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1. Isolation:

a) ∀a,b ∈ F it holds that a +b = c ∈ F

b) ∀a,b ∈ F it holds that a ·b = d ∈ F

2. Associativity:

a) ∀a,b,c ∈ F it holds that (a +b)+c = a + (b +c)

b) ∀a,b,c ∈ F it holds that (a ·b) ·c = a · (b ·c)

3. Neutral element:

a) Regarding addition, there exists an element 0 ∈ F , so that a +
0 = a ∈ F ∀a ∈ F

b) Regarding multiplication, there exists an element 1 ∈ F , so
that a ·1 = a ∈ F ∀a ∈ F

4. Inverse element:

a) For each element a ∈ F there exists an additive inverse ele-
ment (−a), so that a + (−a) = 0 (neutral element of addition).

b) For all elements a ∈ F \0 there exists a multiplicative inverse
element a−1 ∈ F so that a ·a−1 = 1 ∈ F .

5. Distributivity law: a field F obeys the distributivity law, i.e.
∀a,b,c ∈ F : (a +b) ·c = (a ·c)+ (b ·c)

Examples

The set of real numbers R and the set of complex numbers C each form a
field. Both fields have an infinite number of elements.

2.3 Galois Fields

In the last section we defined the algebraic structures of groups, rings and fields.
These definitions are valid for element sets with an infinite number as well as for
those with a finite number. Fields based upon a finite number of elements are of
particular interest when it comes to technical applications in cryptography, chan-
nel coding, mobile communication or navigation systems. Therefore, in the fol-
lowing sections we will focus on such finite fields, which are called Galois Fields.

For that purpose, we will now have a closer look at element sets of the form Zm =
{0,1,2,3, . . . ,m − 1}. If we apply modulo-m-addition and modulo-m-multiplica-
tion, such a set will always obey the isolation property, i.e. the result of any op-
eration will always be within the given set of elements. In addition, it is obvious
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that such sets contain the neutral element of addition, namely ‘0’, as well as the
neutral element of multiplication, namely ‘1’. Without proof it shall be stated that
associativity, commutativity as well as the distributivity law are fulfilled.

However, one question remains: For which elements of Zm does a multiplicative
inverse exist? In order to answer this question, let us first consider the case in
which m is a composite number, i.e. m is the product of at least two primes p1

and p2.

m = p1 ·p2 (2.1)

Since the condition 2 ≤ p1, p2 ≤ m−1 holds, p1 and p2 themselves are elements of
Zm . Suppose we want to check if p1 has a multiplicative inverse w.r.t. modulus m.
According to the definition of the multiplicative inverse, the following condition
must hold:

p1 ·p−1
1 mod m ≡ 1 (2.2)

Looking for the multiplicative inverse of p1 means looking for some element p−1
1 ∈

Zm so that the Equation (2.2) is fulfilled. Therefore, if we check the multiples of
p1, i.e. p1,2p1,3p1, . . . , these will be greater than p1 itself as long as the product is
smaller than m. If we multiply p1 by p2 or calculate p2

1, the result modular m is
identical to 0. However, if we multiply p1 by (p2 +1) or calculate p1 · (p1 +1) and
assume that p1 = 2 or p2 = 2, i.e. the smallest prime, then the product modular m
will be at least 2. Hence, no multiplicative inverse exists in this case. Therefore, it
is impossible to build a field on any composite integer m. A finite set of elements
Zm = {0,1,2,3, . . . ,m −1}, where m is composite, will always form a ring together
with the two operations ‘addition’ and ‘multiplication’.

An element a has a multiplicative inverse a−1 mod m if and only if the greatest
common divisor (gcd) of m and a is equal to one, i.e. if m and a are said to be
relatively prime, gcd(m, a)= 1.

Let us look at an example.

Example: Suppose m = 6. Z6 = {0,1,2,3,4,5}

The multiplication table for this Z6 is given by:

• 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1
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With respect to the given example, it is obvious that for m = 6 = 2 ·3, the elements
2 and 3 are not relatively prime with respect to m = 6 and therefore do NOT have a
multiplicative inverse. (Neither does the element 4 have a multiplicative inverse,
since the gcd (m = 6,4)= 2 is also greater than one.

