HANSER

Leseprobe

zu

Elektro-Aufgaben Band 2: Wechselstrom

von Helmut Lindner

ISBN (Buch): 978-3-446-45493-4

ISBN (E-Book): 978-3-446-46178-9

Weitere Informationen und Bestellungen unter http://www.hanser-fachbuch.de/9783446454934

> sowie im Buchhandel © Carl Hanser Verlag, München

Inhaltsverzeichnis

Ele	mentare Berechnungen		8.2	Berechnung von Betrag und Phase aus der	
	Sinusförmige Wechselgrößen Augenblickswerte sinusförmiger Wechselgrößen Zeitliche Mittelwerte sinusförmiger Wechselgrößen	7 7 8	8.5		51 51 52
1.3	Addition sinusförmiger Wechselgrößen gleicher Frequenz	10	9	Berechnung von Schaltungen	56
2 2.1 2.2	Widerstände im Wechselstromkreis Verlustloser induktiver Widerstand Verlustloser kapazitiver Widerstand	12 12 13	9.2	Reihenschaltung von Widerständen Parallelschaltung von Widerständen Parallelschaltung zusammengesetzter Widerstände	58
3	Berechnung von Schaltungen	14	9.4	Gemischte Schaltungen	
3.4 3.5	R und L in Reihe R und C in Reihe L und C in Reihe R, L und C in Reihe R, L und C in Reihe R und C parallel Parallelschaltung zusammengesetzter Widerstände			Umwandlungen	64
4	Resonanz im Wechselstromkreis	25	10.3	Umwandlung einer Dreieckschaltung in eine äquivalente Sternschaltung	66
4.1 4.2	Spannungs- oder Reihenresonanz Strom- oder Parallelresonanz	25 27	11	Übertragungsfunktion	68
5	Leistung des Wechselstroms	29	12	Transformator	70
5.15.25.3	Berechnung der Leistung in verschiedenen Schaltungen	29 32 34		Inversion	72
5.4	densatoren	34	14	Ortskurven	76
6	tungen	35 37		Ortskurven sind Geraden Ortskurven sind Halbkreise oder Kreisbö-	
6.16.26.3	Berechnung der Spannungen, Stromstärken und Widerstände	37 38 39		gen durch den Nullpunkt	
7	Spulen mit Eisen	42	15	Schwingkreise	
7.1	Eisengefüllte Drosselspule	42	Lösi	ungen	88
7.2	Eisengefüllter Transformator		For	melzeichen und Einheiten	165
Ber	echnungen mit der symbolischen Metho	ode	Kon	stanten	165
8 8.1	Rechnen mit komplexen Zahlen Addition und Subtraktion komplexer Aus-	49	Aus	gewählte Schaltzeichen	166
5.1	drücke in der Normalform	49	Lite	raturverzeichnis	168

ELEMENTARE BERECHNUNGEN

1 Sinusförmige Wechselgrößen

1.1 Augenblickswerte sinusförmiger Wechselgrößen

Formeln:

$$i = \hat{I} \sin \omega t$$
 bzw.
= $\hat{I} \sin(\omega t + \varphi)$

$$u = \hat{U} \sin \omega t \quad \text{bzw.}$$

= $\hat{U} \sin(\omega t + \varphi)$

$$\omega = 2\pi f$$

$$T = 1/f$$

$$f = 1/T$$

$$1^{\circ} = 0.01745 \, \text{rad}$$

$$\varphi^{\circ} = \frac{\varphi \, (\text{rad}) \cdot 180^{\circ}}{\pi}$$

$$\varphi \,(\text{rad}) = \frac{\varphi^{\circ} \cdot \pi}{180^{\circ}}$$

Größe	Zeichen	Einheit
Augenblickswert der Stromstärke	i	A
Augenblickswert der Spannung	и	V
Zeit	t	s
Kreisfrequenz	ω	s^{-1}
Frequenz	f	$s^{-1} = Hz$
Scheitelwert der Stromstärke	Î	A
Scheitelwert der Spannung	Û	V
Periodendauer	T	s
Phasenwinkel	φ	Grad (°) oder rad (Bogenmaß)

