
HANSER

Leseprobe

zu

"Angewandte Kryptographie"

von Wolfgang Ertel und Ekkhard Löhmann

Print-ISBN 978-3-446-46313-4 E-Book-ISBN 978-3-446-46353-0

Weitere Informationen und Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-46313-4 sowie im Buchhandel

© Carl Hanser Verlag, München

Vorwort

Ziele

Das Verschlüsseln von Nachrichten oder geheimen Schriftstücken übt auch heute noch eine große Faszination auf Menschen aller Bevölkerungsschichten aus. Die verschiedensten Fachleute aus Mathematik, Informatik und Linguistik beschäftigen sich mit dieser alten Wissenschaft, die bis zur Mitte des zwanzigsten Jahrhunderts hauptsächlich militärisch angewendet wurde.

Dieses Bild hat sich in den letzten dreißig Jahren gewandelt. Im Zeitalter der Globalisierung und des E-Business ist die Welt vernetzt. Heute werden Pläne, Patente, Verträge und andere vertrauliche Daten auf Rechnern gespeichert und über das Internet ausgetauscht. Der rege Datenaustausch weckt großes Interesse bei Geheimdiensten, bei Firmen, die Informationen über ihre Kunden sammeln, sowie bei Firmen, die Geheimnisse der Konkurrenz ausspionieren wollen. Allein in Deutschland entstehen der Industrie pro Jahr geschätzte Verluste im Bereich zehn bis hundert Milliarden Euro durch Lauschangriffe.

Diese Angriffe geschehen im Stillen und werden in den meisten Fällen der Presse nicht mitgeteilt. Teilweise sind sie sogar der geschädigten Firma nicht bekannt. Oft wird daher die Sicherheit von Firmennetzen gegenüber Angriffen von außen immer noch sträflich vernachlässigt, obwohl Wissen und solide Technik der Datensicherheit heute für jeden Fachmann zugänglich sind. Das wichtigste Ziel des Buches ist es deshalb, dem Informatiker das benötigte Wissen auf einer soliden Basis zu vermitteln. Damit wird er in der Lage sein, zum Beispiel ein Sicherheitskonzept für eine Firma zu erarbeiten oder eine Public-Key-Infrastruktur aufzubauen und zu pflegen.

Es gibt aber auch Beispiele von erfolgreichen Firmen, die plötzlich vor dem Bankrott stehen, nur weil jemand eine gefälschte E-Mail im Namen der Firmenleitung an die Presse schickt, mit der Folge eines dramatischen Absturzes des Aktienkurses. Das Stichwort zur Vermeidung derartiger Fälle heißt digitale Signatur. Die digitale Signatur wird in den nächsten Jahren das Medium E-Mail zu einem seriösen Werkzeug machen, mit dem Verträge, Angebote, Rechnungen etc. schnell, kostengünstig und sicher abgewickelt werden können. Seit Ende 2010 gibt es in Deutschland den neuen Personalausweis mit Chipkarte, der auch für die digitale Signatur benutzt werden kann. Möglich wäre auch die Verwendung des Personalausweises als Schlüssel zu Wohnung, Firma, Rechner und Auto.

Offene Systeme und weltweite Vernetzung führen auch zu Ängsten und zum Wunsch nach Sicherheit, Vertraulichkeit und einem besseren Schutz der Privatsphäre. Sicher ist es kein Zufall, dass gerade zum jetzigen Zeitpunkt mit der vor gut zwanzig Jahren erfundenen Public-Key-Kryptographie und den modernen Blockchiffren starke und mittlerweile bewährte Werkzeuge zur Sicherung der Privatsphäre und Vertraulichkeit zum Einsatz in der Praxis bereitstehen. Ziel dieses Buches ist es, den Leser mit diesen Methoden vertraut zu machen und zwar ausgehend von den teilweise genial einfachen und eleganten Ideen über die Mathematik endlicher Körper bis hin zu den Anwendungen in Form von allgemein verfügbarer Software.

Die Aussage "mein Computer ist sicher" ist eine All-Aussage, denn etwas genauer formuliert heißt sie "die Erfolgswahrscheinlichkeit für einen der vielen möglichen Angriffe ist verschwindend gering". Um solch eine Aussage auch nur annähernd machen zu können, muss jede Schwachstelle beseitigt werden, denn ein kluger Angreifer nutzt die schwächste Stelle – und die Tücken liegen im Detail. Nur durch den praktischen Umgang mit der Materie ist es möglich, aufbauend auf den theoretischen Grundlagen, die benötigte umfassende Vorgehensweise zur Aufdeckung und Beseitigung von Sicherheitslücken zu erlernen. Das Wissen über die Algorithmen und die Mathematik von Kryptosystemen ist notwendig, aber bei weitem nicht hinreichend, um sichere Systeme zu bauen. Daher möchte ich den motivierten Neuling in diesem Gebiet insbesondere auffordern, die Übungsaufgaben zu bearbeiten.

Aufbau und Leserkreis

Das Buch ist entstanden aus einem Vorlesungsskript zur Datensicherheit im Informatikstudium an der Fachhochschule Ravensburg-Weingarten. Es ist ein Lehrbuch zur Einführung in das Gebiet und richtet sich primär an Studenten der Fachhochschulen, aber auch an Universitätsstudenten, die sich ohne viel Theorie in das Gebiet einarbeiten wollen. Wie man schon am Titel erkennt, habe ich versucht, die Theorie auf ein Minimum zu beschränken. Das Buch wendet sich deshalb an alle, die in kompakter Form die moderne Kryptographie verstehen wollen. Dem berufstätigen Informatiker bietet es die Möglichkeit, sich im Selbststudium in ein aktuelles Gebiet einzuarbeiten.

Vorausgesetzt werden Mathematikkenntnisse der Oberstufe. Darüber hinaus benötigte Mathematik wird im Anhang A bereitgestellt. Das Buch beginnt mit einer elementaren Einführung in die Protokolle für elektronisches Bargeld als Beispiel einer Anwendung für viele im Buch beschriebene Algorithmen und Protokolle. Nach den Grundlagen in Kapitel 2 werden im Kapitel 3 an Hand einiger klassischer Chiffren wichtige Techniken und Begriffe eingeführt.

Bei den modernen Blockchiffren in Kapitel 4 werden DES, die weltweit meist benutzte Chiffre, und AES als neuer Standard vorgestellt. Die Public-Key-Kryptographie ist in den Kapiteln 5, 7 und 8 behandelt und es wird neben den Algorithmen ausführlich auf die Public-Key-Infrastruktur sowie auf die wichtigsten Software-Produkte eingegangen. Aufbauend auf den Public-Key-Algorithmen werden in Kapitel 6 neben klassischen Authentifikationsverfahren die digitale Signatur sowie Zero-Knowledge-Protokolle behandelt.

Nachdem alle Techniken eingeführt sind, schließt sich der Kreis und die Protokolle für elektronisches Bargeld aus Kapitel 1 werden in Kapitel 9 verfeinert und exakt beschrieben. Kapitel 10 schließlich stellt verschiedene existierende und neue elektronische Zahlungsmittel vor und vergleicht sie.

In Kapitel 12 wird das deutsche Signaturgesetz vorgestellt sowie das politische und gesellschaftliche Umfeld der modernen Kryptographie beleuchtet. Als Abschluss folgt in Kapi-

tel 13 eine Checkliste für die praktische Arbeit in der Kryptographie. Die benötigte Zahlentheorie, ein Kapitel über die Erzeugung von Zufallszahlen für kryptographische Algorithmen und die Lösungen zu den Übungsaufgaben sind im Anhang zu finden.

Die Abhängigkeit der Kapitel untereinander ist in Bild 1 dargestellt. Ein Pfeil von 2 nach 3 zum Beispiel bedeutet, dass Kapitel 2 für das Verständnis von Kapitel 3 vorausgesetzt wird.