2.3.1 Prime Fields

In order to better understand the structure and handling of prime fields, we need
to answer a few questions. For which primes does a finite field exist? What is a
‘generator’ of a field? The answers are provided in the following sections.

2.3.1.1 Existence of Prime Fields
An essential message about the existence of Prime Fields is stated within the fol-
lowing theorem, namely, that we can generate a Prime Field over any prime inte-
ger p .

Theorem: Existence of Prime Fields

The set of elements GF(p)= {0,1,2,3, . . . , p −1}, where p is a prime, forms
a field.

GF(p) is named Galois Field or Prime Field with characteristic p .

Hence, the smallest field that exists is GF(2) = {0,1}.

Table 2.1 Addition and Multiplication Table of GF(2)

Addition mod2 Multiplication mod2
+ 0 1 · 0 1
0 0 1 0 0 0
1 1 0 1 0 1

If we want to implement modular-2-arithmetic in a digital circuit, it is inter-
esting to see that modular-2-addition directly corresponds to an exclusive-OR,
XOR-operation, while modular-2-multiplication directly corresponds to an AND-
operation.

Let us look at another example: GF(7) = {0,1,2,3,4,5,6}, where p = 7 is a prime
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Example:

GF(7) = {0,1,2,3,4,5,6}, where p = 7 is a prime

Table 2.2 Addition Table of GF(7)

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

One aspect which can be directly derived from Table 2.2 is that the addi-
tive inverse (−a) of any element a is not a negative integer, but rather
the element which adds up to zero modulus 7. If a = 2, then (−a) =
−2 mod 7 ≡ 5, since 2+5 mod 7 ≡ 0.

Table 2.3 Multiplication Table of GF (7)

· 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Since each row of the multiplication table contains a ‘1’ as a result, each element
of the given set has a multiplicative inverse. Choose an element a by selecting a
specific row, then find the ‘1’-entry of multiplication. The corresponding column
contains the multiplicative inverse a−1 mod 7.

For larger values of primes p it may, of course, not be so convenient to write
down the multiplication table. Therefore, in general, the multiplicative inverse
a−1 mod p can be calculated by means of the so-called Extended Euclidean Algo-
rithm (EEA). For a detailed description of the EEA the interested reader is referred
to e.g. [1]
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2.3.1.2 Generators of Prime Fields
Within this section we will see that there exists a second method to determine the
multiplicative inverse of any element a of GF(p). The idea of this method is to
make use of a generator or a primitive element of GF(p).

Suppose we calculate the different powers of an element α of the prime field
GF(p):

y =αi mod p with i = 1,2,3, . . . , p −1 (2.3)

Since multiplication is done with modulus p , we can be sure that y will be an
integer of GF(p) for each i .

Definition: Generator or primitive element of GF(p)

An element α for which all powers αi mod p with i = 1,2,3, . . . , p−1 yield
all elements of GF(p) except 0, is called a generator or a primitive ele-
ment of GF(p).

According to [2] the following statement applies.

Theorem: Existence of generators for Prime Fields GF(p)

Every prime field or Galois Field GF(p) = {0,1,2,3, . . . , p − 1} contains at
least one generator or primitive element.

At the same time, it needs to be noted that not all elements of GF(p) are generators
of the field.

Since a0 mod p ≡ 1, there must exist an integer i0 
= 0, so that ai0 mod p ≡ 1. The
smallest positive integer i0 for which the given condition is fulfilled is called the
order of the element a, ord(a). Therefore, if and only if an element a has the order
p −1, this element is a generator of GF(p).

Table 2.4 shows the powers of all elements of GF(17). The first column shows the
increasing exponent while the first row lists all elements of GF(17). In a specific
column the various powers of the element a shown in the top row, i.e. ai mod 17,
are presented in the table. The bottom row shows the order for each element a.