Hinweis:

Das Produkt ωt aus der Kreisfrequenz $\omega = 2\pi f$ und der Zeit t ist zunächst ein Winkel im $Bogenma\beta$ (arc φ), häufig mit der Zähleinheit rad (Radiant) versehen. Da i. Allg. der Winkel φ im $Gradma\beta$ angeben wird, ist das Bogenmaß in Gradmaß umzurechnen. Hierzu dienen die angegebenen Umrechnungsformeln oder der Taschenrechner (Gradmaß: DEG, Bogenmaß: RAD).

- **1.** Welche Kreisfrequenz haben folgende Wechselströme?
- a) $f = 16^2/3$ Hz, b) 25 Hz, c) 48 Hz, d) 50 Hz, e) 51,4 Hz, f) 100 Hz, g) 1 000 Hz, h) 3 kHz und i) 295,4 kHz
- **2.** Welche Periodendauer haben die in Aufgabe 1 genannten Wechselströme?
- **3.** Wie viel Sekunden nach dern Nulldurchgang erreichen Wechselspannungen folgender Frequenzen zum ersten Mal ihre Höchstwerte?
- a) $f = 16^2/3$ Hz, b) 20 Hz, c) 35 Hz, d) 49 Hz, e) 50 Hz, f) 52 Hz, g) 100 Hz
- **4.** Wie viel Sekunden nach dem Nulldurchgang erreicht eine sinusförmige Wechselspannung von 50 Hz

- a) 1/10, b) 1/5, c) 1/4, d) 1/3, e) 1/2 und f) 9/10 ihres Höchstwertes?
- **5.** Bei welcher Frequenz erreicht eine sinusförmige Spannung
- a) 1 ms, b) 1,5 ms c) 280 μs, d) 440 μs und
 e) 260 μs nach dem Nulldurchgang die Hälfte ihres Scheitelwertes?
- **6.** Welchen Betrag hat eine sinusförmige Spannung mit dem Scheitelwert $\hat{U} = 65 \text{ V}$ und 50 Hz
- a) 0,3 s, b) 0,03 s, c) 3 ms, d) 1,55 ms,
- e) 1,963 ms und f) 2,074 ms nach dem Nulldurchgang?
- 7. Wie viel Sekunden nach Beginn einer Periode hat ein Wechselstrom von $\hat{I} = 15 \text{ A}$ und 100 Hz einen Augenblickswert von a) 0.5 A, b) 1.5 A, c) 6.5 A, d) 10 A und e) 14.5 A?

- **8.** Welchen Scheitelwert haben die Wechselspannungen bei einer Frequenz von a) 50 Hz, b) 100 Hz, c) 120 Hz, d) 200 Hz und einem Augenblickswert a) 218,74 V, 4 ms; b) 103,63 V, 3,5 ms; c) 87,02 V,
- 1,4 ms; d) 214 V, 1 ms nach Beginn einer Periode?
- **9.** Welchen Augenblickswert hat eine sinusförmige Spannung von $\hat{U} = 230 \text{ V } 0.02 \text{ s nach dem}$ Nulldurchgang bei einer Frequenz von a) 25 Hz, b) 47 Hz, c) 50 Hz, d) 54 Hz, e) 498 Hz?
- **10.** In welchen Zeitabständen erreicht eine sinusförmige Wechselspannung jeweils die Hälfte ihres Scheitelwertes bei einer Frequenz von a) $16^2/3$ Hz, b) 50 Hz, c) 100 Hz und d) 800 Hz?
- **11.** Eine sinusförmige Wechselspannung erreicht nach dem Nulldurchgang a) 10 %, b) 20 %, c) 30 %, d) 50 %, e) 70 %, f) 80 % und g) 90 % ihres Höchstwertes. Welchen Verschiebungswinkeln entsprechen diese Augenblickswerte?
- **12.** Wie groß ist die Frequenz eines sinusförmigen Wechselstromes, wenn 0,001 s vor Erreichen des Scheitelwertes der Augenblickswert a) 75 %, b) 85 %, c) 95 %, d) 98 % und e) 99 % vom Scheitelwert beträgt?
- **13.** Der Augenblickswert einer sinusförmigen Wechselspannung benötigt innerhalb der ersten Viertelperiode 2 ms, um von a) 10 % auf 20 %, b) 20 % auf 30 %, c) 30 % auf 50 %, d) 10 % auf 50 %, e) 10 % auf 80 % des Scheitelwertes anzusteigen. Bei welchen Frequenzen ist dies der Fall?
- **14.** In welchen Zeitabständen erreichen Stromstärke und Spannung ihre positiven Höchstwerte