Kapitel Anhang

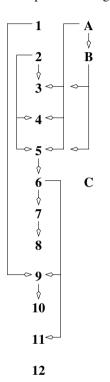


BILD 1 Kapitelstruktur

Ich möchte den Leser bitten, Anregungen, Kritik und Hinweise auf Fehler per E-Mail direkt an ertel@hs-weingarten. de zu schicken. Eine regelmäßig aktualisierte Liste der Fehler ist auf der Webseite zum Buch zu finden.

Online-Quellen und Literatur

Die Web-Seite zum Buch hat die URL

www.hs-weingarten.de/~ertel/kryptobuch.html

Das im Buch abgedruckte Literaturverzeichnis ist dort mit anklickbaren Links versehen, so dass der Leser auf alle im Internet verfügbaren Quellen einfach zugreifen kann. Außerdem gibt es dort eine regelmäßig aktualisierte und nach Themen geordnete Sammlung von Links zur Kryptographie. Ergänzt wird die Sammlung durch Präsentationsfolien für Dozenten.

Neben diesen Quellen möchte ich den interessierten Leser verweisen auf die Newsgroup sci.crypt. In diesem stark frequentierten Forum werden die verschiedensten mehr oder weniger aktuellen Themen diskutiert. Sehr informativ sind auch der monatlich erscheinende kostenlose Newsletter "crypto-gram" von Bruce Schneier [Sch01a], sein neues Buch [Sch00a], sowie die umfangreiche Sammlung von Wissen, Literatur und Links zur Kryptographie von Terry Ritter [Rit00]. Zum praktischen Üben ist das frei verfügbare Demonstrationsprogramm CrypTool [Ess02] sehr zu empfehlen.

Es gibt, insbesondere in der englischsprachigen Literatur, eine Reihe guter Lehrbücher zur Kryptographie. Der Leser,

der ein gutes Nachschlagewerk sucht, findet dieses in Form des umfassenden und sehr gut lesbaren Standardwerkes von Bruce Schneier [Sch05, Sch96]. Empfehlenswerte Lehrbücher sind [Sti05, Kob94, Sta98, Wob01, Beu09, Bau00].

Dank

Mein ganz besonderer Dank gilt meiner Frau Evelyn, die mir im letzten Jahr den Rücken frei hielt für das Schreiben. Vielen Dank auch an Ekkehard Löhmann für wertvolle inhaltliche Tipps und an Erhard Schreck für die schöne Zeit im Silicon Valley, in der das Kapitel über Zufallszahlen entstanden ist. Mein Dank richtet sich auch an Max Kliche für das Bereitstellen der Übungsaufgaben im Web und an Thomas Degen und Ulrich Hauser, die mich

regelmäßig mit aktuellen Schlagzeilen aus den Online-Medien versorgen. Für das Korrekturlesen möchte ich mich bedanken bei Daniel Hirscher, Markus König, Michael König, Norbert Perk und Harald Steinhilber. Meinem Kollegen Martin Hulin danke ich dafür, dass ich mich in den Semesterferien, frei von administrativen Nebenjobs, auf das Schreiben konzentrieren konnte. Bei meiner Lektorin Erika Hotho bedanke ich mich herzlich für die sehr gute Zusammenarbeit.

Ravensburg, den 28. März 2001

Wolfgang Ertel

Vorwort zur fünften Auflage

Neben einigen korrigierten Fehlern wurde ein neues Kapitel über die derzeit viel diskutierte Blockchaintechnologie in das Buch integriert. Dieses wurde verfasst von Ekkehard Löhmann, Informatikprofessor an der Hochschule Ravensburg-Weingarten mit langer Berufsund Lehrerfahrung in der Kryptographie. Die Blockchaintechnologie kommt nicht nur bei der Kryptowährung Bitcoin zum Einsatz, sondern könnte in der Zukunft auch interessant werden zum Erstellen und elektronischen Verwalten von Verträgen.

Ravensburg, den 09. Juli 2018

Wolfgang Ertel

Inhalt

1	Elekt	ronisches Bargeld, ein erstes Beispiel	15		
2	Grundlagen				
2.1	Termi	nologie	21		
2.2	Krypto	ographische Algorithmen	22		
2.3	Krypto	ographische Protokolle	24		
2.4	Public	-Key-Algorithmen	24		
2.5	Krypta	analyse	26		
2.6	Sicher	heit von Schlüsseln	27		
3	Klass	sische Chiffren	31		
3.1	Versch	niebechiffren	32		
3.2	Multip	olikative Chiffren	33		
3.3	Tauschchiffren (Affine Chiffren)				
3.4	Kryptanalyse monoalphabetischer Chiffren				
3.5	Polyal	phabetische Chiffren	37		
	3.5.1	Homophone Chiffren	37		
3.6	Die Vigenère-Chiffre				
	3.6.1	Der Algorithmus	38		
	3.6.2	Kryptanalyse	40		
	3.6.3	Der Kasiski-Test.	40		
	3.6.4	Der Friedman-Test	43		
3.7	Die Enigma				
	3.7.1	Kryptanalyse	48		
3.8	Das One-Time-Pad, die perfekte Chiffre				
3.9	One-Time-Pad fast ohne Schlüsseltausch				
3.10	Zusammenfassung				

4	Mode	derne Blockchiffren 59				
4.1	Data-Encryption-Standard DES					
	4.1.1	Übersicht	61			
	4.1.2	Eine Runde	63			
	4.1.3	Die 16 Teilschlüssel	64			
	4.1.4	Die Dechiffrierfunktion	64			
	4.1.5	Sicherheit und Nichtlinearität	66			
	4.1.6	Sicherheit und Geschwindigkeit	68			
	4.1.7	Triple-DES	68			
4.2	Advan	Advanced-Encryption-Standard AES				
	4.2.1	Die Blockchiffre Rijndael	69			
	4.2.2	Die ByteSub-Transformation	70			
	4.2.3	Die ShiftRow-Transformation	71			
	4.2.4	Die MixColumn-Transformation	72			
	4.2.5	Die Schlüsselexpansion	72			
	4.2.6	Die inverse Chiffre	73			
	4.2.7	Geschwindigkeit	73			
	4.2.8	Sicherheit	73			
	4.2.9	Andere Funktionalitäten	74			
4.3	Betrie	bsmodi von Blockchiffren	74			
4.4	Ander	e Blockchiffren	75			
5	Publi	c-Key-Kryptographie	77			
5.1	Merkl	Ierkles Rätsel				
5.2	Der RSA-Algorithmus					
	5.2.1	Der Algorithmus	80			
	5.2.2	Sicherheit von RSA	82			
	5.2.3	Effiziente Primzahltests	83			
	5.2.4	Effizienz und Implementierung von RSA	84			
	5.2.5	Schnellere Implementierung von RSA	85			
	5.2.6	Angriffe gegen RSA	86			
5.3	Angrif	fe gegen Public-Key-Verfahren	87			
	5.3.1	Chosen-Ciphertext-Angriff mit Social Engineering	87			
	5.3.2	Angriffe aufgrund von Seiteneffekten	87			
	5.3.3	Angriffe mit Spezialhardware	89			
5.4	Schlüs	sseltausch	89			
	5.4.1	Schlüsseltausch mit symmetrischen Verfahren	89			
	5.4.2	Man-in-the-Middle-Angriff	90			

