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Preface

The industrial injection molding process is dominated by compact injection molding, 
despite the wide variety of special processes available. Of these, one process, the 
foaming of plastics, is coming into focus due to its potential as a driving force of the 
lightweight design megatrend. 

This involves the chemical and physical foaming of plastics. The latter, physical foam-
ing, is of greater importance in the range of applications today. However, this was not 
always the case. Based on a patent from MIT (Massachusetts Institute of Technology), 
physical foaming became widespread only since the late 1990s / early 2000s through 
the global manufacturers of injection molding machines. The interested machine 
manufacturers concluded contracts with the patent holder – Trexel Inc., USA – and 
started marketing the technology. Both main authors of this book remember these 
beginnings well, as they both were involved in contract signings. 

Today, physical foam injection molding is on the threshold of becoming another stan-
dard process alongside the established compact injection molding process. The focus 
of our considerations is therefore on answers to the questions that have so far stood 
in the way of this goal: Why has physical foam injection molding not become more 
widely accepted, even though there are already so many outstanding example appli-
cations that speak in favor of this technology? 

As with the introduction of all new innovative technologies, investments are also nec-
essary for foam injection molding. However, we are not thinking here of the neces-
sary machine equipment for production. We would rather leave the monetary evalu-
ation of comparing the manufacturing costs using compact injection molding with 
those using the foam molding process to the businessperson.

We are thinking of investments in the training of product designers responsible for 
the part design suitable for foam injection molding, investments that are necessary to 
create appropriate guidelines and standards, and investments to register and publish 
specific material data. If you ask the universities responsible for research and train-
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ing about this, the answer is always: “The process has been developed, what are you 
waiting for? Now the ball is in the industry’s court!” With the questions formulated 
above, we are obviously in an unresolved “gray area” between engineering science 
and industry. But isn't engineering science closely intertwined with industry, and 
should they not seek dialogue with each other? This is obviously less the case with our 
topic. 

We as authors have therefore initiated Guideline 2021 (“Thermoplastic foam injection 
moulding”) at the VDI (The Association of German Engineers), which was published 
in May 2023, and with this book we also want to make a contribution to the design 
guidelines that have been missing up to now. The last missing area of material data 
sheets is also discussed. Frankly, however, this is the last missing link to the break-
through of foam injection molding as a second standard process, since few impulses 
for solving the problem come from the material manufacturers who are actually re-
sponsible. In concrete terms, this means that there is a lack of material data without 
which no part designer can make detailed calculations. Molders who consistently and 
uncompromisingly enter the technology of foam injection molding must therefore 
currently invest their own work with regard to the material question. However, a 
competitive advantage will be the reward. 

This book, with its broad presentation of all important topics, is intended not only as 
an important guide for the beginner, but also as an aid to the advanced user of foam 
injection molding in dealing with current problems. 

The main authors would like to express their special thanks to the other co-authors on 
their individual contributions, for their willingness to cooperate and for their per
severance and patience during the long development phase of this book project. In 
particular, we would like to take this opportunity to thank Mr. Roger Kaufmann, who 
actively supported us with his pure expert knowledge of the important areas of pro-
cess simulation application and mold design and development. Furthermore, the au-
thors are deeply indebted to the staff of Carl Hanser Verlag for their helpfulness and 
generous support in coordinating the work at the publishing house. Another big 
thank you goes to Ms. Angelika Wobbe, who not only had to hold the threads together, 
but also took over the careful review and correction of the book chapters and is also 
responsible for the translation into English.

Hartmut Traut, Siegen, Germany 
Hans Wobbe, Hitzacker (Elbe), Germany 

Spring 2024



Foreword

What is holding back new technology adoption? Often our personal aversion to risk. 
The reasons for this may be laziness on the one hand, and on the other hand the ap-
plication of the familiar, the good old habits. Often, it is simply ignorance. The igno-
rance regarding opportunities and risks as well as the uncertainty in evaluating them 
correctly in order to dare to implement. To dare and not to hesitate in order to release 
beneficial potentials. It is often the same when it comes to using physical foam injec-
tion molding technology: “Isn’t it all voodoo?” – Which brings us back to uncertainty, 
and thus to risk aversion.