One important observation is that the element orders are different from the ele-
ments of GF(17). Another point to note is that in total 8 elements (3,5,6,7,10,11,
12,14) with the element order equal to 16 exist. Each of these elements is a gener-
ator of GF(17).
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Example: Galois Field GF(17)

Table 2.4 Element orders of GF(17)

a= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
i ai mod 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 4 9 16 8 2 15 13 13 15 2 8 16 9 4 1
3 8 10 13 6 12 3 2 15 14 5 11 4 7 9
4 16 13 1 13 4 4 16 16 4 4 13 1 13 16
5 15 5 14 7 11 9 8 6 10 3 12 2
6 13 15 2 8 9 4 4 9 8 2 15 13
7 9 11 10 14 12 15 2 5 3 7 6 8
8 1 16 16 16 16 1 1 16 16 16 16 1
9 14 12 11 10 7 6 5 3

10 8 9 15 2 2 15 9 8
11 7 11 5 14 3 12 6 10
12 4 4 13 13 13 13 4 4
13 12 3 10 6 11 7 14 5
14 2 15 9 8 8 9 15 2
15 6 7 3 5 12 14 10 11
16 1 1 1 1 1 1 1 1
ord(a)= 8 16 4 16 16 16 8 8 16 16 16 4 16 8 2

Therefore, if we identify a generator α of GF(p), we may create a lookup table con-
taining all powers of α, i.e. all elements of GF(p).

2.3.1.3 Multiplicative Inverses in Prime Fields
In order to find the multiplicative inverse for a specific element a we can make
use of the power laws of modulus p . For any multiplicative inverse the following
condition must hold:

a ·a−1 mod p ≡ 1 ≡αi ·α j mod p ≡ 1 (2.4)

Since α is a generator, αp−1 mod p ≡ 1. Therefore, if we want to identify the multi-
plicative inverse for any element a ≡αi mod p , the exponent of the mulitplicative
inverse a−1 mod p ≡ α j mod p can easily be calculated by using the condition
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that i + j ≡ p −1 and therefore

j = (p −1)− i (2.5)

Example

Suppose we want to determine the multiplicative inverse of a = 13 in
GF(17).

Case 1: As a generator we will use the element α= 3.

a = 13 ≡ 34 mod 17

According to Equation (2.5) the generator exponent j of the multiplica-
tive inverse is equal to: j = (17−1)−4 = 12. Therefore, the multiplicative
inverse can be found in the lookup table as:

α12 mod 17≡ 312 mod 17 ≡ 4

Case 2: As a generator we will use the element α= 10

a = 13 ≡ 1012 mod 17

According to Equation (2.5) the generator exponent j of the multiplica-
tive inverse is equal to: j = (17−1)−12 = 4. Therefore, the multiplicative
inverse can be found in the lookup table as:

α4 mod 17≡ 104 mod 17≡ 4

Therefore, if it is possible to generate a lookup table, as shown for the powers of all
elements of GF(17) in Table 2.4, it is easy to find the multiplicative inverse for any
element a of GF(p).

It should, however, be noted that, for example in cryptographic applications,
prime fields with a large characteristic p are needed. “Large” in this case means
primes consisting of 300 or more decimals. In such cases it will, of course, not
be possible to create a lookup table. However, a different way of finding the mul-
tiplicative inverse for an element a in GF(p) is to use the Extended Euclidean
Algorithm. For a detailed description regarding this algorithm, the reader is re-
ferred to [1].

2.3.1.4 Cyclic Structure of Prime Fields
It is important to note that with respect to a generator α of a Prime Field GF(p), a
cyclic structure is created in the following way:
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Figure 2.3 Exponents of the primitive element α

A graphical representation of this cyclic structure is shown in Figure 2.4 for the
Prime Field GF(17) using the generator α = 3. Within the figure each arrow de-
notes the following: take the element at the beginning of the arrow, multiply this
element with the generator modulus p (in the given example: ·3 mod 17.). The re-
sult yields the end of the arrow.
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Figure 2.4 Cyclic structure of Prime Field GF (17), generator: α= 3
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One important property of this cyclic structure is the fact that the element ‘0’ is
never part of the described cyclic structure.

2.3.2 Extension Fields

In Section 2.3.1 we introduced the smallest Prime Field, namely GF(2) contain-
ing only the elements {0,1}. Although digital systems are based on the mentioned
element set {0,1}, we usually work with larger numbers represented in binary for-
mat. Therefore, two questions arise. Is it advantageous to work with Prime Fields
in technical systems? Which disadvantages do we need to take into account?

Let us have a look at a simple example. Suppose we work with the Prime Field
GF(67). Since p=67 is a prime number, the set of elements {0,1,2,3, . . . ,65,66} def-
initely forms a field, i.e. we can perform addition and multiplication within the
field. While the modular operation is performed, the field is closed, i.e. the result of
any addition or multiplication will result in an element of the Prime Field GF(67).
Associativity and commutativity are fulfilled, and finally each element a contains
an additive inverse −a ≡ (−a +p) mod p and a multiplicative inverse a−1 mod p .