	5.4.3	Das Interlock-Protokoll	90
	5.4.4	Schlüsseltausch mit Quantenkryptographie	91
5.5	Der D	iffie-Hellman-Algorithmus	91
5.6	Der El	Gamal-Algorithmus	93
5.7	Algori	thmen mit Elliptischen Kurven	93
6	Auth	entifikation und digitale Signatur	97
6.1	Einwe	gfunktionen und Einweg-Hash-Funktionen	98
	6.1.1	Passwortverschlüsselung	100
	6.1.2	Der Geburtstagsangriff	100
6.2	Zero-I	Knowledge-Protokolle	102
	6.2.1	Challenge-and-Response	102
	6.2.2	Die Idee der Zero-Knowledge-Protokolle	103
	6.2.3	Das Fiat-Shamir-Protokoll	104
6.3	Digita	le Signaturen	105
	6.3.1	Digital Signature Algorithm (DSA)	106
	6.3.2	Blinde Signaturen	107
6.4	Digita	le Signatur in der Praxis	108
	6.4.1	Speichern des geheimen Schlüssels	108
	6.4.2	Vertrauen in die Software	109
	6.4.3	Zusammenfassung	110
6.5	Das Si	gnaturgesetz	111
6.6	Authe	ntifikation mit digitaler Signatur	112
6.7	Messa	ge-Authentication-Code (MAC)	113
6.8	Biome	trische Verfahren	114
7	Publi	c-Key-Infrastruktur	117
7.1	Persör	nliche Prüfung öffentlicher Schlüssel	117
7.2	Trusto	enter	118
7.3	Zertifi	katshierarchie	119
7.4	Web-c	f-Trust	120
7.5	Zukun	ft	121
8	Publi	c-Key-Systeme	123
8.1	PGP .		123
	8.1.1	Schlüsseltausch mit PGP	126
	8.1.2	Die Big-Brother-Funktion	126
	8.1.3	GnuPG	127
	8.1.4	Angriffe gegen PGP	128

8.2	S/MIME und das X.509-Protokoll		
8.3	OpenPGP versus S/MIME		
8.4	Secure shell (SSH)		
8.5	Secure socket layer (SSL)	132	
8.6	Virtual Private Networking und IP Security	133	
8.7	Der neue Personalausweis	134	
	8.7.1 Hoheitliche Funktionen	134	
	8.7.2 Andere Funktionen	135	
	8.7.3 Digitale Signatur	135	
	8.7.4 Sicherheit des neuen Personalausweises	136	
9	Elektronisches Bargeld	139	
9.1	Secret-Splitting	139	
9.2	Bit-Commitment-Protokolle	140	
9.3	Protokolle für elektronisches Bargeld	141	
10	Elektronische Zahlungssysteme1	145	
10.1	Die Geldkarte		
10.2	Mondex		
10.3	Ecash	148	
10.4	Zahlung per Kreditkarte	148	
	10.4.1 Secure Electronic Transactions (SET)	148	
	10.4.2 PayPal	149	
	10.4.3 Andere Systeme	150	
10.5	Zusammenfassung		
11	Blockchain-Technologie und Bitcoin1	151	
11.1	Ein einführendes Beispiel	151	
11.2	Vom virtuellen verteilten Kassenbuch zu Bitcoin		
11.3	Authentizität der Nachricht	153	
11.4	Berechnung des Kontostandes	154	
11.5	Bestätigung der Zahlung durch die Mehrheit der Teilnehmer		
11.6		155	
11.7	Was sind die Eingabedaten in die Hash-Funktion?	156	
11.8		156	
11.9		158	
		158	
		159	
	-	159	

11.13	Steuerung der Höhe des Schwellwertes	160	
11.14	Das Rennen um die längste Kette	161	
11.15	Die Geschichte von Bitcoin	161	
11.16	Gibt es bei der Kryptowährung Bitcoin eine Inflation?	162	
11.17	Ökologische Aspekte des Bitcoin-Systems (Stromverbrauch)	162	
11.18	Public-Key-Infrastruktur versus Blockchain	164	
12	Politische Randbedingungen	167	
12.1	Starke Kryptographie und der Lauschangriff	167	
12.2	US-Exportgesetze	169	
13	Sicherheitslücken in der Praxis	171	
Anha	ang	175	
Α	Arithmetik auf endlichen Mengen	175	
A.1	Modulare Arithmetik	175	
A.2	Invertierbarkeit in \mathbb{Z}_n	178	
A.3	Der Euklidische Algorithmus		
A.4	Die Eulersche φ -Funktion	183	
A.5	Primzahlen	185	
	A.5.1 Primzahltests	186	
A.6	Der endliche Körper $GF(2^8)$	190	
	A.6.1 Addition	190	
	A.6.2 Multiplikation	190	
	A.6.3 Polynome mit Koeffizienten in $GF\left(2^{8}\right)$	191	
В	Erzeugen von Zufallszahlen	195	
B.1	Pseudozufallszahlengeneratoren	197	
	B.1.1 Lineare Schieberegister mit Rückkopplung	198	
	B.1.2 Stromchiffren	200	
B.2	Echte Zufallszahlen	201	
	B.2.1 Der Neumann-Filter	201	
B.3	Zusammenfassung	203	
С	Lösungen zu den Übungen	205	
Liter	atur	227	
Index	C	235	

Elektronisches Bargeld, ein erstes Beispiel

Auch im Zeitalter des bargeldlosen Bezahlens besitzt das klassische Bargeld durchaus noch seine Berechtigung. Es ermöglicht eine einfache, schnelle, unverbindliche und kostengünstige Abwicklung des Bezahlvorgangs. Bei hohen Beträgen wird Bargeld wegen des Verlust- und Diebstahlrisikos selten verwendet. Hier bietet der bargeldlose Zahlungsverkehr klare Vorteile. Wegen der Abwicklung über eine Bank oder ein Kreditkarteninstitut und der damit verbundenen Dokumentation kann ein derartiger Bezahlvorgang später geprüft und rekonstruiert werden, z. B. anhand eines Kontoauszuges.

Eine neue Problemstellung ergibt sich im Electronic Commerce, das heißt beim Bezahlen von Waren, Dienstleistungen oder Informationen, die im Internet angeboten werden. Die Kosten für viele dieser Dienste bewegen sich im Bereich von wenigen Cent (Micro-Payment). Daher ist eine bargeldlose Transaktion wie zum Beispiel eine Überweisung oder die Belastung einer Kreditkarte unrentabel. Auch möchte der Kunde für die einmalige oder seltene Nutzung eines Dienstes eventuell keine persönlichen Daten oder Kontodaten angeben. Hierzu bietet sich das Bezahlen mit elektronischen Münzen an. Der Bezahlvorgang besteht nur aus dem Übertragen von einigen elektronischen Münzen, das heißt Bitfolgen zwischen Kunde und Händler. Wie beim klassischen Bargeld werden zwischen den beiden Partnern Objekte – nämlich elektronische Münzen – ausgetauscht. Gegebenenfalls wird auch Wechselgeld zurückgegeben, allerdings werden Kunde und Händler damit nicht belastet. Wie beim klassischen Bargeld sollte das Bezahlen anonym erfolgen, gleichzeitig aber sicher gegen Betrug sein.

Das Bezahlen mit elektronischen Münzen effizient und sicher zu gestalten, ist eine Aufgabe der modernen Kryptographie. Anhand einiger einfacher Ideen soll nun exemplarisch gezeigt werden, wie die im Buch beschriebenen kryptographischen Protokolle und Algorithmen hierzu verwendet werden. Die technischen Details folgen dann in Kapitel 9, wenn die Voraussetzungen dafür geschaffen sind. Bevor wir uns jedoch auf den faszinierenden, nicht immer ganz einfachen Weg zum Verständnis dieser Techniken machen, wollen wir am Beispiel des elektronischen Bargeldes ohne Theorie einen ersten Eindruck von den teilweise genialen Protokollen und der Mächtigkeit der modernen Kryptographie vermitteln.