But then, it is not that simple. Good solid engineering of products, tools, machines and 
processes is based not only on the depth of technical knowledge, but also on engineer-
ing common sense. In other words, on the valuable wealth of experience of a techni-
cal expert, but also on the gut feeling of the specialist. The skillful combination of both 
is a guarantee for the development of efficient and economical production processes, 
which are then used to manufacture high-quality products that meet the require-
ments. 

And this is exactly where the work of the authors Traut and Wobbe comes in. The aim 
of this book is to enlighten, to create trust, and to enable users to go risk-consciously 
into the implementation. The technology of physical foam injection molding has been 
around for a good 20 years. At the beginning, it was heavily regulated due to existing 
patents by the Trexel Company, which meant that the spread of MuCell® on shop 
floors was correspondingly restrained. Due to this obstacle, the process could only 
slowly establish itself in the world of plastics. In addition, in the early years, attention 
was often focused on the general upgrading of the process technology, its implemen-
tation possibilities and performance diversity. Now that the process is in place, one 
might think, it is time to move on to production. However, as is well known, the indus-
trialization of a process technology already begins with product development. You 
could also say that the process follows the product with its requirements and specifi-
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cations, and not the reverse. It always makes sense to first clarify the “what” and the 
“for what” before one can think about the “how” and the “by what means”. Classic, but 
proven – unfortunately not always put into practice. But that is another topic ...

In order to be able to successfully implement the promising advantages of physical 
foam injection molding, such as weight reduction, minimization of shrinkage and 
warpage, and cycle time reduction – to name but a few – it is necessary to take into 
account and, above all, to realize the special process engineering features early in the 
product development stage. The classic doctrine of material- or process-oriented de-
sign for compact injection molding applies only to a limited extent, or is no longer 
necessary in the depth of its consequence. In this case, this can be very advantageous, 
especially with regard to wall thickness variations, sink marks and geometric dimen-
sional accuracy. In short, it must – or rather “may” – be designed differently. The same 
has an effect on the mold design and thus on the mold construction. Here, too, there 
are special features to be taken into account so that the process can ultimately be suc-
cessfully applied.

Product, mold and injection molding machine: an inseparable triad that must be har-
moniously coordinated to ensure process capability around the clock if necessary. All 
these topics are discussed, explained and usefully reflected upon in the book, based 
on the professional competence that the entire team of authors has built up and ac-
quired over many years. Reading this book, it soon becomes obvious that the practical 
implementation of what is described has a very high priority. Basic knowledge and 
solution approaches are considered holistically. Advantages and disadvantages are 
presented and discussed.

At this point, one can only wonder why it has taken so long for such a standard work 
to be made available to the industry. The “thirst for knowledge” is there – finally, it is 
satisfied.

Thomas Seul, Schmalkalden, Germany

Spring 2024
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Glossary of Abbreviations

Abbreviation Definition

AiF Arbeitsgemeinschaft industrieller Forschungsvereinigungen 
­(German Research Association)

Al Aluminum

ASA Acrylonitrile–styrene–acrylate

BLM Boundary-layer mesh

DIN Deutsche Industrie Norm (German industry standard)

FEM Finite element method

Fraunhofer ICT Fraunhofer Institute for Chemical Technology, Pfinztal, Germany

GKV Gesamtverband der kunststoffverarbeitenden Industrie (General 
Association of the Plastics Processing Industry), Berlin, Germany

HDPE High-density polyethylene

HP process High-pressure process

IKV Institute for Plastics Processing, Aachen, Germany

IML In-mold labeling

IP Instrument panel

ISO International Standards Organization

LDPE Low-density polyethylene

LGF Long glass fibers

LLDPE Linear low-density polyethylene
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Abbreviation Definition

LP process Low-pressure process

MFI Melt flow index

MFR Melt flow rate

MIT Massachusetts Institute of Technology, Boston, USA

OEM Original equipment manufacturer

PBT Polybutylene terephthalate

PET Polyethylene terephthalate

PiAE Plastics in Automotive Engineering; VDI Congress

PP Polypropylene

pvT Pressure–volume–temperature behavior

SEM Scanning electron microscope

SCF Supercritical fluid

SPC Storage programmable control

TFIM Thermoplastic foam injection molding (see TSG)

