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The Author

Dr. Manfred Schmid began his professional career as an ap-
prentice laboratory assistant at Metzeler Kautschuk AG in 
Munich. After graduation, his education continued through 
his studies in chemistry at the University of Bayreuth, result-
ing in a Ph.D. in Macromolecular Chemistry, during which he 
worked with liquid-crystalline polyurethanes under the 
guidance of Prof. Dr. C. D. Eisenbach.

After graduation, he moved to Switzerland, where he contin-
ued for 17 years through different positions in industry in 

the areas of polymer research and production, as well as material testing and poly-
mer analysis. Polyamides and biopolymers were the focus of a variety of different 
activities carried out during that time.

Since then, for more than 15 years, he has led the research in laser sintering (LS) at 
Inspire AG, the Swiss Competence Center for Manufacturing Techniques. This acts as 
a transfer institute between universities and the Swiss machine-, electro-, and metal 
(MEM) industries.

The focus of his current activities is on new polymer systems for the LS process, the 
analytical evaluation of LS powders with regard to their specific property profiles, 
and LS process development. He supervises several collaborators and has led a wide 
variety of research projects in this environment. A number of frequently cited origi-
nal publications have resulted.

As a guest lecturer, Dr. Schmid has given alternating lectures on the Material Science 
of Plastics, the Processing of Polymers, and 3D-Printing at two Swiss institutions – the 
Interstate University of Applied Sciences Buchs and the University of Applied Sciences 
St. Gallen.

The idea for this book arose from several training courses held at Inspire AG on be-
half of large industrial companies on the subject of “Additive Manufacturing”.
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Foreword

Foreword to the first edition
The history of additive manufacturing seems to be very short on a first view, but in 
reality the technology is more than a hundred years old. The first patent application 
was in 1882 by J. E. Blanther, who registered a method for producing topographical 
contour maps by cutting wax sheets, which were then stacked.

This is an amazing fact: layer-by-layer work processes are currently experiencing a 
huge amount of hype, which was not triggered by the development of new basic tech-
nologies. The background is rather that essential patents have expired, making it pos-
sible to recreate for example a melt deposition method using the simplest means, 
which can be used for the generation of three-dimensional bodies. This hype was cre-
ated in a very short time, and it developed due to considerable inherent dynamics. 
The decentralization of users and the new degrees of freedom offered by the technol-
ogies coincide with the present boom of DIY (do it yourself) culture, so it is not sur-
prising that “Fabber” and “3D printing selfies” are highly demanded.

Conversely, various new technologies were developed over the entire process chain 
as well. During my studies in the early 2000s, when I dealt with the topic for the first 
time, the importance of layer manufacturing was high only in the area of prototyping. 
The technologies have not changed radically since then, but nowadays the market for 
custom products and small production runs in many industries has increased mas-
sively. Consequently, both established machine manufacturers and many innovative 
startups have grown in this field. The additive manufacturing process has found im-
measurable use today, from the production of individual toys to high-power compo-
nents for powertrains. In the future, different scenarios for production are possible, 
and decentralized production “on demand” is tangible. This generates a field of high 
technological expectations with risks and potentials. A realistic estimation should be 
independent of the enthusiasm that is noticeable after seeing the first additive manu-



VIII   Foreword

facturing process and having the generated part in one’s hand. Independent research 
on the topic is therefore essential.

BMW AG ordered the first SLA system in 1989. Thus, BMW AG was the first customer 
of a today world recognized and leading company for laser sintering systems. Over 
the years, Research and Innovation Center (FIZ) formed a model for a Competency 
Center in which various practical and basic research is carried out today. In addition 
to high quality prototypes for testing and validation of transportation vehicles, mate-
rials and processes are being developed, making it possible to realize the potential of 
layer-by-layer construction. For example, employees working in the automotive pro-
duction are individually equipped with personalized assembly aids to increase ergo-
nomics and performance in assembly lines.