Wir werden schrittweise ein Protokoll mit interessanten Eigenschaften vorstellen. Es wurde von David Chaum, dem Gründer der holländischen Firma Digicash entwickelt [Cha85, Cha92] und patentiert.

Die an dem Verfahren beteiligte Bank nennen wir E-Bank und als Zahlungsmittel werden E-Münzen benutzt. Eine solche E-Münze besteht letztlich aus einer (endlichen) Folge von Bytes, analog zu einem Geldschein, der ein spezielles Stück bedrucktes Papier darstellt. Wir versuchen's zuerst mal ganz naiv:

Protokoll Nr. 1

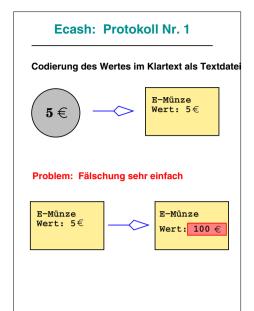
Die E-Bank erzeugt auf ihrem PC eine Datei mit dem Inhalt: "E-Münze, Wert: 5€", wie in Bild 1.1 dargestellt. Dies führt natürlich sofort zur Inflation, wenn die Kunden den Betrag ihrer E-Münzen beliebig ändern.

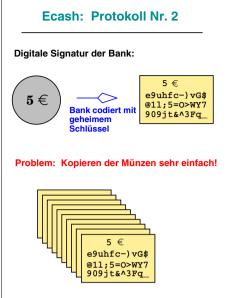
Protokoll Nr. 2

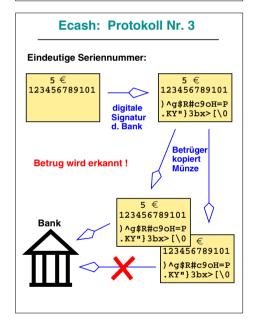
Wenn die E-Bank jedoch die E-Münze mit einer Unterschrift versieht, die nur sie und kein anderer erstellen kann, so kann der Kunde, der die Münze auf seinem Rechner speichert, den Betrag nicht mehr abändern. Falls er das versucht, wird die digitale Signatur der Bank ungültig.¹ Er kann jedoch immer noch betrügen, indem er einfach beliebig viele Kopien der E-Münze erzeugt (Bild 1.1). Dies wird verhindert durch Protokoll Nr. 3.

Protokoll Nr. 3

Wie in Bild 1.1 dargestellt, vergibt die Bank nun für jede Münze eine eindeutige Seriennummer und signiert den gesamten Text bestehend aus Betrag und Seriennummer². Versucht nun jemand, Kopien einer derartigen Münze herzustellen, so wird der Betrug erkannt. Die E-Bank protokolliert nämlich in einer zentralen Datenbank alle eingegangenen Seriennummern und sobald mindestens zwei Münzen mit der gleichen Seriennummer zur E-Bank zurückkommen werden Hausdetektiv und Staatsanwalt benachrichtigt.


Dieses Protokoll ist sicher, denn jeder Betrug wird erkannt. Es hat aber noch eine Schwäche. Die Anonymität ist nicht gewährleistet, denn die Bank kann aufgrund der Seriennummern ein perfektes Profil jedes Kunden erstellen (siehe Bild 1.2). Das Problem wird offensichtlich durch die Seriennummern verursacht, auf die wir jedoch aus Sicherheitsgründen nicht verzichten können.


Protokoll Nr. 4


Den Ausweg aus dem Dilemma lieferte David Chaum [Cha85] mit den von ihm erfundenen blinden Signaturen. Wie in Bild 1.1 dargestellt, erzeugt nun der Kunde seine E-Münzen selbst. Um eine gültige 5-€-E-Münze zu erhalten, generiert sein PC hundert Dateien, in die jeweils der Text "5€" sowie eine große zufällig erzeugte Seriennummer geschrieben werden. Die Seriennummer muss so groß sein, dass die Wahrscheinlichkeit für das zufällige Erzeugen von zwei gleichen Nummern (weltweit) sehr klein ist. Nun bittet er die Bank, eine dieser hundert Münzen blind, das heißt ohne Erkennen von Betrag und Seriennummer, zu signieren. Die Bank wird natürlich nur dann blind signieren, wenn sie sicher ist, dass der Betrag auf der Münze wirklich 5€ ist. Daher wählt sie zufällig 99 der 100 Münzen,

Dies ist ganz analog zu einem unterschriebenen Vertrag, der nicht mehr abgeändert werden darf. Bei digitalen Unterschriften ist das Ändern jedoch nicht mehr möglich.

In realen Implementierungen wird die Bank weitere Informationen, wie z. B. den Namen der Bank und das Datum, auf der E-Münze speichern. Wir beschränken uns hier jedoch auf die zum Verständnis wesentlichen Daten.

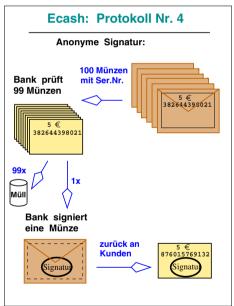


BILD 1.1 Protokolle zum Erzeugen einer E-Münze

die der Kunde auspacken und offenlegen muss. Falls der Betrag 99 mal stimmt, signiert die Bank die letzte Münze blind. Das hierzu benutzte Verfahren verwendet zahlentheoretische Eigenschaften von asymmetrischer Verschlüsselung, die in Kapitel 9 beschrieben werden. Daher beschreiben wir hier das Verfahren nur grob in Analogie zu Geldscheinen aus bedrucktem Papier.

Seriennummer	Ausgabe	Kunde	KtoNr.	Händler	Rücklauf	Betrag
123456789101	12.2.2001	Maier	7654321	Otto Versand	14.2.2001	50€
123456789102	12.2.2001	Maier	7654321	Otto Versand	14.2.2001	20€
123456789103	12.2.2001	Maier	7654321	Otto Versand	14.2.2001	8€
123456789104	12.2.2001	Maier	7654321	Otto Versand	14.2.2001	0.90€
123456789105	12.2.2001	Maier	7654321	amazon.de	17.2.2001	20€
123456789106	12.2.2001	Maier	7654321	amazon.de	17.2.2001	2€
123456789107	15.2.2001	Huber	0054322	Frisör Kurz	15.2.2001	20€
123456789108	15.2.2001	Huber	0054322	Frisör Kurz	15.2.2001	20€
123456789109	15.2.2001	Huber	0054322	Frisör Kurz	15.2.2001	5€
123456789110	15.2.2001	Huber	0054322	Frisör Kurz	15.2.2001	1€
123456789111	15.2.2001	Huber	0054322	Tankst. Sprit	16.2.2001	100€
123456789112	15.2.2001	Huber	0054322	Tankst. Sprit	16.2.2001	2€
123456789113	15.2.2001	Huber	0054322	Tankst. Sprit	16.2.2001	2€
:	:	:	:	:	:	÷

BILD 1.2 Beispiel einer möglichen Datenbank von Transaktionen der Kunden der E-Bank

Der Kunde erstellt also 100 Fünfeuroscheine mit Betrag und Seriennummer, packt jeden in einen eigenen Umschlag und legt in den Umschlag über den Geldschein ein Kohlepapier. Die Bank signiert nun den von ihr ausgewählten Geldschein blind, indem sie ihren Stempel aus dem Tresor holt und den Geldschein durch den Umschlag stempelt. Das Kohlepapier hinterlässt auf dem Schein dann den Stempelabdruck. Der Kunde erhält den signierten (gestempelten) Geldschein zurück, packt ihn aus und kann nun damit einkaufen gehen, ohne dass die Bank eine Chance hat, seine Einkäufe zu überwachen. Der Kunde oder auch der Händler kann versuchen, die gültige Münze zu kopieren. Die Bank wird jedoch den Betrug erkennen, weil sie die Seriennummern aller eingehenden Münzen mit den schon eingegangenen in ihrer Datenbank vergleicht. Das Protokoll ist nun also anonym und sicher zugleich.