bei einer Frequenz von

- a) 50 Hz, b) 50 Hz, c) 50 Hz, d) 100 Hz, e) 100 Hz, f) 1 000 Hz
- und einem Phasenverschiebungswinkel von a) 12°, b) 45°, c) 85°, d) 30°, e) 60° und f) 90°?
- **15.** Durch zwei parallel geschaltete Leiter fließen zwei sinusförmige Ströme gleicher Frequenz und erreichen ihre Höchstwerte zeitlich nacheinander, d. h. zu den Zeitpunkten

	a)	b)	c)	d)
	15 ms	18 ms	560 μs	470 μs
bzw.	5 ms	2 ms	48 μs	330 µs

Wie groß ist die Frequenz, und welcher Phasenverschiebungswinkel besteht zwischen beiden Strömen?

- **16.** Von zwei frequenzgleichen Strömen, die zwei parallel geschaltete Leiter durchfließen, beträgt der Augenblickswert des einen 4/10, während zu gleicher Zeit der des anderen 1/3 des Scheitelwertes beträgt. Berechnen Sie den Verschiebungswinkel.
- 17. Zwischen zwei frequenzgleichen Strömen von je $\hat{I} = 6$ A besteht eine Verschiebung von 25°. Welchen Augenblickswert hat der eine Strom, wenn der des anderen 1,5 A beträgt?
- **18.** Um welchen Winkel ist der Nulldurchgang gegenüber dem Beginn der Messung verschoben, wenn der Scheitelwert a) 1 ms, b) 1,5 ms und c) 32 ms nach Beginn der Messung erreicht wird? $(f = 50 \,\text{Hz})$

1.2 Zeitliche Mittelwerte sinusförmiger Wechselgrößen

Formeln:

$$I = \frac{\hat{I}}{\sqrt{2}}$$

$$|\bar{i}| = \frac{2\hat{I}}{\pi}$$

$$k_{\mathrm{f}} = \frac{I}{|\overline{i}|} = \frac{U}{|\overline{u}|}$$

$$U = \frac{\hat{U}}{\sqrt{2}}$$

$$|\overline{u}| = \frac{2\hat{U}}{\pi}$$

$$k_{
m s}=rac{\hat{I}}{I}=rac{\hat{U}}{U}$$

Größe	Zeichen	Einheit
Scheitelwert (Höchstwert)	\hat{I},\hat{U}	A, V
Effektivwert	I, U	A, V
Gleichrichtwert	$ \bar{i} , \bar{u} $	A, V
Formfaktor	$k_{ m f}$	1
Scheitelfaktor	$k_{\rm s}$	1

19. Es werden mittels gewöhnlicher Messinstrumente folgende Effektivwerte festgestellt: a) 230 V, b) 227 V, c) 218 V, d) 1,5 A und e) 0,2 A Welche Scheitelwerte ergeben sich hieraus?

Anmerkung zu den Aufgaben 20 bis 22: Kondensatoren dürfen höchstens mit dem Scheitelwert der Wechselspannung belastet werden.

