the velocity profile may be given by the same
vertical line except for a thin layer in contact with the moving plate. Fluid mole-
cules (or particles) in this layer now will have the plate velocity, V, associated with
their masses, and as such a different momentum.

It is now feasible for molecules to jump from layer one into the next layer and vice
versa. Those molecules arriving in layer 1 will, because of the moving plate, in-
stantly adopt the plate velocity. The molecules arriving in layer 2 (from layer 1)
will increase the momentum of layer 2. Jumps occurring simultaneously in layers
farther away from the moving plate do not yet affect the net change in velocity pro-
file at this stage. The jumping process from layer to layer will result in momentum
being transported in the positive y-direction.

Eventually, provided the gap between the plates is small enough and the flow is
laminar, a linear velocity profile will be established for which we can write

szy'yxy; Vy:VZ:O, (2.1)
where the shear rate is
dv.
O 2.2
=g (2.2)

The force per unit area required to keep the lower plate moving at a constant veloc-
ity V defines the corresponding shear stress o,,, which is directly proportional to
the plate velocity and inversely proportional to the distance between the plates.
That is,
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0, X (Zj‘ =Yy (2.3)
The interpretation of the subscripts yx has been given by Bird, Stewart, and Light-
foot (2006) as follows: 0,, represents a shear stress exerted in the x-direction on a
fluid surface of constant y by the fluid in the region of lower y. It can also be inter-
preted as a flux of x-momentum transferred in the y-direction. The quantity on the
right-hand side of Equation 2.3, 7, , is a shear component of the rate-of-deforma-
tion tensor, ¥, defined as

7=VV+VV", (2.4)

where VV and VV" are the velocity gradient tensor and its transpose, respec-
tively; y thus represents nine components.

Labeling the axes x and y is of course arbitrary. In a more general way, we can refer
to the quantity on the left-hand side of Equation 2.3 as o0, where both i and j can
take on the values 1, 2, or 3. In the particular case of Cartesian coordinates, 1 re-
fers to the x-direction, 2 to the y-direction, and 3 to the z-direction. g; thus rep-
resents a quantity characterized by nine components. This quantity is a second-
order tensor. We recall that a first-order tensor (or a vector) such as, for example,
the velocity, requires three components to be defined (V,, V,, and V, in Cartesian
coordinates), and that a zero-order tensor (a scalar), such as temperature, requires
only one numerical value to be completely defined.

The nine components of the stress tensor can be represented by a 3 x 3 matrix as

follows:
011 912 913
0=10y 0y Op3| (2.5)
031 T3 033

Any component of the stress tensor can be interpreted as the component of a force
per unit area acting on a specific surface of a material elementary volume as de-
picted in Figure 2.2 for Cartesian coordinates. Let us consider surface (2), which is
normal to the x,-axis: o, represents the net force acting on the surface per unit
area; its magnitude and orientation depend on the flow field. This force per unit
area is a vector that can be decomposed into three components, 0,4, 0,,, and ;.
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Figure 2.2
Decomposition of the force acting on
a surface of a cubic element

X3
The same procedure can be followed for the other surfaces. Since this material
element is in equilibrium with its surroundings, only three resulting forces are
independent, that is o,, o,, and o, (Lodge, 1964). Nine independent components
are thus generated: the first index in o, refers to the surface considered and the
second gives the direction of the force. Finally, in equilibrium, no resultant torque
can be acting on the material element: hence, 0y, = 0,1, 0,3 = 05, and 0,3 = 03,
(Lodge, 1964). The stress tensor is symmetric, and this reduces the number of in-
dependent stress components from nine to six.

Of particular interest in our context (shear flow) is the component o,, (the shear
stress), which by symmetry equals o,,, and the components og; on the diagonal. We
will be mainly interested in differences among those normal stresses, as they
explain a variety of rheological phenomena. As outlined next, the shear stress o0,
is related to the shear rate 7,,. In this context, the second subscript (1) indicates
the direction of flow, and the first subscript (2) indicates the direction in which the
velocity changes.

