HANSER

Leseprobe

zu

"Signale und Systeme in mehreren Dimensionen"

von Bernhard Bundschuh

Print-ISBN: 978-3-446-46707-1 E-Book-ISBN: 978-3-446-46715-6

Weitere Informationen und Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-46707-1 sowie im Buchhandel

© Carl Hanser Verlag, München

Vorwort

Stephen Hawking soll vor der Veröffentlichung seines Bestsellers "Eine kurze Geschichte der Zeit" die Warnung erhalten haben, dass jede Formel, die in dem Werk vorkäme, die Anzahl der Leser in etwa halbieren würde. Natürlich maße ich mir nicht an, mit dem weltberühmten Physiker in derselben Liga zu spielen. Zudem ist das Popstar Image, das Stephen Hawking zugeschrieben wurde, bei Professoren der Systemtheorie völlig unbekannt. Ausgehend von der erwähnten Warnung müssten die Leserzahlen sämtlicher Lehrbücher der Systemtheorie im technischen Sinn bei null liegen, da diese grundsätzlich nicht ohne Mathematik auskommt. Im Unterschied zur "Kurzen Geschichte der Zeit" ist das vorliegende Buch kein populärwissenschaftliches Werk, sondern ein Lehrbuch mit wissenschaftlich technischem Anspruch. Es richtet sich an Leser mit einschlägigen Grundkenntnissen, die etwa in Lehrveranstaltungen zur Theorie eindimensionaler Signale und Systeme erworben wurden. Darauf aufbauend wird diese in mehrere Dimensionen verallgemeinert.

Naturgemäß sind Formeln, mit denen mehrdimensionale Signale und Systeme beschrieben werden, tendenziell umfangreicher und komplexer als in einer Dimension. Bis auf ganz wenige Ausnahmen, etwa bei der Rotation mehrdimensionaler Signale, erleichtern Analogien zu eindimensionalen Signalen und Systemen das Verständnis. Außerdem werden alle Formelausdrücke ausführlich erläutert und grafisch veranschaulicht. Der Zeitaufwand bei ihrer Handhabung kann durch die zeitgemäße Nutzung von Computeralgebraprogrammen wohltuend reduziert werden. Die vorsichtige Annahme, dass viele potentielle Leser Zugriff auf derartige Programme haben, sollte in einer Zeit, in der allenthalben Loblieder auf die "Digitalisierung" gesungen werden, nicht zu optimistisch sein. Eine Reihe von Programmierbeispielen bietet interessierten Lesern Gelegenheit, die Handhabung von Formeln der mehrdimensionalen Systemtheorie einschließlich grafischer Darstellungen in Mathematica zu erproben. Zu den Programmierbeispielen gehören auch passgenaue Hilfestellungen, mit denen sich Ungeübte die erforderlichen Kenntnisse der Mathematica-Syntax erarbeiten können. Das Buch richtet sich an Studierende ingenieur- und naturwissenschaftlicher Disziplinen mit Grundkenntnissen der Systemtheorie sowie an Entwickler und Anwender in Gebieten wie Bildverarbeitung, Bildgebende Verfahren oder Fernerkundung. Auf plus.hanser-fachbuch.de finden Sie Musterlösungen der Programmierübungen in Form von 15 Mathematica Notebooks.

Ganz herzlich danken möchte ich Frau Professor Ines Rennert von der Hochschule der Telekom in Leipzig, die zu meinem großen Bedauern aufgrund familiärer Verpflichtungen die sehr angenehme und erfolgreiche Zusammenarbeit bei der Verfassung der eindimensionalen "Signale und Systeme" (Hanser-Verlag, 2013) nicht fortsetzen konnte, für das gründliche Probelesen und die konstruktive Kritik. Mein Dank gilt auch Frau Professor Monika Trundt von der Hochschule Merseburg für das gründliche Probelesen sowie für ihre Hilfe beim Erstellen und Einbinden der Bilder. Ganz besonders möchte ich mich bei meinem Sohn Matthias für die Unterstützung bei der Umsetzung des Manuskriptes in LaTex bedanken.