- **20.** Welche effektive Wechselspannung kann an Kondensatoren angelegt werden, deren Nennspannung (höchste Betriebsspannung für Gleichstrom) a) 125 V, b) 160 V, c) 250 V, d) 350 V, e) 500 V, f) 700 V und g) 1000 V beträgt?
- **21.** Welche effektive Wechselspannung kann an einen Papierkondensator angelegt werden, wenn die Betriebsspannung ein Drittel der Prüfspannung betragen darf und diese für Gleichspannungsbetrieb angegeben ist?

Prüfspannung: a) 250 V, b) 500 V, c) 1 200 V und d) 2 000 V.

- **22.** Mit welcher effektiven Wechselspannung dürfen MP-Kondensatoren beansprucht werden, deren Nenngleichspannungen mit a) 160 V, b) 250 V und c) 350 V angegeben ist? Die Prüfspannung beträgt das 1,5-fache hiervon, die Betriebsspannung davon wieder ein Drittel.
- **23.** Welchen Scheitelwert hat die Stromstärke in einer Glühlampe für 230 V, deren Leistung a) 25 W, b) 40 W, c) 60 W, d) 75 W und e) 100 W beträgt?
- **24.** Welchen höchsten Augenblickswert haben die Leistungen der in Aufgabe 23 genannten Lampen?
- **25.** Berechnen Sie den Gleichrichtwert eines Stromes mit den Scheitelstromstärken \hat{I} a) 1,2 A, b) 2.8 A, c) 6.5 A bei Doppelweggleichrichtung.
- **26.** Welchem Gleichrichtwert entsprechen folgende Effektivwerte? a) 1,8 A, b) 2,5 A, c) 3,7 A und d) 24 A
- **27.** Zur Elektrolyse einer Salzlösung wird eine Badspannung von a) 3,8 V, b) 4,2 V und c) 5,3 V benötigt.

Welche Scheitelspannung muss der dazu verwendete Doppelweggleichrichter liefern?

28. Ein Halbweggleichrichter liefert eine sinusförmige Spannung, deren Höchstwert a) 6,5 V, b) 8,5 V und c) 16,5 V beträgt.

Welches ist der Gleichrichtwert?

- **29.** Mit einem Drehspulspannungsmesser wird über einen Halbweggleichrichter eine Spannung von a) 12 V, b) 20 V und c) 37 V gemessen. Welchen Scheitelwert hat die gleichgerichtete sinusförmige Wechselspannung?
- **30.** Die oszillographische Aufzeichnung zweier verzerrter Wechselströme (a und b) ergibt die in den Bildern 1 und 2 angegebenen Kurven einer Halbwelle. Ermitteln Sie aus den in Abständen von je 15° ablesbaren Augenblickswerten durch Mittelwertsbildung die arithmetischen Mittelwerte, Effektivwerte, die Scheitel- und Formfaktoren.

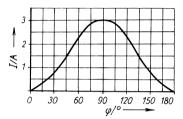


Bild 1: Aufgabe 30a

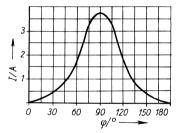


Bild 2: Aufgabe 30b

31. Ermitteln Sie nach dem gleichen Näherungsverfahren den Gleichrichtwert, den Effektivwert, den Form- und Scheitelfaktor bei a) sinusförmigem und b) dreieckförmigem Spannungsverlauf (Bilder 3 und 4).

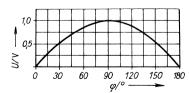


Bild 3: Aufgabe 31a

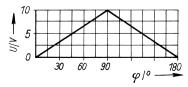


Bild 4: Aufgabe 31b

32. Ermitteln Sie den Effektivwert für die in den Bildern 5 bis 7 angegebenen, mit sinusförmigem Wechselstrom überlagerten Gleichströme.