2.1.1.1 Steady-State Simple Shear Flow

For steady-shear flow, where the shear rate 7,, is constant, we define the following
material functions (using v for the shear rate and subscripts y and x instead of
2 and 1).

= Non-Newtonian viscosity:

ny) = —% (2.6)
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= Primary (or first) normal stress coefficient:

UXX — 0
U(y) =~ "5 (2.7)
Y
= Secondary normal stress coefficient:
g, . — Uzz
(V) =~ WT (2.8)

The quantities (o, - 0,,) and (0,, - 0,,) represent the primary normal stress differ-
ence N, and the secondary normal stress difference IV, respectively. The relation
between y, and p, is normally taken as y, = -0.1 ;. In the majority of flow situa-
tions, the secondary normal stress coefficient p, is not all that important. Fig-
ure 2.3 to Figure 2.5 show typical viscosity-shear rate and primary normal stress
difference-shear rate behavior for a variety of viscoelastic solutions, such as a
2.0 mass% solution of polyacrylamide (Separan AP 30) in a 50 mass% mixture of
water and glycerine, and a 6.0 mass% solution of polyisobutylene (PIB) in Primol
355. Primol 355 is a pharmaceutical-grade white oil with a viscosity of 0.15 Pa-s at
298 K. Note the tremendous drop in viscosity over the shear rate range shown
here. This behavior is typical for viscoelastic solutions. The primary normal stress
coefficient data show a similar trend. However, note that the limiting behavior at
low shear rates is not accessible, and that the drop with increasing shear rate is
more severe in the primary normal stress difference.

-
v 6% PiB.
A 7s5XEeS.
- 20%PAm. -
e TOXAL
a 1OX PS.

N (Pas)
\Vl (Pa-sz)

10!

"
10’ 10% 0°

Y shH

Y s - e

Figure 2.3 (a) Viscosity-shear rate plots and (b) primary normal stress coefficient-shear rate
plots for typical viscoelastic solutions

The 1.0 and 7.5 PS are respectively 1.0 and 7.5 mass% solutions of narrow molecular weight
polystyrene (M,, = 860,000 kg/kmol) in Aroclor 1248 (Data from Ashare, 1968). Aroclor 1248
is a chlorinated diphenyl with a viscosity of 0.3 Pa-s at 298 K. The 7.0% AL is a 7.0 mass%
solution of aluminum laurate in decalin and m-cresol (Data from Huppler, 1965). The 2.0% PAM
is a 2.0 mass% solution of polyacrylamide (AP30 of Dow Chemical) in a 50 mass% mixture

of water and glycerine. The 6% PIB is a 6.0 mass% solution of polyisobutylene

(M,, ~1.5 x 107 kg/kmol) in Primol 355 (Data from De Kee, 1977)
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Figure 2.4 Viscosity 7 and primary normal stress difference N, versus shear rate 7y for PEO
(M, = 1.8 x 10¢ kg/kmol) solutions of different concentration: (a) in water (b) in a 50 mass%
mixture of water and glycerine (Data from Ortiz, 1992; see Ortiz et al., 1994)

In Figure 2.4 we show typical data obtained using a Union Carbide (N-60 K) poly-
ethylene oxide (PEO) with a molecular weight of 1.8 x 109 kg/kmol for solutions of
1 to 3 mass% in water (a) and in water and glycerine (b). Shear thinning becomes
more important with increasing polymer concentration. At low shear rate we can
observe a zero shear rate viscosity plateau, which is more pronounced at higher
concentrations. The water-glycerine solvent produces viscosities and normal
stresses of a higher magnitude than the aqueous solutions. The data obtained with
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different rheometers were within 15% (in the worst case) and superposed well. The
three instruments used were a Weissenberg rheogoniometer, a Rheometrics (now
TA Instruments) controlled stress rheometer (RSR), and a Bohlin (now Malvern)
VOR rheometer.
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Figure 2.5 Steady-shear viscosity and primary normal stress difference of the M1 fluid at
25°C. Data obtained on a Weissenberg rheogoniometer, model R-18