TPE Thermoplastic elastomer

TPU Thermoplastic polyurethane

TSG Thermoplastic foam injection molding

UN United Nations

VCI Verband der chemischen Industrie (German Chemical Industry 
­Association), Frankfurt am Main, Germany

VDI Verein Deutscher Ingenieure (The Association of German Engineers), 
Düsseldorf, Germany
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Introduction

Hartmut Traut and Hans Wobbe 
It is as a result of the lightweight design megatrend that foam injection molding has 
developed into the most important special process alongside conventional compact 
injection molding. However, the actual development of thermoplastic molded parts 
by injection molding began already in the 1950s. Experienced machine operators re-
duced sink marks on the molded parts by adding small amounts of baking powder to 
the granules. This was the beginning of chemical foaming, but with the focus on elim-
inating sink marks – the production of complete foamed molded parts was not yet 
envisaged at that time. 

Before we continue with the text, a quick note on terminology: The authors have cho-
sen to use the abbreviation “TSG” for “thermoplastic foam injection molding” through-
out this book; this corresponds to the German term for the method, but is quite widely 
used, partly because it is the standard abbreviation applied by the VDI (Association of 
German Engineers). However, readers may find the abbreviation “TFIM” is sometimes 
used in other sources. 

Thermoplastic foam injection molding (TSG) then received a major boost in the 1990s 
from the work carried out at MIT (Massachusetts Institute of Technology) in Boston 
on microcellular plastic foams using direct gassing”. Compared to the chemical blow-
ing agents used until then, direct gassing involves inert gases such as nitrogen or car-
bon dioxide. It is therefore also referred to as physical foaming. Here, for example, 
the nitrogen is metered under pressure into the plasticizing area, where the polymer 
is already fully melted. It plays a special role here that the gas is mixed into the mol-
ten plastic in a supercritical state. Thus, a single-phase mixture can be achieved, and 
with excellent homogeneity. 

After some time, which was also characterized by start-up difficulties, the “special 
TSG process” then established itself as a largely “normal” processing method. In addi-
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tion, the initiators often come directly from the molders, who are aware not only of 
the material savings but also of the advantages in the production of finished parts. 

Lock housings in the passenger car sector are a very good example of this. The re-
quirements of the finished part are characterized by tight tolerances, a surface with-
out visible sink marks, and material savings. Without the TSG process, these are not 
achievable! In addition to the lightweight design mentioned at the beginning, the 
trend toward large-area, thin-walled components also plays into the cards of foam 
injection molding. Today, many of the required part dimensions in terms of warpage 
cannot be produced without TSG. 

The well-known disadvantages of foam injection molding, i.e. a surface of the molded 
part that is not free of streaks, have now been solved. High-gloss surfaces can be 
achieved by rapidly variable mold temperature control. There are also ceramic-based 
coatings on the market which – applied in the cavity – produce a “variothermic ef-
fect”. Component surfaces with textures and grains can already be produced without 
the additional processes mentioned.

This means that there are no longer any limits to the TSG process – the way is now 
clear for it to become a standard process alongside compact injection molding. The 
relevant committees have also recognized this and have developed a standard for 
foamed components as a VDI guideline, which was published in May 2023 after sev-
eral years of work.



1 Importance of Foam 
Injection Molding for 
Industrial Lightweight 
Design

As already mentioned in the introduction, the actual breakthrough of foam injection 
molding did not take place until the 1990s, driven by the lightweight design trend in 
the automotive industry. Developments at that time, such as the lock housing already 
cited or headlight housings, are now standard technology. Not only that, but today all 
these components in automotive engineering are actually foamed. Foam injection 
molding has replaced compact injection molding as the standard process for many 
components in the automotive industry! The technology curve in Figure 1.1 clearly 
shows the “development history”.

The abscissa of the graph in Figure 1.1 depicts the technology life status of the compo-
nents over time, starting from the development status to the state of the art. The ordi-
nate shows the corresponding manufacturing process, partly named with the mate-
rial component to be processed (MuCell® with TPU), partly as a combination technology, 
such as MuCell® with film back injection.