In this case, the focus of the discussion will be less on the 3D printing processes men-
tioned in the media, but rather on the highly complex manufacturing machines on 
which the production is to take place in the future. One such technology is selective 
laser sintering (SLS), a laser-based unpressurized manufacturing process. However, 
the coincidence with a “real” sintering process, is solely that the generated part 
cross-section will be held near its melting temperature for a long residence time. This 
is the core process of laser sintering, which is already examined in diverse ways and 
is still subject of intensive further research.

When I dealt with my own Ph.D. thesis about the time and temperature dependence 
of the two-phase region, in which melt and solid are present synchronous, I had the 
chance to enter into one of the many interdisciplinary fields of research on additive 
manufacturing, and I am still excited about this topic. Anyone who intends to work 
with laser sintering will not be able to find a lot about such specialized topics in most 
of the general books for 3D printing and additive manufacturing. Because powder 
bed based technologies are established as one of the major additive manufacturing 
processes, it is essential also to present the results of basic research and transfer it to 
practical use in order to create, for example, as a service provider, viable high quality 
parts. The purpose of this book by Manfred Schmid, one of the recognized specialists 
in laser sintering, is precisely to give this depth of field without losing the benefits to 
the user.

May 2015

Dr.-Ing. Dominik Rietzel



Foreword IX

Foreword to the second edition
In the last decade, laser sintering has gained a leading role among processes for addi-
tive manufacturing or (as it is often more figuratively expressed) 3D printing. This 
applies to both metals and plastics, which are the focus of this book.

On the one hand, laser sintering produces components whose properties are closest 
to those of “classic” thermoplastic processing. On the other hand, as a process without 
any kind of support structures, it offers the ideal conditions for almost limitless free 
component design, and thus supports the turn from tool-bound design to func-
tion-driven design of a component. This freedom of design is increasingly finding its 
way into industrial production for specialized components with a high degree of func-
tional integration or a high degree of customization, right down to the individual 
piece.

One example of function integration is the production of gripper systems, where up to 
100 individual parts such as valves, springs, hoses, and the gripper tools can be inte-
grated into a single laser-sintered component. As well as eliminating assembly, the 
tool manufactured in this way weighs only a fraction of the conventional tool, and 
thus enables a significant reduction in costs in the life cycle of the component, be-
cause the gripper can move faster and simultaneously use less energy. The high de-
gree of customization that is possible is also put to use, in particular for applications 
involving people, be it the production of customized orthoses and prostheses, or drill-
ing templates for operations. But it doesn’t always have to be high-tech medicine; the 
production of laser-sintered insoles is already a reality today.

The first edition of the book Laser Sintering with Plastics: Technology, Processes, and 
Materials has become the standard volume for system and material manufacturers, 
users, and researchers. This is because even a newcomer to the field of additive man-
ufacturing will find it easy to get started, and because of the depth of detail and tech-
nical precision with which Manfred Schmid manages to explain the highly complex 
interplay of materials and processes, which take place on completely different times-
cales than any other process used in the plastics industry. These long timescales also 
result in particular strains on the materials, and this challenge is one of the reasons 
why the choice of different plastics is still limited, even after 30 years of laser sinter-
ing. To overcome this problem, the chemical industry is working hard on adapted 
plastics, and system manufacturers are accelerating processes, for example by using 
many laser sources simultaneously.

May this second edition be as helpful, educational, and exciting a read as the first edi-
tion to a new generation of technicians working in the field of laser sintering of plas-
tics, and give new impetus to veterans of this technology such as myself.

August 2022

Dipl.-Phys. Peter Keller
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1 Introduction

1.1  Manufacturing Technology

Manufacturing, or production, is the process by which parts, goods, or merchandise, 
commonly called products, are produced. In the manufacturing process, these prod-
ucts are obtained from other parts (semi-finished products) or created from raw ma-
terials. Manufacturing can be manual, mechanical, or mixed (hybrid) processes. The 
various production technologies are dealt with in the subject area of manufacturing 
technology [1].

According to German DIN Standard 8580, manufacturing processes are divided into 
six main groups:

 � Prototyping: A solid body is created from shapeless materials (liquid, powdery, 
plastic); the cohesion is created e. g. by casting, sintering, firing, or bonding.