Ein kleines Problem bleibt jedoch noch zu lösen. Versucht nämlich der Kunde oder der Händler Betrug durch Kopieren der E-Münze, so weiß die Bank zwar, dass der Betrug versucht wurde. Sie weiß jedoch nicht, wer der Betrüger war. David Chaum hat aber auch dieses Problem durch eine elegante Verfeinerung des Protokolls gelöst, die jedoch erst in Kapitel 9 beschrieben werden kann. Hier sei nur so viel verraten: Kopiert der Kunde den Geldschein, so legt die Bank beide eingegangenen Geldscheine übereinander, hält sie gegen das Licht und kann nun den Namen des Betrügers lesen. Ein Geldschein alleine verrät jedoch nichts über die Identität seines Erzeugers.

Übungen

Aufgabe 1.1

a) Ein Betrüger möchte eine Bank, die Protokoll Nr. 4 benutzt, dazu bringen, blind eine 100-€-Münze zu signieren, seinem Konto aber nur einen Euro zu belasten.

Dazu erzeugt er 99 Münzen vom Wert 1 € und eine 100-€-Münze. Wie groß ist die Wahrscheinlichkeit dafür, dass die Bank blind die 100-€-Münze signiert?

b) Wie kann die Bank verhindern, dass der Kunde einen Betrugsversuch unternimmt?

Aufgabe 1.2

Wie viele Bit muss die zufällig generierte Seriennummer einer E-Münze lang sein, damit die Wahrscheinlichkeit für eine zufällige Übereinstimmung von zwei Nummern kleiner ist als die Wahrscheinlichkeit, bei zwei aufeinander folgenden Ziehungen im Lotto (6 aus 49) sechs Richtige zu tippen? Tipp: Berechnen Sie zuerst die Wahrscheinlichkeit, mit einer zufällig erzeugten Seriennummer eine vorgegebene Zahl fester Länge zu treffen. Bestimmen Sie dann deren Länge n. In Abschnitt 6.1.2 wird gezeigt, dass die Seriennummer doppelt so lang (d. h. 2n) sein muss, um eine gleich geringe Wahrscheinlichkeit für eine zufällige Übereinstimmung von zwei beliebigen Nummern zu erreichen.

Grundlagen

■ 2.1 Terminologie

Wie jede Wissenschaft besitzt auch die Kryptographie eine eigene Sprache, deren wichtigste Vokabeln hier kurz vorgestellt werden. Die Begriffe Kryptographie und Kryptologie werden in der Literatur unterschiedlich definiert. Am gebräuchlichsten ist folgende Einteilung: **Kryptographie** wird verstanden als die Lehre der Absicherung von Nachrichten durch Verschlüsseln. **Kryptanalyse** ist die Kunst, Chiffretext aufzubrechen, d. h. den Klartext zu reproduzieren, ohne Kenntnis des Schlüssels. **Kryptologie** vereinigt Kryptographie und Kryptanalyse.

Bei der **Steganographie** werden geheime Nachrichten nicht verschlüsselt, sondern versteckt. Historisches Beispiel hierfür sind unsichtbare Geheimtinten, die später durch Erwärmen sichtbargemacht werden können. Heute werden digitale Daten in den niederwertigen Bits der Farbinformation von digitalen Bildern versteckt. Auch Audiodateien eignen sich aufgrund ihres Rauschens für die Steganographie. Wegen der geringen praktischen Bedeutung wird hier nicht auf die verwendeten Techniken eingegangen.

Ein **Alphabet** A ist eine endliche Menge von Zeichen. n = |A| ist die Mächtigkeit des Alphabets. Der lesbare Text einer Nachricht (message) wird **Klartext** (plaintext) genannt und mit M bezeichnet. Er wird als Zeichenkette über dem Alphabet A gebildet. Zum Beispiel sind aaa und abcabbb Klartexte über $\{a,b,c\}$. **Geheimtexte** oder **Chiffretexte** sind Zeichenketten über dem gleichen Alphabet A oder einem anderen Alphabet. Auch die **Schlüssel** sind Zeichenketten.

Verschlüsselung oder Chiffrierung bezeichnet das Verfahren, um eine Nachricht unverständlich zu machen. Die **Chiffre** E (encryption) ist eine invertierbare, d. h. eine umkehrbare Abbildung, welche aus dem Klartext M und einem Schlüssel K den Geheimtext C (ciphertext) erzeugt. Voraussetzung für die Umkehrbarkeit einer Abbildung ist die Injektivität¹. Die Umkehrung von E zur Wiederherstellung des Klartextes wird **Entschlüsselung** genannt und mit D (decryption) bezeichnet.

Entsprechend dieser Definitionen gilt E(M) = C und D(C) = M, woraus

$$D(E(M)) = M$$

folgt, denn nach dem Entschlüsseln eines Chiffretextes sollte der Klartext zum Vorschein kommen. Praktisch alle kryptographischen Verfahren haben die Aufgabe, eine der folgenden vier Eigenschaften von Nachrichten zu gewährleisten.

¹ Eine Abbildung $f: D \to B$ heißt injektiv, wenn für jedes Paar $x_1, x_2 \in D$ gilt: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, d. h. zwei verschiedene Zahlen werden durch f nie auf den gleichen Wert abgebildet.

Geheimhaltung: Ziel der Geheimhaltung ist es, das Lesen einer Nachricht für Unbefugte unmöglich bzw. schwierig zu machen.

Authentifizierung oder Authentifikation: Identitätsbeweis des Senders einer Nachricht gegenüber dem Empfänger, d. h. der Empfänger kann sicher sein, dass die Nachricht nicht von einem anderen (unbefugten) Absender stammt.

Integrität: Die Nachricht darf während der Übermittlung nicht (von Unbefugten) verändert werden. Sie bewahrt ihre Integrität, das heißt ihre Unverletztheit.

Verbindlichkeit: Der Sender kann später nicht leugnen, eine Nachricht abgeschickt zu haben.

■ 2.2 Kryptographische Algorithmen

Kryptographische Algorithmen sind Berechnungsvorschriften, d. h. mathematische Funktionen zur Ver- und Entschlüsselung. Bei **symmetrischen Algorithmen** wird zum Chiffrieren und zum Dechiffrieren immer der gleiche Schlüssel *K* benutzt und es gilt

$$E_K(M) = C$$

$$D_K(C) = M$$

$$D_K(E_K(M)) = M.$$

Bei **asymmetrischen Algorithmen** wird zum Chiffrieren ein Schlüssel K_1 und zum Dechiffrieren ein anderer Schlüssel K_2 benutzt und es gilt:

$$E_{K_1}(M) = C$$

$$D_{K_2}(C) = M$$

$$D_{K_2}(E_{K_1}(M)) = M.$$

Man unterscheidet bei kryptographischen Algorithmen zwischen **Stromchiffren** und **Blockchiffren**. Bei Stromchiffren wird ein Zeichen nach dem anderen verschlüsselt. Bei Blockchiffren wird die Nachricht in Blöcke (z. B. der Länge 64 Bit) zerteilt und dann ein Block nach dem anderen verschlüsselt. Die Vereinigung von Algorithmus, zugehörigen Schlüsseln und den verschlüsselten Nachrichten wird **Kryptosystem** genannt.