However, if we represent each element of this prime field in binary format, e.g. in
order to implement our Galois Fields operations in software or hardware, we need
to note the following (see Figure 2.5):

1111.111127
1110.111126

0100.10068
0011.10067
0010.10066
0001.10065
0000.10064
1111.01163
1110.01162

0011.0003
0010.0002
0001.0001
0000.0000

=
=

=
=
=
=
=
=
=

=
=
=
=

67 elements of GF(67)

Overhead (61 numbers)

Figure 2.5 7-Bit representation
needed for GF (67)

Since p = 67 is larger than 64 = 26, we need 7 bits to represent all elements of
GF(67). However, in the case of 7-bit representation it is possible to handle 128
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different numbers, hence 61 numbers are not used, and we need to accept a large
overhead.

If we look at technical systems, in particular computer systems, data is most often
arranged in bytes – whereas 8 bits form a single byte – or in multiple bytes, e.g. 16
or 32 bits. Therefore, the question is whether it is possible to generate fields which
do not have a prime number of elements, but rather a power of 2 elements, i.e. 2m

elements.

2.3.2.1 Existence of Extension Fields
It is possible to generate such fields, these are called extension fields and the fol-
lowing theorem holds.

Theorem: Existence of Extension Fields

For any prime p and any positive integer m it is possible to generate a Ga-
lois Field GF(pm). We call this field an Extension Field with a character-
istic p and an extension m. The Extension Field GF(pm) contains n = pm

elements.

It should be noted that the above theorem is the generalization of the correspond-
ing theorem stating the existence of Prime Fields (compare Section 2.3.1).

In Section 2.3.1 we saw that each element of a prime field GF(p) is a single integer
within the range 0,1,2, . . . , p − 1. Since we extended the Pime Field GF(p) by the
exponent m, each element of an extension field is an m-elementary vector of the
following format:

(am−1am−2am−3 . . . a1a0)

with ai ∈ 0,1,2, . . . , p −1 for i = 0,1,2, . . . ,m −1

A second interpretation of the field elements is to consider each element to be a
polynomial of degree m −1.(

am−1xm−1 +am−2xm−2 +am−3xm−3 +·· ·+a1x1 +a0x0)
with ai ∈ 0,1,2, . . . , p −1 for i = 0,1,2, . . . ,m −1

Although the above theorem states that we may generate an extension field with
the help of any prime p , in the following sections we will focus on extension fields
with the characteristic p = 2, i.e. we will particularly look at the extension fields
of the form GF(2m). The reason for this restriction is simple, namely that most
applications of extension fields are implemented in digital systems and therefore
we need to work with binary vectors of various lengths.
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In the previous paragraph, we introduced two different representations of exten-
sion field elements.

It is important to see that even a single integer like ‘0’ or ‘1’ needs to be seen as
a polynomial of degree m − 1 if it is an element of an extension field. The same
applies to terms like x or x2.

Example

Let us have a look at the elements of the Extension Field GF(24).

Vector representation ≡ Polynomial representation

0000≡ 0x3 +0x2 +0x1 +0x0

0001≡ 0x3 +0x2 +0x1 +1x0

0010≡ 0x3 +0x2 +1x1 +0x0

0011≡ 0x3 +0x2 +1x1 +1x0

0100≡ 0x3 +1x2 +0x1 +0x0

...

1111≡ 1x3 +1x2 +1x1 +1x0

We can see that in total 24 = 16 elements exist in GF(24).

2.3.2.2 Irreducible Polynomials
In order to work with the extension field elements, we need to understand how
modular operations are performed within extension fields. In Section 2.3.1 we
demonstrated that addition and multiplication in a prime field GF(p) is done with
modulus p, where p is, of course, a prime. Since the field elements of extension
fields are polynomials, multiplication within an extension field GF(pm) is done
modularly with a certain polynomial p(x).

The largest field element of a prime field GF(p) always is p − 1, and the applied
modulus must be larger than the greatest field element. Hence, we perform ad-
ditions and multiplications in GF(p) with modulus p . The analog regarding ex-
tension fields is that all elements of the extension field GF(pm) are polynomials
of degree m −1. Hence the polynomial used for modular operations must be of a
higher degree, namely of degree m.