 � Forming: Changing the shape of a body by pictorial (plastic) alteration without 
changing the amount of material (e. g. bending, drawing, pressing, or rolling).

 � Joining: Previously separated work pieces are transferred into a permanent joint 
(e. g. bonding, welding, or soldering).

 � Cutting: Change in the shape of a solid body; the cohesion is locally dissolved (typ-
ically ablative processes such as grinding or milling).

 � Coating: Surface finishing of all kinds (e. g. painting, chrome plating, etc.).

 � Changing material properties: Conversion by post-treatment (e. g. hardening).

Additive manufacturing processes, in which materials are joined layer by layer to 
form new components, can be clearly assigned to the primary forming processes, and 
have accordingly been integrated into section 1.10 of the latest draft of DIN 8580 (2020).
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1.2  Additive Manufacturing

Additive manufacturing technologies have long been known in industry under the 
term “rapid prototyping”. Rapid prototyping is widely used in model making and 
product development in many branches of industry. The predominant goal is the fast 
and uncomplicated production of individual parts, small component series, or func-
tional and design samples to shorten development cycles.

This approach – long known to industry experts – came into the public eye a few years 
ago, following media hype over “3D printing”. This often gave the impression that 3D 
printing could be regarded as a universal and disruptive manufacturing process that 
would completely replace other manufacturing technologies. According to current es-
timates, however, it is more likely that additive manufacturing is simply joining the 
large number of diverse manufacturing technologies used in industry, and will only 
be used if clear cost advantages can be achieved from its application [2].

In the context of this book, the term additive manufacturing is generally used to indi-
cate that the focus is on the production of industrial components. This does not repre-
sent a devaluation of rapid prototyping or 3D printing, which enjoy a high degree of 
importance in their respective fields of application. The terms additive manufactur-
ing and 3D printing are often used synonymously, and a clear demarcation is not al-
ways possible.

Other partly historical terms that are (or were) used synonymously for additive man-
ufacturing are: generative manufacturing, eManufacturing, additive manufacturing, 
additive layer manufacturing, direct digital manufacturing (DDM), solid-state free-
form manufacturing, and some others. In addition, everything is often still subsumed 
under the term 3D printing, especially in the non-scientific literature. In the mean-
time, however, the term additive manufacturing has become generally accepted and 
is defined by the current standardization.

DIN EN ISO/ASTM 52.900 Additive Manufacturing – Fundamentals – Terminology is 
the basic terminology standard for additive manufacturing (AM). The standard 
defines the most important terms in this context. For example, additive manu-
facturing itself is defined as:

A definition of additive manufacturing
“Process of joining materials to produce components from 3D model data usu-
ally layer by layer, as opposed to subtractive and forming manufacturing 
methods”

Processes in additive manufacturing therefore take place layer by layer, which is why 
they are sometimes referred to as layer construction processes. This definition de-
fines the layer-by-layer construction of objects through additive manufacturing. The 
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geometry of the component is available as an electronic data set in the computer (3D 
model data), which directly controls the creation of the component (direct digital 
manufacturing, DDM). This clearly distinguishes it from subtractive, machining, or 
separating processes.

In additive manufacturing, the final properties of the components are generally only 
created during production. The process parameters used control the final properties 
of the components, in close interaction with the properties of the starting materials. 
This is one of the main differences between additive manufacturing and traditional, 
ablative separation processes, in which the component properties are already largely 
predetermined by the original material properties of the semi-finished product be-
fore shaping.

Because additive manufacturing creates components layer by layer, in two dimen-
sions so to speak, the complexity of the parts in the third dimension plays a subordi-
nate role during the creation process. Components of almost any complexity can thus 
be created during the manufacturing process without significant additional effort. 
Areas of application that require highly complex components are therefore particu-
larly predestined for additive manufacturing, and can be regarded as one of the tech-
nology drivers.