Früher wurden so genannte **eingeschränkte Algorithmen** benutzt. Bei diesen hängt die Sicherheit davon ab, ob die Arbeitsweise des Algorithmus geheim ist. Die Geheimhaltung eines Algorithmus hat folgende schwerwiegenden Nachteile beim praktischen Einsatz:

- Verlässt eine Person eine Benutzergruppe (z. B. eine Firma), dann muss der Algorithmus geändert werden.
- Auch wenn der Quellcode der Programme nicht öffentlich bekannt ist, kann ein Angreifer aus den Maschinenprogrammen die Algorithmen rekonstruieren. Eingeschränkte Algorithmen können daher nicht an Dritte weitergegeben werden. Sie wären dann wertlos.
- Qualitätskontrolle von eingeschränkten Algorithmen findet in den meisten Fällen nicht in ausreichendem Maße statt, da die entwickelte Software nicht der Kritik und den Angriffen der Öffentlichkeit standhalten muss.

Heute werden Algorithmen mit **Schlüssel** benutzt. Der Schlüssel ist meist eine natürliche Zahl, dargestellt im Binärsystem, d. h. als Folge von Bits. Der Algorithmus ist idealerweise allgemein bekannt und nur der zugehörige Schlüssel muss geheim gehalten werden. Dieses Vorgehen wurde schon im 19. Jahrhundert von A. Kerkhoffs [Kah67] gefordert:

Die Sicherheit eines Verschlüsselungsverfahrens darf nur von der Geheimhaltung des Schlüssels abhängen, nicht jedoch von der Geheimhaltung des Algorithmus.

Kerkhoffs forderte damit, dass die Sicherheit eines Algorithmus nicht darunter leiden darf, dass er veröffentlicht wird. Die aktuelle Praxis in der Kryptographie zeigt deutlich, dass durch möglichst frühzeitige Offenlegung der Algorithmen die Sicherheit eines Kryptosystems erheblich größer wird. Denn sobald ein Algorithmus publiziert ist, muss er den Attacken der Experten standhalten, d. h. er muss sich bewähren. Sind über einen langen Zeitraum alle Attacken erfolglos, so stärkt dies das Vertrauen der Benutzer in die Sicherheit des Algorithmus. Diese Methodik der Entwicklung moderner Algorithmen ist ein wichtiger Bestandteil der so genannten **starken Kryptographie**.

In der Geschichte der Kryptographie gibt es viele Beispiele für die Verletzung von Kerkhoffs' Prinzip, was zu teilweise dramatischen Sicherheitslücken führte. Zwei Beispiele aus dem Jahr 1999 zeigen, dass selbst namhafte Firmen das Kerkhoffs-Prinzip nicht beachten. Im Online-Magazin der Zeitschrift c't vom 7.12.99² war folgender Text zu lesen:

Handy-Verschlüsselung angeblich geknackt

Die beiden israelischen Kryptologen Alex Biryukov und Adi Shamir haben Medienberichten zufolge den Verschlüsselungsalgorithmus geknackt, der GSM-Handy-Telefonate auf der Funkstrecke zur Mobiltelefon-Basisstation schützt....

Eines zeigen die Vorfälle um die GSM-Verschlüsselungsalgorithmen A5/1 und A5/2 aber schon jetzt deutlich: *Der Versuch, Krypto-Verfahren geheim zu halten, dient nicht der Sicherheit.* Das hat anscheinend auch die GSM-Association gelernt: Ihr Sicherheitsdirektor James Moran äusserte dem Online-Magazin Wired gegenüber, dass man künftige Algorithmen von vorneherein offenlegen will, um der Fachwelt eine Prüfung zu ermöglichen. (nl/c't)

Eine Woche später, nämlich am 15.12.99³ erschien an gleicher Stelle die nächste Meldung zu diesem Thema:

Netscape verschlüsselt Passwörter unzureichend

Der Netscape Navigator legt Passwörter für den Zugriff auf E-Mail-Server nur unzureichend verschlüsselt ab. Zwei Mitarbeiter des US-Softwarehauses Reliable Software Technologies (RST) brauchten lediglich acht Stunden, um den Algorithmus zu knacken....

Der Algorithmus zerhacke die Passwörter zwar, es handle sich jedoch um *keine starke Verschlüsselung*, so Gary McGraw von RST. Durch die Eingabe einfacher Passwörter wie "a", "b" und so weiter sei man relativ schnell dahinter gekommen.

. . .

Der US-Sicherheitsexperte Bruce Schneier wertet die Entdeckung als weiteres Beispiel dafür, wie schädlich proprietäre Verschlüsselungsverfahren sein können. (ad[2]/c't)

² Siehe http://www.heise.de/newsticker/data/nl-07.12.99-000/

Siehe http://www.heise.de/newsticker/data/ad-15.12.99-001/

Ein weiteres aktuelles Beispiel betrifft das Verschlüsselungsprotokoll WEP (Wired Equivalent Privacy), das bei Funk-Netzwerken nach dem Standard IEEE802.11 verwendet wird. Die Autoren von [BGW01] schreiben

Conclusions

Wired Equivalent Privacy (WEP) isn't. The protocol's problems is a result of misunderstanding of some cryptographic primitives and therefore combining them in insecure ways. These attacks point to *the importance of inviting public review* from people with expertise in cryptographic protocol design; had this been done, the problems stated here would have surely been avoided.

Diese drei Meldungen sprechen für sich und bedürfen keines weiteren Kommentars.

■ 2.3 Kryptographische Protokolle

Ein kryptographischer Algorithmus zum Verschlüsseln kann auf vielfältige Art und Weise in unterschiedlichen Anwendungen eingesetzt werden. Damit eine Anwendung immer in der gleichen und korrekten Art abläuft, werden kryptographische Protokolle definiert.

Im Gegensatz zu den kryptographischen Algorithmen handelt es sich bei den Protokollen um Verfahren zur Steuerung des Ablaufs von Transaktionen für bestimmte Anwendungen, wie zum Beispiel das in Kapitel 1 vorgestellte Protokoll für elektronisches Bargeld.

■ 2.4 Public-Key-Algorithmen

Wollen zwei Parteien über einen unsicheren Kanal mit einem symmetrischen Algorithmus geheime Nachrichten austauschen, so müssen sie einen geheimen Schlüssel vereinbaren. Wenn sie nur über einen unsicheren Kanal verfügen, sind sie mit dem Schlüsseltauschproblem (Kapitel 5) konfrontiert.

Erst Mitte der 70er Jahre wurde mit der Erfindung der Public-Key-Kryptographie eine befriedigende Lösung gefunden. Sie kam genau zum richtigen Zeitpunkt, um für eine sichere Kommunikation im Internet den Grundstein zu legen. Systeme wie zum Beispiel PGP [Zim95a] (Kapitel 8.1) zum Verschlüsseln von E-Mails wären undenkbar ohne Public-Key-Algorithmen.

Vor der Erfindung der Public-Key-Algorithmen beschränkte sich das Verschlüsseln von Nachrichten auf spezielle, zum Beispiel militärische Anwendungen, bei denen der hohe Aufwand für den Schlüsseltausch gerechtfertigt war. Mit Hilfe der Public-Key-Kryptographie kann nun jedermann mit beliebigen Partnern geheime Nachrichten austauschen, Dokumente signieren und viele andere kryptographische Anwendungen wie zum Beispiel elektronisches Bargeld nutzen.

Algorithmen mit öffentlichem Schlüssel sind asymmetrische Algorithmen, die einen geheimen Schlüssel *S* (secret key) sowie einen öffentlichen Schlüssel *P* (public key) benutzen, deren Arbeitsweise und Sicherheit in Kapitel 5 ausführlich untersucht wird.