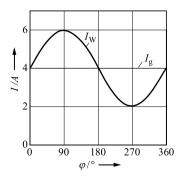


Bild 5: Aufgabe 32a

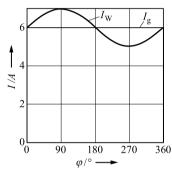


Bild 6: Aufgabe 32b

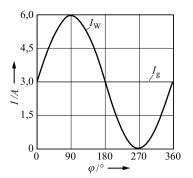


Bild 7: Aufgabe 32c

- **33.** Welchen Form- und Scheitelfaktor hat ein sinusförmiger Wechselstrom?
- **34.** Welche Effektivwerte ergeben sich aus folgenden Werten?

Zeichen

 I_1, I_2

Ι

 $\varphi_{\rm g}$

Einheit

Grad (°)

Grad (°)

A

Α

	Scheitelwert	Scheitelfaktor
a)	175 V	1,52
b)	27,8 A	1,73
c)	$1,2350{ m Wb/m^2}$	1,65
d)	$3 \cdot 10^{-3} \mathrm{Wb}$	1,41
e)	2680 A/m	1,95

1.3 Addition sinusförmiger Wechselgrößen gleicher Frequenz

Formeln:

$$I = \sqrt{I_1^2 + I_2^2 + 2I_1I_2\cos\varphi}$$

$$\tan \varphi_{\rm g} = \frac{I_2 \sin \varphi}{I_1 + I_2 \cos \varphi}$$

Bild 8: Addition zweier phasenverschobener Ströme

Hinweis:

Phasenverschobene Spannungen bzw. Stromstärken dürfen nur *geometrisch*, d. h. durch Zeichnen des aus den Zeigern gebildeten Parallelogramms, addiert werden. Rechnerisch ergibt sich die resultierende Größe aus dem Kosinussatz.

Größe

Teilstromstärken

Voreilung von I_2

gegenüber I1

Gesamtstromstärke

Voreilung des Gesamt-

stromes gegenüber I_1

35. Welchen Gesamtwert ergeben die nachstehenden Teilspannungen unter Berücksichtigung der angegebenen Phasenverschiebungswinkel und unter welchem Winkel eilt die Gesamtspannung der Spannung U_1 voraus?

	a)	b)	c)	d)	e)
U_1 in V	100	60	128	230	40
U ₂ in V	150	65	128	115	33
φ in $^{\circ}$	60	30	45	75	90

36. Um welchen Winkel eilt der Strom I_2 dem Strom I_1 voraus, wenn die Gesamtstromstärke I gegeben ist?

	a)	b)	c)	d)
I_1 in A	5	1,5	0,8	1,1
I ₂ in A	3,5	1,5	0,4	2,1
I in A	6	2,5	1,0	2,8

- **37.** Zwei in Reihe geschaltete Generatoren erzeugen 120 V bzw. 100 V, haben aber bei gleicher Frequenz eine gegenseitige Phasenverschiebung von 25°. Welche Gesamtspannung resultiert daraus?
- **38.** Die Antriebswellen zweier Generatoren mit gleicher Frequenz und 75 V bzw. 125 V sind unter einem Winkel von a) 0°, b) 30°, c) 60°, d) 90°, e) 120° und f) 180° miteinander gekuppelt. Welchen Betrag hat die Gesamtspannung?
- **39.** Die von den in der Schaltung (Bild 9) angegebenen Generatoren erzeugten Quellenspannungen sind um 90° gegeneinander verschoben. Es fließen die beiden Ströme

	a)	b)	c)	d)
I_1 in A	18	25	47	65
I ₂ in A	27	25	18	120

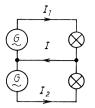


Bild 9: Aufgabe 39

Welcher Strom fließt in der gemeinsamen Zuleitung? (Es sind nur Wirkwiderstände vorhanden.)