1.2.1  Application Areas and Technology Drivers

AM processes have one outstanding feature in common: they do not require the use of 
a mold that determines the shape of the desired component. Because of this layer-by-
layer shaping without tools, the approach has many advantages that make it particu-
larly suitable for the following areas of application, and which can be regarded as the 
main drivers of AM technology:

 � Economic production of small numbers of components (even with a batch size of 
one, “on demand”)

 � Geometric freedom in design (free-form surfaces, undercuts, cavities)

 � Components with function integration (hinges, joints, flexible units)

 � Lightweight construction (lattice structures with high or varying stiffness)

 � Product personalization (medical technology, sports)

 � Short-term product adjustments (shortening of product cycles)

 � Environmental aspects (reduced material consumption, circular economy)

 � Bionic structures.

Typical industries in which the advantages of additive manufacturing can be very 
well applied and targeted are the consumer goods, automotive, aerospace technology, 
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defense, medical technology, electronics, furniture, jewelryy, sports equipment, and 
tool and mold making.

Some current established business models (personalized drilling jigs for operations, 
individual prosthetics, complex furniture gliders, novel filter systems, robotic grip-
pers) demonstrate the economic use of AM technologies that have already emerged.

Figure 1.1 shows schematically in what way additive manufacturing is superior to 
traditional production methods from an economic point of view.
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Figure 1.1 Unit costs in conflict with part count and part complexity for additive and 
traditional manufacturing; AM is typically not economically viable for mass production 
of simple parts

Established or traditional manufacturing technologies (TMs) are often optimized to 
produce large numbers of components at the lowest possible unit costs. Here, the unit 
costs decrease significantly with the number of parts produced (Figure 1.1, dashed 
line). At the same time, with TF, the unit costs increase significantly with the compo-
nent complexity. In general, a complexity limit is even reached which conventional 
processes cannot overcome, or often only by generating exorbitantly high costs (Fig-
ure 1.1, solid line).

This is where the advantages of additive manufacturing processes (dark grey areas in 
Figure 1.1) come into play. At almost unchanged costs either small component series 
or components with considerable complexity can be manufactured. However, this 
also requires the design of the components to be adapted for the additive processes. 
The part design is changing from one that is required for a production process into 
one that is required for part functionality! This paradigm shift does not mean, how-
ever, that production-oriented rules can be disregarded. Experience shows clearly 
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that it is also important to design for production in additive manufacturing. Com-
pared to tool-related manufacturing processes, however, different rules apply, which 
allow considerably higher degrees of freedom in product design.

However, the adaptations in the part design for additive manufacturing intervene in 
the complete process chain of manufacturing. In product development projects, it is 
therefore imperative that the planned manufacturing process be integrated at the be-
ginning of the project, in order to take advantage of the benefits offered by additive 
processes for part manufacturing [3].

The target-oriented and demand-driven application of additive manufacturing re-
quires a good overview and comprehensive knowledge of the different AM processes, 
and their respective strengths and weaknesses. In addition, the AM processes are 
mostly tied to specific material classes. In addition to the shape and type of the starting 
materials, AM processes differ quite significantly in terms of the underlying process 
sequences, according to which the classification by main AM groups is made today.

1.2.2  Main Groups of Additive Manufacturing

With the progressing standardization in the field of additive manufacturing (see Sec-
tion 3.2.5), seven main groups are currently defined as essential process categories of 
additive manufacturing.

The main process categories (I–VII) often contain further subgroups, which may dif-
fer to a greater or lesser extent in process details. In the case of powder bed fusion 
(PBF) processes in particular, it is also useful to distinguish between plastic processes 
(PBF-P) and metal processes (PBF-M).