Die Idee der Public-Key-Kryptographie ist in Bild 2.1 dargestellt. Wenn Bob⁴ geheime Botschaften empfangen möchte, so erzeugt er einen öffentlichen Schlüssel $P_{\rm B}$, den er all seinen Kommunikationspartnern zukommen lässt und einen geheimen Schlüssel $S_{\rm B}$, den er sicher verwahrt.⁵

BILD 2.1 Austausch einer Nachricht mit einem Public-Key-Verfahren. Es werden öffentlicher Schlüssel P_{B} und geheimer Schlüssel S_{B} von Bob benutzt

Will nun Alice eine geheime Nachricht an Bob schicken, so benutzt sie zum Verschlüsseln den öffentlichen Schlüssel $P_{\rm B}$ von Bob. Dieser dechiffriert die Nachricht dann mit seinem geheimen Schlüssel $S_{\rm B}$. Zum Verschlüsseln wird nur der öffentliche Schlüssel benötigt. Mit ihm kann also jedermann eine verschlüsselte Nachricht an Bob schicken, aber nur Bob kann sie mit seinem geheimen Schlüssel lesen. Dieses Prinzip entspricht der Funktion vieler Wohnungstüren, bei denen das Schloss verriegelt, sobald die Türe geschlossen wird. Jedermann kann die Türe schließen. Das Öffnen von außen ist dagegen nur für den Besitzer des Schlüssels möglich.

Damit Bob auch tatsächlich den Original-Klartext liest, muss gelten:

$$E_{P_{B}}(M) = C$$

$$D_{S_{B}}(C) = M$$

$$D_{S_{B}}(E_{P_{B}}(M)) = M.$$

Beim Signieren eines Dokumentes *M* geht man umgekehrt vor wie beim Verschlüsseln. Im Prinzip verschlüsselt Alice das Dokument mit ihrem geheimen Schlüssel und hängt das Resultat als Signatur an das Dokument an. Wenn nun am Dokument oder an der Signatur auch nur ein Bit geändert wird, ist die Signatur ungültig (Kapitel 6).

$$\bigcirc M \hookrightarrow E_{S_A} \xrightarrow{(M, E_{S_A}(M))} D_{P_A} \xrightarrow{M} \bigcirc O_{Bob}$$
Alice

BILD 2.2 Alice signiert ein Dokument M mit ihrem geheimen Schlüssel S_A und Bob prüft die Signatur mit Alices öffentlichem Schlüssel P_A

^{4 &}quot;Alice" und "Bob" als Kommunikationspartner sind Bestandteil der kryptographischen Fachsprache.

⁵ Zur Vermeidung von Missverständnissen sei hier schon bemerkt, dass der Empfänger eines öffentlichen Schlüssels P_B immer dessen Authentizität überprüfen muss (Kapitel 7).

Index

Symbole	Biometrische Verfahren 114
⊕ 52 , 190	Bitcoin 151
⊗ 191	Bit-Commitment 141
φ -Funktion, Eulersche 183	blenden 88
	Bletchley Park 48
A	blinde Signatur 16, 107, 141
Additional-Decryption-Key 126	Blockchiffre 22, 59
ADK 126, 130	Blowfish 75, 131
Adleman, Leonard 79	Bob 25
Advanced-Encryption-Standard 68	Bombe 49
AES 68, 99, 108, 113, 127, 136	Brute-Force-Angriff 26, 28, 48
Affine Chiffre 35	BSI 110, 134
Algorithmus, randomisierter 195	BSS 195
Alice 25	Bundesamt für Sicherheit in der
Alphabet 21	Informationstechnik 110, 134
Anderson, Ross 75	
Angriff 26	C
Angriff mit gekauftem Schlüssel 26	CA 119, 125, 133
Angriff mit Gewalt 26	CBC 74
ANSI 60	CBC-Modus 74, 113
approximate entropy 197	Certification Authority 119, 125
Arithmetik, modulare 175	CESG 77
asymmetrischer Algorithmus 22	Challenge-and-Response 102, 112, 132, 135
AusweisApp-Software 135	Chaum, David 15
Authentifikation 22, 100	Chiffretext 21
Authentifikation, biometrische 114	Chiffriermaschine 31, 45
Authentifizierung 22	Chinesischer Restsatz 81
Authentizität 91, 113	Chipkarte 88, 103, 109, 115, 173
	Chosen-Ciphertext-Angriff 26, 87
В	Chosen-Plaintext-Angriff 26
Babbage, Charles 40	cipher block chaining 74
BBS-Generator 197	ciphertext 21
Benutzerauthentifikation 100, 102, 112	Ciphertext-Only-Angriff 26
berechenbar 98	Clipper-Chip 167
Berechnungskomplexität 27	CMRK 126
Betriebsmodi von Blockchiffren 74	COCOM 169
Bigramme 36	Codebuch 49
Biham, Eli 75	Colossus 49
binary symmetric source 195	Coppersmith, Don 75

Corporate-Message-Recovery-Key 126 CRYPTO 103	Emacs 124 E-Mail signieren 108 encryption 21
D	Enigma 45
Daemen, Joan 69	Entschlüsselung 21
Data-Encryption-Standard 59, 60	Escrowed Encryption Standard 167
Datenkomplexität 27	ETH 75
decryption 21	Euklidischer Algorithmus, erweiterter 35, 183
DES 59, 113, 127, 132	Eulersche φ -Funktion 183
DES40 132	Eve 79
	Eve 13
differential power analysis 88	F
differentielle Kryptanalyse 67, 73 Diffie, Whitfield 91	FAR 114
Diffie-Hellman-Algorithmus 77, 91, 92, 94, 132,	Feistel, Horst 59
_	Feistel-Chiffre 59, 75
136 Diffusion 59	Fermatscher Satz 179
	Fingerabdruck, kryptographischer 98
Digicash 15	
Digital Signature Algorithm 106, 124	fingerprint 117, 119
Digital Signature Standard 107	Firewall 125
digitale Signatur 97	Fortezza 132
Ding, Yan Zong 55	Friedman, William 43
diskreter Logarithmus 92, 93	Friedman-Test 40, 43
Divisionsrest 175	FRR 114
DPA 88	ftp 132
DSA 106, 124, 127, 131, 136	
DSS 107	G
_	Galoiskörper 94
E	Galoistheorie 98
eBay 149	Geburtstagsangriff 100, 216
ECB 74	Geheimdienste 167
ECB-Modus 74	geheimer Schlüssel 24, 108
ECHELON 167	Geheimtext 21
echte Zufallszahl 196	Geldkarte 146
E-Commerce 145	GF(2 ⁸) 70, 75, 190
EES 167	$GF(2^n)$ 94
EFF 60	globale Deduktion 26
Eingangspermutation 61	GNU Privacy Assistant 128
Einwegfunktion 97, 98	GNU Privacy Projekt 127
Einweg-Hash-Funktion 74, 98, 99, 102, 132	GnuPG 87, 127
electronic codebook 74	GnuPP 127
Electronic Commerce 15	Gnu-Privacy-Guard 127
Electronic Frontier Foundation 60	GPA 128
Electronic-Wallet 147	Gruppe 94
elektronische Münze 15	
elektronische Signatur 111	Н
elektronische Signatur, fortgeschrittene 111	Hammingabstand 66
elektronische Signatur, qualifizierte 112	Hash-Wert 98, 132
elektronische Unterschrift 97	Hellman, Martin 91
elektronisches Bargeld 24, 107, 139	Herausfordern und Antworten 102
ElGamal 77, 106, 127	Homophone Chiffre 37
ElGamal-Algorithmus 93	HTTP-Verbindungen 132
Elliptische Kurven, Kryptographie mit 93, 136	hybride Verschlüsselung 123