- **40.** Zwei in Reihe geschaltete Generatoren von gleicher Quellenspannung ergeben eine Gesamtspannung von 125 V. Die Teilspannungen sind um a) 90°, b) 60° und c) 30° gegeneinander phasenverschoben. Wie groß sind die Teilspannungen?
- **41.** In einem Leiter überlagern sich drei Ströme I_1 , I_2 , I_3 von je 10 A. Es bestehen die Phasenwinkel $\varphi_{1,2} = 60^\circ$ und $\varphi_{2,3} = 60^\circ$. Wie groß ist der resultierende Strom?
- **42.** Die von den 3 Generatoren erzeugten gleich großen Quellenspannungen (Bild 10) sind um je 120° zueinander verschoben, $U_{\rm q1}$ und $U_{\rm q2}$ sind jedoch gegeneinander geschaltet. Berechnen Sie die an den beiden Gruppen parallel geschalteter Lampen liegende Spannung sowie die Gesamtstromstärke I.

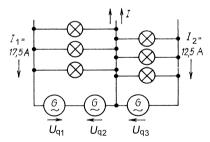


Bild 10: Aufgabe 42

43. Zwei Generatoren erzeugen die Spannungen 60 V bzw. 80 V mit einer Phasenverschiebung von a) 40°, b) 50° und c) 60°. Welche Spannungen ergeben sich bei Reihen- und Gegenreihenschaltung?

2 Widerstände im Wechselstromkreis

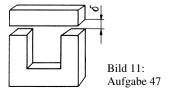
2.1 Verlustloser induktiver Widerstand

Formeln:

$$X_L = \omega L$$

$$I = \frac{U}{X_L} = \frac{U}{\omega L}$$

$$\omega = 2\pi f$$


44. Zur Bestimmung der Induktivität von Spulen werden Stromstärke und Klemmenspannung gemessen. Berechnen Sie die Induktivität bei Vernachlässigung des Wirkwiderstandes.

	a)	b)	c)	d)	e)
U	18 V	30 V	125 V	125 V	230 V
Ι	2 A	1,5 A	10 A	8 A	11,5 A
f	50 Hz	50 Hz	40 Hz	100 Hz	52 Hz

- **45.** Eine Spule hat bei $f = 50 \,\mathrm{Hz}$ einen induktiven Widerstand von $12 \,\Omega$. Welchen induktiven Widerstand hat sie bei den Frequenzen a) 48 Hz, b) $60 \,\mathrm{Hz}$, c) $100 \,\mathrm{Hz}$ und d) $800 \,\mathrm{Hz}$?
- **46.** Welcher Strom fließt bei Vernachlässigung des Wirkwiderstandes durch folgende Spulen?

	a)	b)	c)	d)
L	2,45 H	15 H	25 mH	32 mH
U	110 V	65 V	125 V	230 V
f	50 Hz	200 Hz	49 Hz	50 Hz

47. Welcher Strom fließt bei Vernachlässigung des Wirkwiderstandes durch eine Drosselspule mit a) N=500, b) 800 und c) 1500 Windungen bei einer Klemmenspannung von 125 V (50 Hz)? Der Kern hat nach Bild 11 zwei Luftspalte von je $\delta=1,5$ mm und Polflächen von je A=4,5 cm $\times 4,5$ cm. Die Berechnung erfolge näherungsweise nach Band I, 7.2.2.

Größe	Zeichen	Einheit
induktiver Widerstand	X_L	Ω
Induktivität	L	$H = V \cdot s/A$
Stromstärke	I	A
Spannung	U	V
Kreisfrequenz	ω	s^{-1}
Frequenz	f	$s^{-1} = Hz$

- **48.** Eine Spule hat bei 500 Hz einen induktiven Widerstand von 78 Ω . Bei welchen Frequenzen beträgt dieser a) 85 Ω , b) 120 Ω und c) 50 Ω ?
- **49.** Wie viel Windungen muss der in Aufgabe 47 verwendete Kern tragen, wenn an der Drossel bei einem Strom von 0,6 A und 50 Hz ein Spannungsabfall von 70 V bestehen soll?
- **50.** Wie viel Windungen muss der in Aufgabe 47 verwendete Kern tragen, wenn der induktive Widerstand a) 80Ω , b) 60Ω und c) 50Ω betragen soll? (f = 50 Hz)
- **51.** Eine Ringspule (Stahlguss) nach Bild 12 trägt 300 Windungen dicken Drahtes, durch die ein Strom von $0.4 \, \mathrm{A}$ fließt. Welcher induktive Spannungsabfall entsteht an den Spulenklemmen? ($f = 50 \, \mathrm{Hz}$)