I. Vat photopolymerization (VPP)

 � SLA: Stereolithography
 � DLP: Digital light processing
 � CDLP: Continuous digital light processing
 � CLIP: Continuous liquid interface production

II. Material extrusion (MEX)

 � FFF: Fused filament fabrication
 � FGF: Fused granulate fabrication
 � APF: Arburg plastics freeforming

III. Material jetting technology (MJT)

 � MJ: Material jetting
 � DoD: Drop on demand

IV. Binder jetting technology (BJT)
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V. Powder bed fusion (PBF)

 � Polymers
 – PBF-LB/P: Laser-based melting (laser sintering (LS))
 – PBF-IR/P: Infrared-radiation-based melting (MJF, SAF, HSS)

 � Metals
 – PBF-LB/M: Laser-beam-based melting (selective laser melting (SLM))
 – PBF-EB/M: Electron-beam-based melting (EBM)

VI. Directed energy deposition (DED)

 � LENS: Laser-engineered net shaping
 � EBAM: Electron beam additive manufacturing

VII. Sheet lamination (SHL)

Figure 1.2 shows a graphical overview of the processes in the seven main classes. The 
processes that work mainly with plastics as the starting material are located in the up-
per part of the diagram. The metal processes are grouped underneath. Sheet lamination 
(SHL) and binder jetting (BJT) at the end cannot be clearly assigned to metal or plastic 
processes. In BJT in particular, a wide variety of powder substrates can be used in prin-
ciple. Even chocolate powder has already been processed into “components” using BJT.

BJLOM

Classification of AM-processes – following DIN EN ISO/ASTM 52900

VPP MJT

MEX PBF-P

DED
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SLADLPCDLP
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Figure 1.2 Overview of the main process classes of additive manufacturing based on 
DIN EN ISO/ASTM 52.900; the AM processes mainly used in the field of plastics are 
summarized in the upper half
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In general, the classification into main categories is essentially made with regard to 
the differences in the joining of the respective substrates, and less consideration is 
given to material classes. This results from the fact that different materials such as 
polymers, metals, ceramics, and composites can frequently be processed with the 
same process approach.

Depending on whether an AM process leads directly to the finished component or via 
a “green part” as an intermediate step, a further distinction can be made between di-
rect and indirect AM processes or single-stage or multi-stage processes. Plastics and 
metals are still to be considered the main material classes employed for additive man-
ufacturing when it comes to the direct AM processes used to produce final compo-
nents for industrial use.

In indirect AM processes, which mainly comprise binder jetting (BJ) on a wide vari-
ety of substrates, processing pre-polymers in photopolymerization processes (VPP, 
MJT), and compound processing in MEX processes, final components are obtained via 
the detour of a “green part”. Ceramics, inorganic materials, fiber composites, and 
other “composites” are also accessible. Here, polymers or corresponding precursors 
are often also used as green part binders.

In general, however, plastics in a wide variety of starting forms are still the dominant 
class of materials in the additive manufacturing of industrial components and in 3D 
printing [4]. A comprehensive overview of all AM processes with plastics and the 
companies currently involved in the individual process fields can be found on the 
AMPOWER homepage [5].

1.3  Additive Manufacturing with Plastics

What started about 40 years ago with the first work of Chuck Hull on stereolithogra-
phy has today developed into a broadly diversified technology spectrum with a wide 
variety of plastic-based additive processes. The main AM processes in which plastics 
play a central role for the direct manufacture of AM components (see Figure 2.1) are:

 � Vat photopolymerization (VPP)

 � Material extrusion (MEX)

 � Material jetting technology (MJT)

 � Powder bed fusion with polymers (PBF-P).

1.3.1  Vat Photopolymerization (VPP)

The processes summarized under vat photopolymerization (VPP), stereolithography 
(SLA), digital light processing (DLP), and continuous digital light processing (CDLP) 
are based on the use of high-energy radiation (UV or visible light) for the production 
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of AM components. This can be done either selectively by a UV laser (SLA) or via pla-
nar exposure via projectors (DLP/CDLP) [6].

Where the high-energy radiation hits the substrate (a liquid/viscous photopolymer 
resin), polymerization is started and spatially resolved curing of the material is in-
duced. The resins usually consist of complex mixtures of active epoxy- or methacry-
late-based components and so-called hardeners (alcohols and/or amines), and so elas-
tomers or duromers are formed during the printing process. By varying the chemical 
composition of the individual components, the properties of the resulting components 
can be varied over a wide range and adapted to the target applications. The actual 
polymerization is started by an initiator, which breaks down into radicals during UV 
irradiation and induces a radical chain-reaction.