The superficial explanation for the definitive breakthrough of foam injection molding 
is that foaming the plastic reduces the weight of the material for the same part geom-
etry. At the same time, the manufacturer saves on the material input of the polymer 
during the primary shaping process. A closer, more intensive look at the process steps, 
as we will explain in detail in Chapter 3 “Definition and Characteristics of Physical 
Foam Injection Molding”, also reveals a considerable range of additional advantages. 
In many cases, it is precisely these advantages that make it easy for the user to decide 
whether a component should be produced by compact injection molding or whether 
it is better to produce it as a foamed part. 
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Figure 1.1 Development curve of MuCell® for automotive applications  
[Source: Trexel GmbH]
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These advantages of the TSG process are, in addition to the weight savings already 
mentioned:

	� A reduction in sink marks (usually to zero).

	� Hardly perceptible warpage of the components.

	� Production increases due to cycle time reduction.

	� Possibility of thin-walled lightweight design (see in detail Chapter 4 “Design Guide-
lines for Foamed Components”). 

Figure 1.2 gives an exemplary overview of this, based on four reference parts from 
the automotive industry. To explain Figure 1.2, let us take the “oil pan” as seen in the 
third row: Here, the second column in the figure indicates the reference data in each 
case, i.e. the part weight, the equipment investment including tooling, the productiv-
ity, the resulting part costs, and the mechanical part properties required for the criti-
cal points. The reference is, of course, the classically compact injection molded part.

In the third column “Injection Molding with MuCell®”, the first results can now be 
discussed comparatively:

	� The component weight decreases, corresponding to the degree of foaming. 

	� The investment increases concerning the injection molding machine. A gas dosing 
station is also required. 

	� Productivity increases significantly, mainly due to faster production cycles. 

	� The costs related to the component decrease, since the reduced material input and 
the increased productivity offset the higher equipment investment. 

	� The necessary mechanical properties at the critical points of the component re-
main intact.
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It becomes even more interesting for every user as soon as the component design has 
been carried out as a lightweight design in compliance with the TSG design guidelines 
(for details, see Chapter 4). For this purpose, we will now discuss the representation in 
the fourth column of Figure 1.2 “Injection Molding + MuCell® + Lightweight Design”:

	� The component weight of the oil pan is further reduced by approx. –10%. This is 
due to the lightweight design suitable for the TSG process. 

	� The equipment investment increases slightly, also compared to the third column, 
because the tooling costs for such a component are slightly higher. Otherwise, there 
are no changes to what has already been stated. 

	� Productivity continues to increase! We achieve shorter cooling times due to thin-
ner components as well as even faster cycles of the production line. 

	� The costs related to the component are reduced once again, now by a good 10% in 
total. 

	� There is no change in the mechanical properties of the critical areas of strength. 
The values are comparable with those of compact injection molding. 
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Figure 1.2 Advantages of exemplary TSG components [Source: Trexel GmbH] 
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So much for the advantages of TSG components, which we experience every day in 
mass production. We do not wish to go into further detail here on another macroeco-
nomic advantage that is repeatedly mentioned, namely the CO2 footprint in produc-
tion – we will discuss this issue in more detail using an example from the automotive 
sector in Section 9.1. However, it is clear to everyone that TSG offers considerable ad-
vantages here compared to traditional compact injection molding: Material costs de-
crease, production efficiency increases, and the lightweight part requires less kinetic 
energy in its “later life cycle”. 

Let us return to Figure 1.1 in this chapter. In particular, the “Development” section 
should clearly show here that TSG by itself is a technology that today can be described 
as a standard process. In addition, however, every expert is aware that TSG in con-
junction or in combination with another process offers an enormously large, yet un-
exploited potential for new processes.

Last but not least, we would like to point out that in most chapters of this book we list 
tips and suggestions in prominent type under the motto “Less is more”. In each case, 
the labeling begins with the symbol of a scale and points out advantages and interest-
ing aspects of foam injection molding.

We hope that this will motivate as many readers as possible to take a closer look at 
this innovative process, so that further development and research will be carried out 
in this area in the future – because, as already mentioned above, this technology still 
holds some unrealized potential.
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