The second aspect concerns the properties of the modulus. In a prime field GF(p)
the modulus p is a prime and is therefore only divisible by itself and by one. Let
us recall why it is of significance that p is prime. Within a prime field it is possible
to perform addition and multiplication and also to perform the inverse functions,
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i.e. subtraction and inverse multiplication. Especially the latter operation requires
that all elements of the prime field except ‘0’ have a multiplicative inverse. This is
the case only if all elements (except 0) are relatively prime w.r.t. p , i.e. the greatest
common divisor for p and any prime field element a must be equal to one, i.e.
the gcd(p , a)= 1. The analog w.r.t. extension fields means that we need a modular
polynomial p(x), for which the following condition must hold.

If and only if the polynomial p(x) is relatively prime in regard to all extension field
elements a(x) except the 0-polynomial, then for any extension field element a(x)
except the 0-polynomial a multiplicative inverse will exist.

Definition: Irreducible polynomial i (x)

A polynomial i (x) of degree m is said to be irreducible if it cannot be ex-
pressed as the product of at least two polynomials of lower degree k < m.

Definition: Reducible polynomial r (x)

A polynomial r (x) of degree m is said to reducible if it can be expressed
as the product of at least two polynomials of lower degree k < m.

In order to continue with our analogies, we can state that an irreducible polyno-
mial i (x) in the world of extension fields is the analog of a prime in the world of
prime fields, and that a reducible polynomial r (x) in the world of extension fields
is the analog of a composite number in the world of prime fields.

Let us have a look at an example for the extension field GF(24).

Example

r (x) = x4 +x2 +x = x · (x3 +x +1) ⇒ r (x) is reducible

p(x)= x4 +x3 +x2 +x +1 ⇒ p(x) is irreducible

For r (x) it is obvious that a polynomial of degree one, namely x, is contained in
each summand of the polynomial r (x). Therefore x can be extracted, and we can
rewrite r (x) as a product of two polynomials of lower degree. It is therefore obvious
that r (x) is reducible.

Without proof, we can state that the polynomial p(x) in the above example is irre-
ducible.

If we look at r (x) in the above example, we can directly conclude that it is a nec-
essary condition that p(x) does not contain any zeroes within GF(p). This means
that if we calculate the value of p(x) for all possible values 0,1,2, . . . , p −1 and take
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the result modulus p , the result will never be equal to zero. The question, however,
remains if this condition is not only necessary, but also sufficient for a polynomial
to be irreducible. Let us have a look at an example.

Example

r (x) = x4 +x2 +1

For:

x = 0 : r (0) = 04 +02 +1 = 1 mod 2 ≡ 1

x = 1 : r (1) = 14 +12 +1 = 3 mod 2 ≡ 1

We have thus proven that r (x) does not contain any zeroes within GF(2). Hence,
we might assume r (x) to be irreducible. However, we can write r (x) as:

r (x) = (x2 +x +1) · (x2 +x +1)

= x4 +x3 +x2 +x3 +x2 +x +x2 +x +1

= x4 +2x3 +3x2 +2x +1

≡ x4 +x2 +1

The above equation shows the result if we square the term (x2 + x + 1). The sec-
ond line shows all summands of the product. As we stated at the beginning of Sec-
tion 2.3.2.1, the elements of an extension field, in our case GF(24), are polynomials
with coefficients of GF(p), in our case coefficients of GF(2) = {0,1}. Hence, for all
resulting summands of our products, the coefficients are calculated with the help
of modulus p , in our case, modulus 2. Therefore, 2x3 mod 2 ≡ 0, and 2x mod 2 ≡ 0.
And finally, 3x2 mod 2 ≡ 1x2.

The above example proves that the condition that p(x) does not contain any ze-
roes within GF(p) is NOT sufficient to be sure that p(x) is irreducible.

To summarize this section, we need to state the following points.

For an irreducible polynomial i (x) it is a necessary, but not a sufficient
condition that it does not contain any zeroes within GF(p), i.e. it cannot
be expressed as the product of at least two polynomials of lower degree.

An irreducible polynomial i (x) of degree m over GF(p) spans an exten-
sion field GF(pm) with pm elements, where each element is a polynomial
of degree m −1.
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