With VPP, a component is created layer by layer by continuously feeding in new resin 
layers. The build platform on which the component is created is either gradually low-
ered into the resin bath or pulled out of it. Because VPP processes use a liquid to cre-
ate objects, there is no structural support from the material during the build phase. 
Support structures must therefore be used if the components have overhangs, cavi-
ties, or other complex structures.

VPP processes are usually characterized by high component precision and very good 
component surfaces. The disadvantage is often a pronounced brittleness of the com-
ponents (duromer) and low long-term stability due to incompletely converted pho-
to-initiators. Post-curing and degradation effects induced by the UV component in 
sunlight can lead to disintegration of the components. The following list and Figure 1.3 
summarize the main features of the individual VPP processes.

Vat Photopolymerisation (VPP)

Stereolithography(SLA)
UV sensitive prepolymers are cured with pinpoint accuracy using a UV laser
Advantages: high precision; very good component surfaces; large components possible
Disadvantages: support structures; slow process; limited long-term stability UV-sensitive

Digital Light Processing (DLP)
UV-sensitive prepolymers are cured over the surface with the aid of a projector
Advantages: high precision; good component surfaces; increased process speed 
Disadvantages: support structures; limited part dimensions and long-term stability

Continous Digital Light Processing (CDLP / CLIP)
Ilumination from below; inhibition of UV curing by addition of oxygen
advantages: high precision; good part surfaces; very high process speed 
Disadvantages: support structures; limited part dimensions 

Projector

UV-laser

Projector

Figure 1.3 Different photopolymerization processes (VPP) for the production of 
plastic components
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Stereolithography (SLA)
In the SLA process, the material is cured in a spatially resolved manner with the aid of 
a UV-laser. Exposure often takes place from above, with the laser beam being pre-
cisely controlled via mirror systems (scanners). This type of exposure makes large 
component dimensions possible, and components can even be produced in the meter 
size range with the corresponding SLA printers (e. g. models of dashboard carriers in 
the automotive sector).

A newer process, which can be assigned to SLA, is “hot lithography” (Cubicure GmbH). 
Here, the process temperature is raised significantly above room temperature, which 
enables the processing of novel SLA resins with higher viscosity at room temperature. 
Improved properties in terms of temperature stability and mechanical properties can 
be expected from this process.

Digital light processing (DLP)
In DLP, area exposure takes place with projectors. The exposure can be from above as 
well as from below through a special light, and (if necessary) a base of the resin tank 
that is gas-permeable. The component dimensions are dictated by the resolution of 
the projector and are much more limited than with SLA. Therefore, DLP processes are 
often used for smaller or filigree components, e. g. for casting negatives in the jewelry 
sector, or lattice-like structures with small local cross-sectional areas.

Continuous digital light processing (CDLP)
CDLP is a variant of the DLP process. This process became very well known as contin-
uous liquid interface production (CLIP) by the company Carbon 3D. Here, the fact that 
oxygen (O2) acts as a radical scavenger and can specifically inhibit photopolymeriza-
tion (quenching) is exploited. If, as in the CLIP process, it is possible to control the lo-
cal inhibition very precisely, a significant increase in the process speed is possible. 
The components can be generated freely in the photopolymer resin, if the exposure 
plane and “quenching zone” are very precisely matched. In addition, the polymer 
resins developed for these processes often have components that can be thermally 
cured in post-processing steps. This makes the components significantly more stable 
and suitable for technical applications in long-term use. However, the component di-
mensions are just as limited as in the DLP process due to the use of projectors and the 
negative pressure that develops with larger cross-sectional areas.

1.3.2  Material Extrusion (MEX)

In recent years, additive manufacturing by means of material extrusion (MEX) has 
developed a wide range of applications in terms of both materials and processes [7]. 
This ranges from simple DIY printers for do-it-yourselfers at home to special pro-
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cesses that are suitable for extruding fiber-reinforced concrete and thus for “print-
ing” entire buildings [8, 9].