Figure 2.5 reports the steady-shear viscosity and primary normal stress difference
for a so-called Boger fluid (Boger, 1977), which is a very dilute solution of a high
molecular weight polymer in a very viscous solvent. The Boger fluid here is
0.244 mass% of a polyisobutylene in a mixed solvent consisting of 7 mass% of
kerosene in polybutene, known as M1 (Sridhar, 1990). As shown in the figure, the
viscosity is almost constant (very little shear thinning) and the primary normal
stress difference is quadratic with respect to the shear rate (p, = constant) for the
lower values of the shear rate. Boger fluids that are non-shear-thinning but elastic
are useful model fluids for investigating rheological effects in various flow situa-
tions (Boger and Walters, 1993).
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2.1.2 Sinusoidal Shear Flow

For small-amplitude oscillatory shear flow, the lower plate in Figure 2.1 would be
required to oscillate sinusoidally in the x-direction, with small amplitude, with a
range of frequencies w. This situation is illustrated in Figure 2.6. In this case, we

define a complex viscosity as follows:

0
0 =n'—in=-22,
gl

with
'i/(t) — Re["?o eiwt]
and

o,()= Re[a?l e[“t].

(2.9)

(2.10)

(2.11)

For small deformation (in the linear viscoelastic domain as discussed in Chapter
5), inertial effects can be ignored, and the stress response is a sine wave of the
same frequency as the input function, but out of phase. Here Re[—] stands for the
real part of [-]; 7° and 021 represent the complex amplitudes of 7 and o,, respec-
tively; n' is referred to as the dynamic viscosity and is associated with energy dis-
sipation (due to viscous effects); while the coefficient of i, ", represents an elastic
contribution associated with energy storage, and which could be labeled dynamic

rigidity.

LLLI LI LS L

«—V, =- % (y-b) cos ot

Figure 2.6 Sketch defining sinusoidal shear flow
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It is also possible to work in terms of a quantity G*, defined as
G*=G'+iG", (2.12)

where the storage modulus G' = wn" and the loss modulus G" = wn'. These material
functions are used for material characterization, and they relate to molecular struc-
ture (Ferry, 1980).

Figure 2.7 illustrates the dependence of the dynamic viscosity n' and the storage
modulus G’ on the frequency o, for 3.0 mass% PEO solutions of different molecular
weights. We observe that at a given frequency, w, both ' and G' increase with
molecular weight, and at high frequency they both approach a simple power-law
behavior, almost independent of the molecular weight of the polymer.

From another vantage point, small-amplitude oscillatory (SAOS) data are usually
reported in terms of the norm of the complex viscosity ‘77*|, storage modulus (G'),
or loss modulus (G"), in each case as a function of the radial frequency. For simplic-
ity, the bars in the norm of the complex viscosity are frequently omitted, to write
simply 7.

Figure 2.8 reports the complex viscosity and the storage modulus as functions of
the angular frequency of three polymer melts, namely, a high molecular weight
polylactide (HPLA), a low molecular weight polylactide (LPLA) and a poly[(buty-
lene adipate)-co-terephthalate] (PBAT) at 160 °C. The behavior is typical of homo-
geneous polymer melts with the complex viscosity, exhibiting a plateau at low fre-
quencies and a rapidly decreasing value at high frequencies (shear thinning). The
storage modulus (Figure 2.8b) is seen to increase with frequency, with an initial
slope of 2 (log-log scales), corresponding to a so-called terminal zone.
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Figure 2.8 (a) Complex viscosity, 77* and (b) storage modulus, G', as functions of angular
frequency, w, for three molten commercial polymers: a high molecular weight polylactide
(HPLA), a low molecular weight polylactide (LPLA) and a poly[(butylene adipate)-co-terephthal-
ate] (PBAT) at 160 °C (from Nofar et al., 2016)
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2.1.3 Transient Shear Flows

Transient or time-dependent shear flows are associated, for example, with the
start-up of processes involving the displacement of viscoelastic materials. Under
such initial flow conditions, stresses can reach magnitudes which are substantially
larger than their steady-state values achieved for the applied shear rate.