Merseburg, im Juli 2020

Bernhard Bundschuh

Inhalt

1	Ein	führu	ıng	5				
2	Me	hrdin	nensionale Signale	10				
_	2.1 Kontinuierliche Signale							
		2.1.1	Kontinuierliche Signale im Ortsbereich	13				
			2.1.1.1 Elementarsignale	15				
			2.1.1.2 Signaloperationen	29				
		2.1.2	Signalbeschreibung im Ortsfrequenzbereich	40				
			2.1.2.1 Fourierreihen	40				
			2.1.2.2 Fouriertransformation	47				
			2.1.2.3 Ortsfrequenzspektren mehrdimensionaler Elementarsignale	52				
			2.1.2.4 Signaloperationen im Ortsfrequenzbereich	60				
		2.1.3	Signalbeschreibung im Bildbereich	68				
	2.2	Abtas	tung	82				
		2.2.1	Das Abtasttheorem in mehreren Dimensionen	82				
		2.2.2	Reguläre Abtastraster	86				
		2.2.3	Abtastung mit Polarraster	90				
	2.3	Diskr	ete Signale	92				
		2.3.1	Diskrete Signale im Ortsbereich	92				
			2.3.1.1 Diskrete Elementarsignale	95				
			2.3.1.2 Diskrete Signaloperationen	100				
		2.3.2	Diskrete Signale im Ortsfrequenzbereich	102				
		2.3.3	Mehrdimensionale Diskrete Fouriertransformation	108				
		2.3.4	Mehrdimensionale diskrete Signale im Bildbereich	111				
3	Me	Mehrdimensionale Systeme						
	3.1	Linea	re verschiebungsinvariante Systeme	121				
	3.2	Syster	mbeschreibung im Ortsbereich	125				
		3.2.1	Partielle Differenzialgleichungen	125				
		3.2.2	Faltung/Punktantwort	132				
	3.3	Frequ	enzgänge mehrdimensionaler Systeme	135				
	3.4	Übert	ragungsfunktionen mehrdimensionaler Systeme	137				
	3.5	Diskr	ete Systeme	139				

4	Anwendungen					
_	4.1	Systemtheoretische Beschreibung physikalischer Vorgänge				
		4.1.1	Elektrostatik	143		
		4.1.2	Magnetostatik	149		
		4.1.3	Wellenausbreitung	156		
		4.1.4	Modellierung der Bildaufnahme	185		
	4.2	Bildverarbeitung				
		4.2.1	Bildverbesserungsverfahren	190		
		4.2.2	Bildrestaurationsverfahren	230		
		4.2.3	Bildanalyse	246		
	4.3	Comp	258			
		4.3.1	Röntgen-Computertomografie	258		
		4.3.2	Astronomische Anwendung tomografischer Verfahren	281		
		4.3.3	Ultraschalltomografie	285		
		4.3.4	Impedanztomografie	294		
Α	Anhang					
	A.1	A.1 Korrespondenzen der mehrdimensionalen Fouriertransformation				
	A.2	A.2 Programmierübungen in Mathematica 3				
Qu	elleı	וו		325		
Ind	ex					

Einführung

Bei Lesern, die mit der Theorie mehrdimensionaler Signale und Systeme noch nicht vertraut sind, liegt natürlich die Frage nahe, was man sich unter einem mehrdimensionalen Signal bzw. unter einem mehrdimensionalen System vorzustellen hat. Bild 1.1 zeigt schematisch eine aus der eindimensionalen Systemtheorie vertraute Anordnung, ein abstrakt als Block dargestelltes System mit einem Eingangssignal u(t) und einem Ausgangssignal y(t). Beide Signale stellen Zahlenwerte als Funktionen der Zeit dar, die ggf. physikalische Größen repräsentieren, zu denen dann natürlich auch Einheiten gehören. In der Systemtheorie wird bekanntlich von der physikalischen Bedeutung der Signale und Systeme abstrahiert, was zur vorteilhaften universellen Anwendbarkeit systemtheoretischer Methoden führt. Dies gilt auch für die Theorie mehrdimensionaler Signale und Systeme.