Very large components, such as body elements for vehicles (e. g. BigRap), can be pro-
duced with this process, as can multi-component and continuous fiber-reinforced 
work pieces (e. g. Markforged). In addition, MEX can also be used to process compos-
ite filaments filled with metal and ceramic particles, which can be converted into 
pure ceramic or metal parts with appropriate post-treatment steps. Further applica-
tions of MEX technology also go in the direction of “food printing” [10].

When non-reinforced plastic filaments are used, it is often referred to as fused depo-
sition modeling (with the abbreviation FDM® being registered and trademarked by 
the Stratasys Company for these processes), or more generally fused filament fabrica-
tion (FFF).

Fused filament fabrication (FFF)
Plastics are usually wound as filament onto a spool for use in the FFF process and fed 
through a heated nozzle as they are unwound in the MEX printer. Proper heating 
above the glass transition point of the polymer causes the filaments to adhere to each 
other as the strand is deposited, forming a three-dimensional component when prop-
erly processed. A subtype of the FFF process is the continuous filament fabrication 
(CFF) process. Here, continuous fibers, e. g. carbon fibers, are fed in parallel to the FFF 
printing process via a second print head in order to generate stiff and high-strength 
components.

Plastics frequently used in the FFF process, such as ABS or PLA, are amorphous and 
exhibit sufficient toughness and dimensional stability even far above the glass point, 
so that the production of three-dimensional components is successful. In addition, 
amorphous materials show hardly any shrinkage during cooling, which increases the 
dimensional stability of FFF components and avoids process errors such as warpage 
and detachment from the build platform during construction.

One problem in the FFF process can be poor layer adhesion if the temperature drops 
too far during the building process and sufficient adhesion between the filament lay-
ers no longer exists. In order to improve layer adhesion in FFF components, closed 
heated build spaces are used, and there are now also approaches to improve adhesion 
at the interface between the individual filaments through thermally or chemically 
induced reactions. A distinction is then made between MEX-TRB (thermal reaction 
bonding, TRB) and MEX-CRB (chemical reaction bonding, CRB).

Many approaches are also being pursued with FFF to be able to process semi-crystal-
line polymers, such as polyamides (PA), polyester (PET), or also high-temperature ma-
terials, such as polyether ether ketone (PEEK), polyetherimide (PEI) or polysulfone 
(PSU). Applications in medical technology or aircraft construction, for example, prom-
ise great potential. Filled or fiber-reinforced filaments can be used to keep volume 
change during the crystallization process low and to avoid component distortion.
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Fused granulate fabrication (FGF)
Due to the low material throughput in the FFF process, extruder heads have been devel-
oped for “printing” large components, which can directly process micro-granules or stan-
dard granules of plastics. An additional process step, the production of plastic filaments 
on spools, is thus eliminated. Filled or fiber-reinforced materials can also be used to ad-
vantage in FGF, which is essential for good dimensional stability. Nozzles in the range of 2 
to 10 mm diameter are used. However, this results in rough, wavy surfaces that must be 
converted into smooth surfaces by appropriate post-treatment steps (e. g., by over-mill-
ing). Applications for the fast-growing FGF-MEX variant can be found in mold and sports 
equipment construction as well as in the furniture industry and for large vehicle parts.

Arburg plastics freeforming (APF)
One MEX variation is the freeform plastic molding (APF) developed by ARBURG. In-
stead of filaments, small plastic droplets are continuously ejected (extruded) via 
piezo-controlled nozzles. The material nozzles are positioned in a fixed location, and 
the building platform on which the components are created can be moved and posi-
tioned in three spatial directions. By using several nozzles, different materials can be 
processed simultaneously, so that combinations of different materials (e. g. hard/soft) 
can be linked in one component.

The outstanding advantage of the APF approach is that, in principle, standard poly-
mer granulates can be used as the starting materials, which are already available for 
other plastics processing methods (injection molding, extrusion). The time-consuming 
and costly intermediate step of filament production is eliminated. In reality, however, 
the use of standard pellets is often difficult, since these materials contain all kinds of 
processing aids that can interfere with the APF process.