2.1.3.1 Stress Growth Experiment

For stress growth, after onset of steady simple shear (the lower plate in Figure 2.1
starts moving in the positive x-direction), we have

F(t) =Y. (D), (2.13)
where 7, is the constant velocity gradient for ¢ > 0, and h(f) is the unit step func-
tion

h(t)=0 for t <0 (2.14)
and

h(t)=0 for t>0 (2.15)
We define the time-dependent shear stress and normal stress coefficients as fol-
lows:

. g x(t)

Nt =———, (2.16)

Voo

: [0 (t)—0,,(t)]

() = ———— 22—, (2.17)

Yoo
and

: [0, (6)—0_.(0)]

e (7)) =——2—F——. (2.18)

o
Figure 2.9 illustrates this experiment schematically. The lower part of the figure
shows the effect of the imposed shear rate 7., on the reduced shear stress growth
function. n(+.,) is the steady-shear viscosity value. At low ., the function in-
creases monotonically. At higher values of 7., stress overshoot occurs. The time
at which the maximum overshoot occurs decreases with increasing shear rate, and
the magnitude of the overshoot increases with increasing shear rate. The higher
the shear rate, the sooner steady state is attained. The response of a Newtonian
fluid (r*/n), in the absence of inertial effects, is given by the unit step function.
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- importance and definitions 193