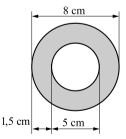


Bild 12: Aufgabe 51

- **52.** Eine frei verlegte Doppelleitung von 25 km Einfachlänge besteht aus zwei Leitern von je 35 mm² Querschnitt im Abstand von 20 cm. Welcher induktive Spannungsabfall entsteht bei der Übertragung von 45 A bei 50 Hz?
- **53.** Wie ändert sich dieser Wert, wenn der Leiterabstand auf a) 30 cm und b) 50 cm vergrößert wird?

2.2 Verlustloser kapazitiver Widerstand

Formeln:

$$X_C = \left| \frac{1}{\omega C} \right|$$

$$I = \frac{U}{X_C} = \omega UC$$

$$\omega = 2\pi f$$

54. Berechnen Sie den kapazitiven Widerstand folgender Kondensatoren:

		a)	b)	c)	d)	e)	f)
	C	$0.5\mu F$	0,8 μF	1,2 μF	250 pF	600 pF	2 000 pF
j	f	50 Hz	50 Hz	500 Hz	100 kHz	350 kHz	500 kHz

55. Welche Ströme fließen durch folgende Kondensatoren:

	a)	b)	c)	d)	e)	f)
C	2μF	4,5 μF	0,3 μF	40 nF	1 500 pF	350 pF
U	230 V	230 V	125 V	120 V	40 V	100 V
f	50 Hz	50 Hz	50 Hz	100 kHz	500 kHz	600 kHz

- **56.** Bei welchen Frequenzen weisen folgende Kondensatoren einen kapazitiven Widerstand von $10\,\Omega$ auf? a) $1\,\mu\text{F}$, b) $0.3\,\mu\text{F}$, c) $50\,\text{nF}$ und d) $500\,\text{pF}$
- **57.** An einem Kondensator von $5 \,\mu\text{F}$ liegt eine Spannung von 218 V. Es werden folgende Stromstärken gemessen: a) $0,6 \,\text{A}$, b) $0,8 \,\text{A}$, c) $0,342 \,\text{A}$. Um welche Frequenzen handelt es sich?

Größe	Zeichen	Einheit
kapazitiver Widerstand	X_C	Ω
Kapazität	C	$F = A \cdot s/V$
Stromstärke	I	A
Spannung	U	V
Kreisfrequenz	ω	s^{-1}

58. An einer Anzahl von Kondensatoren liegen Spannungen von 125 V bei 50 Hz. Es fließen Ströme von a) 5,89 mA, b) 17,67 mA, c) 24 mA, d) 0,05 A, e) 0,2 A.

Welche Kapazitätswerte besitzen die Kondensatoren?

- **59.** Durch einen Kondensator von $1,2 \,\mu\text{F}$ mit einer Toleranzangabe von $\pm 20 \,\%$ soll bei $50 \,\text{Hz}$ ein Strom mit dem Effektivwert von $I = 0,1 \,\text{A}$ fließen. Mit welchem maximal möglichen Scheitelwert der Spannung muss gerechnet werden?
- **60.** Zwischen welchen Werten kann die Stromstärke liegen, wenn ein Kondensator von $2.5 \,\mu\text{F} \pm 10\,\%$ an eine Spannung von $400\,\text{V}$ und $50\,\text{Hz}$ angeschlossen wird?
- **61.** Um wie viel Prozent weicht die wahre Kapazität eines Kondensators von seiner Nennkapazität 1,5 μF ab, wenn bei 225 V und 50 Hz ein Strom von a) 0,1 A, b) 0,109 A und c) 0,115 A fließt?