Likewise, filled materials are almost impossible to process due to the sensitivity of the 
high-precision extrusion dies. A disadvantage here, as with the other MEX processes, 
is the relatively slow process speed when building up the parts and the mandatory 
use of support materials for complex structures. Figure 1.4 summarizes the essential 
elements of MEX technology for processing plastics.

Material Extrusion (MEX)

Fused Filament Fabrication (FFF), Fused Granulat Fabrication (FGF)
Plastics are heated in a nozzle and deposited on top of each other strand by strand
Advantages: basically simple (DIY) and wide variety of materials
Disadvantages: wavy part surfaces, support structures; single parts; slow process

Arburg Plastics Freeformer (AKF)
Polymer granules are extruded droplet by droplet via a piezo-controlled nozzle
Advantages: Polymer pellets from "bar"; multi-material combinations (hard/soft).
Disadvantages: support structures required; individual parts; build-up rate very slow

Figure 1.4 Material extrusion process (MEX) for the production of plastic components
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1.3.3  Material Jetting Technology (MJT)

Direct manufacturing of plastic components is achieved with material jetting (MJ) or 
drop-on-demand (DOD) technologies (see Figure 1.5). In principle, these are printing 
processes analogous to traditional 2D inkjet printing. Viscous materials are applied to 
a build platform from digitally controlled print heads.

Material Jetting Technology (MJT) 

Material Jetting (MJ)
Pre-polymer droplets are deposited with a print head and cured with UV lamp
Advantages: high precision; very good part surfaces; multi-material processing
Disadvantages: support structures; limited long-term stability

Drop on Demand (DOD)
Polymers (waxes) are deposited with a print head and thermally cured
Advantages: high precision; good partt surfaces; predominant use as cast cores
Disadvantages: support structures; thermally unstable components

Figure 1.5 Material jetting technologies for the production of plastic components

If the printing materials are UV-curing pre-polymers (see Section 1.3.1, VPP process), 
curing of the droplets takes place immediately after deposition by UV lamps posi-
tioned in the print head (photopolymerization). However, curing after deposition of 
the droplets can also take place purely thermally by cooling, if low-melting substances 
such as waxes are involved.

The basic prerequisite for MJT is always a certain viscosity of the pre-polymers, which 
must be adapted to the high-precision print heads. If this is given, the process is basi-
cally well-suited to processing several materials with different property profiles at 
the same time. The production of components from “gradient material”, i. e. with lo-
cally adapted material properties, by adjusting the mixing ratio of the starting materi-
als directly in the printing process, is thus possible. In general, MJ is very versatile and 
generates components with very low surface roughness and high dimensional accu-
racy at high speed by precisely controlling material deposition.

Disadvantages of MJ are, as already mentioned in Section 1.3.1 (VPP process) for 
UV-curing systems:

 � A certain brittleness of the components (duromers)

 � Low long-term stability (post-curing and degradation effect induced by the UV 
component in the sunlight).
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 – input 31 
laser module 26 
laser power 32 
laser scan lines
 – visible 227 
laser scan spacing 32 
laser spot 40 
laser window 26 
laurolactam 168, 180 
layer bonding 117 
layer boundaries 117, 183 
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polycondensation 105 
polydispersity index (PDI) 126 
polymer and laser sintering market in 
comparison 166 

polymer chains
 – extension 182 
 – with open chain ends 180 
polymerization 104 
 – ionic 104 
 – radical 104 



Index 251

polymer powders 135 
polymer properties 103 
polymer pyramid 166 
polymers
 – amorphous 106 
 – elastomeric 103 
 – hydrolysis-sensitive 125 
 – schematic structure 104 
 – semi-crystalline 106 
 – thermoplastic 103 
 – thermoset 103 
polymethyl methacrylate (PMMA) 109 
polymorphism 177 
polyphosphinate 199 
polyvinyl chloride (PVC) 163 
pores 219 
porosity
 – determination 219 
 – non-destructive determination of 
the 219 
 – residual 220 
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viscosity curve 109, 122 
viscous behavior 122 
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waterproofing 231 
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