- relaxation spectra 218

- relaxation spectrum 216

- time-temperature superposition 219

Linear viscoelastic models 194

- complex viscosity of a generalized
Maxwell model 204

- complex viscosity of a Maxwell fluid
197

- generalized Maxwell model 202

- generalized Voigt-Kelvin model 213

- integrated Maxwell model 196

- Jeffreys model 211



- Maxwell model 195

- other linear models 214

- recoil of a Maxwell fluid 200

- rheological model with friction 223

- unspecified forms for the Maxwell
model 205

- Voigt-Kelvin model 212

Local mass transfer coefficient 163

Local Nusselt number 152

Lodge-Meissner relation 275

Lodge model 273

- elongational stress growth 273

- Lodge-Meissner relation 275

Lodge rubber-like liquid 273

Loss modulus 29

Lower-convected derivative 233

M

Mark-Houwink equation 82

Marrucci model 267

Mass transfer

- falling film 191

- film flow 159

- power-law fluid 161

- power law fluids on inclined plate
159

- power-law Poiseuille flow 161

Mass transfer coefficient 159

Mass transfer rate 161

Mass transfer to a power-law fluid

- Poiseuille flow 161

Material functions

- complex viscosity 28

- Cox-Merz relation 58

- dynamic viscosity 28, 29

- elongational viscosity 38

- loss modulus 29

- non-Newtonian viscosity 24

- primary normal stress coefficient 25

- relations between material functions
58

- relaxation modulus 38

- secondary normal stress coefficient
25

- storage modulus 29

- stress growth functions 34

- stress relaxation function 36

- stress tensor 23

Maximum temperature

- viscous dissipation 156

Maxwell convected models 245

Maxwell model

- relaxation following a small deformation
205

Melt fracture 5,7

Melt index 72

Metric tensor 539

- spherical coordinates 542

Mixing

- batch-mixing configuration
467

- class | agitators 493

- class Il agitators 495

- class Ill agitators 498

- effective deformation rate 474

- examples 462

- flow patterns 493

- gas dispersion 504

- heat transfer 512

- helical ribbon impeller 479

- helical screw impeller 479

- highly viscous liquids 474

- laminar mixing 463

- liquids 461

- mass transfer 511

- mechanisms 463

- Metzner-0Otto constant 477

- power number 473

- relationships for power 471

- scale-up 466

- scale-up criteria for power-law fluids
488

- selection of equipment 519

- similarity criteria 466

- turbulent mixing 466

- viscoelastic fluids 491

- Weissenberg number 470

Mixing equipment 519

- baffles 520



- impellers 520

- tanks 519

Mixing time for helical ribbon agitators
503

Molecular theories

- bead-and-spring-type models 306

- conformation tensor model 351

- constitutive equations 305

- Curtiss and Bird kinetic theory
347

- FENE dumbbell 315

- Giesekus equation 314

- Kramers expression 326

network theories 329

reptation theories 339

rheological equations 305

- Rouse and Zimm models 319

- Rouse matrix 325

- Rouse model 327

- Zimm model 328

Momentum balance

- boundary layer flow 166

Mooney correction 81, 400

Multiphase systems 381

emulsions 387

- industrial interest 381

- polymer blends 393

suspensions 383

N

Network theories 329

concept 329

elastic liquids 333

- Helmholtz free energy 330
rubber-like solids 331

Newtonian fluids

- constitutive equation 562
Non-Fickian diffusion 131,173

- activation energy for permeation 173
effect of mechanical deformation 173
effect of temperature 173
mesoscopic approach 181