I	Lightweight Directory Access Protocol 121
IDEA 75, 131, 132	linear feedback shift register 198
IDS 125	lineare Komplexität 201
IETF 131	lineare Kryptanalyse 73
Inflation 147	linearer Kongruenzgenerator 197
Informationsdeduktion 26	lineares Schieberegister mit Rückkopplung 198
Initialisierungsvektor 75	lokale Deduktion 26
injektiv 21	LUCIFER 59
Injektivität 21	
Integrität 22, 113	M
Internet Engineering Task Force 131	MAC 74, 113, 168
Internet Mail Consortium 131	Macro-Payment 145
Internet-Pakete 133	mailcrypt 124
	Mallory 90
intrusion detection system 125	Man-in-the-Middle 90, 117
IP 133	Man-in-the-Middle-Angriff 90
IP Security 133	MARS 69, 75
IPSec 133	Massey, James 75
IP-Tunneling 132	Mauborgne, J. 52
ISO-Schichtenmodell 132	5
ITAR 169	Maurer, Ueli 56
	MD4 99
K	MD5 99, 127, 132
Kasiski, Friedrich 40	Meet-in-the-Middle-Angriff 68, 76
Kasiski-Test 40	message digest 99
Kerkhoffs-Prinzip 23, 48, 147, 195	Message-Authentication-Code 74, 113
key-recovery 167	Micro-Payment 15, 139, 145
Key-Server 117	Miller 188
KISS 197	modulare Arithmetik 31, 175
Klartext 21	modulo 175
klassische Chiffren 31	Mondex-System 147
Klíma, Vlastimil 129	monoalphabetisch 31
Known-Plaintext-Angriff 26, 49, 68	monoalphabetische Chiffre 31, 36
Knudsen, Lars 75	MPI-Format 130
Knuth, Don 195	Multimedia-Dokumente 97
Kocher, Paul 87	Multiplikative Chiffre 33
Koinzidenzindex 43	multi-precision integer 130
Kolmogorov-Komplexität 196, 201	N
Konfusion 59	Nachricht 21
Kongruenz 175	National Institute of Standards and Technology
Kryptanalyse 21, 40	60
Kryptographie 21	National Security Agency 60
kryptographischer Algorithmus 15, 22	Neumann, John von 201
kryptographisches Protokoll 15, 24	Neumann-Filter 201
Kryptologie 21	NFS 82
Kryptosystem 22	NIST 60, 99, 106, 167
kubische Gleichung 103	nPA → Personalausweis, neuer
	NSA 60, 77, 99, 106, 167
L	number field sieve 82
Lai, Xuejia 75	
Lawineneffekt 66	0
LDAP 121	On-Card Matching 115
LFSR 198	One-Time-Pad 52, 58, 73, 198, 200

Online-Banking 97	Rijndael 69, 94
OpenPGP-Standard 127, 129, 131	RIPE-MD 99
	RIPEMD160 127
P	Ritter, Terry 7
padding 75	Rivest, Ron 79, 167
passphrase 108, 132	ROC-Kurve 114
Passwort 108	root-CA 120
Passwortverschlüsselung 100	Rosa, Tomáš 129
PayPal 149	RRNG 196
Peggy 103	RSA 106, 127, 131, 132
Periodendauer 199	RSA-Algorithmus 77, 79, 94, 108, 186
Personalausweis, neuer 109, 121, 134	RSA-Algorithmus, Korrektheit 81
Personalisierung 119	RSA-Algorithmus, Sicherheit 82
PGP 87, 107, 111, 117, 120, 123	Rucksack-Algorithmus 77
PIN-Code 109, 115, 135	Runden 61
PKCS 130	randon of
PKI 117, 134	S
plaintext 21	
Point-of-Sale-Händlerterminal 150	S/MIME 117, 130 S-Box 75
polyalphabetisch 31	
	S-Box-Transformation 64
Polyalphabetische Chiffre 37	Scherbius, Arthur 45
POSH 150	Schieberegister 198
pretty good privacy 123	Schlüssel 21, 23
PRNG 195	Schlüssel, geheimer 24, 108
Probabilistische Verschlüsselung 87	Schlüssel, öffentlicher 24
Protokoll, kryptographisches 24	Schlüssel, schwacher 64
Prüfsumme 113	Schlüsselraum 29
pseudo random number generator 195	Schlüsselring 126
Pseudozufallszahlengenerator 55, 74, 195, 197	Schlüsseltausch 89
public key 24	Schlüsseltauschproblem 24,77
public key cryptography system 130	Schlüsselwort 38
Public-Key-Infrastruktur 91, 117, 130, 134	Schlüsselwortlänge 40, 43
Public-Key-Kryptographie 24, 77, 97	Schlusspermutation 61
Public-Key-System 120	Schneier, Bruce 60, 75
	schwacher Schlüssel 64
Q	Schwellenwertproblem, (m, n) 140, 143
Quantenkryptographie 91	secret key 24
Quantenschlüsseltausch 91	Secret-Splitting 139, 143
	Secret-Splitting-Protokoll 141
R	Secure Electronic Transactions 148
Rabin, Michael 55, 188	secure shell 131
RC2 75, 132	Secure socket layer 132
RC4 132	Secure-Hash-Algorithm 99
RC5 75	Secure-Hash-Standard 102
RC6 69, 75	seed 195, 197
real random number generator 196	Seed-Zahl 197
Reflektor 45	Seiteneffekt 173
relativ prim 183	Seiteneffekt, Angriff 87
Replay-Angriff 102, 113	selbstinverse Abbildung 47
Rest 175	Serpent 69, 75
RFID Chip 134	SET 145, 148
Rijmen, Vincent 69	SHA 99, 102
rajmen, vincent oo	01111 33, 102

SHA-1 99, 127, 132	U
Shamir, Adi 79	U-Boot 48
Shannon, Claude 59	uneingeschränkt sicherer Algorithmus 27
SHS 102	Unterschrift, elektronische 97
sicherer Algorithmus 27	
Sicherheitsschlüssel 27	V
Sieb des Eratosthenes 82	Verbindlichkeit 22
Signatur, blinde 107	verborgene Parameter 196
Signatur, digitale 97	Vernam, G. 52
Signaturgesetz 97, 109, 135	Verschiebechiffre 31, 32
simple power analysis 88	Verschlüsselung 21
Smart Contract 151	Victor 103
Speicherplatzbedarf 27	Vigenère, Blaise de 38
Spionage 49	Vigenère-Chiffre 38
	Viren 120
Spruchschlüssel 50	virtual private networking 125, 133
SSH 131, 137	Vollständiges Aufbrechen 26
SSL 120, 132, 150	von-Neumann-Rechner 54
starke Kryptographie 23, 115	VPN 125, 133
statistische Analyse 32	W
Steckbrett 45	wahrscheinliche Wörter, Methode 49
Steganographie 21, 168	Walze 45
Stromchiffre 22, 52, 74, 200	Walzenlage 50
Substitutionschiffre 31	Wassenaar Abkommen 169
symmetrischer Algorithmus 22	Web-Browser 132
	Web-of-Trust 120, 126
	white card 146
Т	Wörterbuchangriff 100
Tartaglia, Niccolò 103	C
Tauschchiffre 35	X
TCP/IP-Port 132	X.509 130
teilerfremd 183	
thermisches Rauschen 54	Z
TIGER/192 127	Zahlentheorie 175
timing-attack 87	Zahlkörpersieb 82, 89
Transport Layer Security 132	Zeitstempel 119
Transpositionschiffre 31	zentralen Kreditausschuss 146
Trent 89	Zero-Knowledge-Beweis 103, 104, 113
Triple-DES 61, 68, 131, 132	Zero-Knowledge-Protokoll 102, 103
Trojanerangriff 115, 173	Zertifikat 118, 130
Trojanisches Pferd (Angriff) 115, 173	Zertifikatshierarchie 119
Trustcenter 89, 117, 118, 125	Zertifizierung 118
Trustcenter, akkreditiertes 112	Zimmermann, Phil 123
Tunneln 132	ZKA 146
Turing 52	zufällig 195
Turing, Alan 48	Zufallsbitfolge, echte 53
TWOFISH 127	Zufallszahl 195
	Zustand 70
Twofish 69, 75	Zyklus 50