- shape and size of molecule 179
theory and modeling 173,179

Non-Fickian Diffusion 173

Non-linear deformations 229

- Cauchy-Green tensor 232

- deformation 231

- finger tensor 232

- relative deformation 231

Non-linear viscoelasticity 229

Non-Newtonian fluids

- heat transfer 158

- mass transfer 158

Non-Newtonian phenomena 3

- antithixotropic effect 11

- bamboo effect 6

- bubbles 17

- chaotic distortions 7

- drag reducer 12

- drag reduction 11

- extrudate swell 6

- hole pressure error 15

- melt fracture 5

- mixing 16

- open syphon 9

- recoil 9

- sharkskin 6

- spheres 18

- vibrating jet 5

- vibrating nozzle 8

- Weissenberg effect 4

Normal stress determination

- from exit pressure 129

Normal stress determination in Couette
geometry 92

Nusselt number 13, 190

- local 192

- tube flow 150

o

Oldroyd models 258
Open syphon 10
Ostwald viscometer 70

P
Packed beds



- effect of particle shape 448

- flowin 440

- flow through a packed bed 445

- pressure drop 446

- submerged objects 449

- viscoelastic effects 445

Percolation threshold 416, 418

Permutation tensor 540

Phan-Thien-Tanner model 270

- slip parameter 271

Physical components 542

Planar elongation 239

Plateau modulus 107

Poiseuille flow

- for generalized non-Newtonain fluids
184

- heat generation 154

- Nusselt number 146

- power-law fluid in a tube 134

- viscous dissipation 134,146

Poiseuille parabolic velocity profile 134

Pom-pom models 346

Power consumption

- low-viscosity systems 472

Power consumption in agitated tanks
472

Power-law fluid

- Nusselt number for a plate 146

- Nusselt number for pipe 146

Power-law fluid flow

- helical flow 139

- inan annulus 139

- inatube 137

- in boundary layer 137

- inclined plane 137

Prandtl number 13,172

Pressure drop in a tube 182

Pressure profile in a disk-shaped mold
144

Primary normal stress coefficient 25

Primary normal stress difference 25, 59

Pseudoplastic 3

R

Rabinowitsch analysis 72,126

Rate of deformation 232

Rate-of-deformation tensor 139, 233

Recoil 9

Recoil of a Maxwell fluid 200

Recoverable shear 80

Relations between deformation and
rate-of-deformation tensors 236

Relations between material functions
58

Relaxation following a small deformation
205

Relaxation modulus 38, 227

Relaxation modulus for a generalized
Maxwell model 210

Relaxation spectra 218

- weighted relaxation spectra 219

Relaxation spectrum 216

Reptation models

- Doi and Edwards model 342

Reptation theories 339

- pom-pom models 346

- reptation time 341

- tube model 339

Reynolds number 5,12,167

- generalized 182

Rheological model with friction 223

Rheology 1

Rheology of suspensions

- Einstein relation 386

Rheometers

- capillary rheometer 71

coaxial-cylinder rheometers 85

concentric-disk geometry 110

cone-and-plate geometry 94

Rivlin-Ericksen fluid

- steady-state properties 252

Rod-like and worm-like macromolecules
361

- elongational viscosity 368

- free energy 362

- steady-shear properties 362

Rouse and Zimm models 319



Rubber-like solids
- constitutive equation 332
- Helmholtz free energy 331

S

Schmidt number 164

Secondary normal stress coefficient
25

Secondary normal stress difference 15

Sedimentation

- in confined flows 432

- non-spherical particles 430

Settling velocity of a glass bead 425

Shear thickening 56

Shear-thinning behavior 3

Sherwood number 164

Sieder and Tate 152

Sieder and Tate correction 154

Simple shear 240

- Cauchy-Green tensor 242

- Finger tensor 242

Simple shear flow 21

Sinusoidal shear flow 28

Slip velocity 81

Specific viscosity 82

Spheres 17

Spinning of a viscoelastic fiber 261

- Deborah number 264

Stokesian fluid

- constitutive equation 568

Storage modulus 29, 131

Stress growth experiment 32

- normal stress coefficient 32

- stress growth coefficient 32

Stress relaxation following a sudden
deformation 38

Stress relaxation following steady shear
flow 35

Stress tensor 23

Structure recovery 54

Substantial or material derivative 233

Summation convention 526

Suspensions

- chain scission 413

- concentrated 399

- dilute 384

- Einstein viscosity equation 384
- elasticity 402

- fiber interactions 406

- flow about a rigid particle 421
- glass fiber 403

- interacting particles 409

- Maron-Pierce equation 399

- Maron-Pierce model 413

- multiwall carbon nanotubes 415
- nano composites 409

- non-interacting particles 399
- percolation threshold 415

- storage modulus 414

- structure recovery 419

- thixotropic 411

- yield stress 409

Swelling 173

T

Taylor vortices 90

Temperature effects on the viscosity

- heat transfer 153

- pipe flow 153

Temperature, pressure and molecular
weight effects 61

- effect of pressure on viscosity 63

- effect of temperature on viscosity 61

Temperature profile

- power-law fluid with dissipation 155

Tensors 536

- contravariant components 537

- covariant components 537

- isotropic tensors 561

- objective tensors 563

- tensor-valued functions 565

Thermal diffusivity 148, 191

Thixotropic behavior 53

Thixotropy, rheopexy and hysteresis
52

Time-temperature superposition 219

Transient experiments 107

Transient shear flows 32



Transition regime

- viscous dissipation 156
Transport phenomena 131
Trouton relation 39
Turbine impeller

- power requirement 487

U

Ubbelohde viscometer 69
Uniaxial elongation 236

Upper- and lower-convected derivatives

233
Upper-convected derivative 233
Upper-convected Maxwell model
- elongational viscosity 249

\"

Variational principles

- stress 423

- velocity 423

Vectors

- contravariant transformation 534
- covariant transformation 535
- physical components 544

- transformation rules 533
Velocity controller

- rotating disk 188
Viscoelastic material 3
Viscometric functions 21
Viscosity

- effect of pressure 63

- effect of temperature 61

- intrinsic viscosity 82, 84

- specific viscosity 84
Viscosity models 42

- Bingham model 48

- Carreau-Yasuda model 44, 48
- Casson model 49

- Cross-Williamson model 45
- De Kee model 46

- De Kee-Turcotte model 49

- Ellis model 43

- four-parameter Carreau model 46

- Herschel-Bulkley model 49

- Papanastasiou model 51

- power-law model 43

- three-parameter Carreau model 44

- Zhu-Kim-De Kee model 51

Viscous heating in Poiseuille flow 157

Voigt-Kelvin model 212

- compliance in recovery 215

- creep function of a Voigt-Kelvin solid
213

Volume-to-surface integral transformation
559

W

Wagner model 290

- damping function 290

- stress growth and steady-shear
behavior 290

Wall effects 447

- packed columns 447

Wall shear rate 162

Weissenberg effect 93

Weissenberg hypothesis 114

Weissenberg number 132

White-Metzner equation

- spinning of a fiber 261

White-Metzner fluid

- steady-state properties 260

White-Metzner model 259

Wire coating

- power-law fluid 185

WLF expression 221

- shift factor 221

WLF relation 62

Y

Yield stress 48,114,137

Yield stress measurement methods 116
- from SAOS data 124

- slotted plate technique 120

- vane technique 119
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