Bild 1.1 System mit eindimensionalem Eingangs- und Ausgangssignal

Die Werte der Signale u(t) und y(t) hängen von einer unabhängigen Variablen, der Zeit t, ab u(t) und y(t) werden daher als eindimensionale Signale bezeichnet und das System, das beim Anlegen eines eindimensionalen Eingangssignals ein eindimensionales Ausgangssignal produziert, stellt ein eindimensionales System dar.

Nicht ganz so offensichtlich ist die Einordnung der in Bild 1.2 skizzierten Anordnung. Das System besitzt K Eingänge und M Ausgänge. Es könnte z. B. eine verfahrenstechnische Anlage repräsentieren, mit einer Reihe zeitlich variierender Stoffmengen als Eingangssignale. Unter den Ausgangssignalen könnte man sich in einem solchen Fall die ebenfalls zeitlich variierenden Stoffmengen der hergestellten Produkte vorstellen, aber auch physikalische Größen wie Drücke oder Temperaturen an verschiedenen Punkten der Anlage. Dieses System könnte ein erster Kandidat für eine Einordnung in die Kategorie "mehrdimensionales System" sein.

Bild 1.2 System mit mehreren Ein- und Ausgängen

Entscheidend für die Unterscheidung eindimensional – mehrdimensional sind jedoch die Anzahlen unabhängiger Variablen der Signale. Sind alle an den Ein- oder Ausgängen eines Systems auftretenden Signale eindimensionale Größen, so wird auch das System als eindimensional definiert. Mehrdimensionale Signale stellen Funktionen mehrerer unabhängiger Variablen dar, etwa mit x als horizontaler und y als vertikaler Koordinate einer Schwarz-Weiß-Darstellung im Stil des Bildes 1.3.

Bild 1.3 Schwarz-Weiß-Bild als Funktion von x und y /31/

Im Gegensatz zu Farbbildern stellen Schwarz-Weiß-Bilder zweidimensionale skalare Signale s(x,y) mit s als Symbol für Grauwert, Intensität, Helligkeit dar. Da Farbbilder aus drei Farbkomponenten, etwa Rot, Grün, Blau (R, G, B) oder Leuchtdichte (Y), Blau – Leuchtdichte (U), Rot – Leuchtdichte (V) (Y, U, V) bestehen, stellen sie zweidimensionale vektorielle Signale dar.

Bild 1.4 Farbbild mit Rot-, Grün- und Blau-Komponenten exemplarisch /30/

Der hohe Rotanteil der Nase des in der Literatur zur Bildverarbeitung häufig vorkommenden "Baboon" tritt in der Rot-Komponente sehr hell zu Tage. Das Gleiche gilt in der Blau-Komponente für die leuchtend blauen Flächen unter den Augen. In der Blau-Komponente wirken die Augen fast schwarz, da die gelben Augen im Farbbild durch Überlagerung roter und grüner Anteile, mit nur geringem Blauanteil zustande kommen. Formal wird das Farbbild mit

 $\vec{s}(x,y) = \begin{pmatrix} s_{R(ot)}(x,y) \\ s_{G(r\ddot{u}n)}(x,y) \\ s_{B(lau)}(x,y) \end{pmatrix}$ bezeichnet. Der Vektorpfeil ist eine gängige Kennzeichnung

vektorieller Signale, die auch in den nachfolgenden Kapiteln durchgehend verwendet wird.

Bild 1.5 zeigt ein zweidimensionales System mit Eingangssignal $s_e(x,y)$ und Ausgangssignal $s_a(x,y)$ in abstrakter Darstellung als Blockschaltbild. Bild 1.6 illustriert ein praktisches Beispiel.

Bild 1.5 Zweidimensionales System mit Eingangs- und Ausgangssignal abstrakt

Bild 1.6 Zweidimensionales System exemplarisch

Mehrdimensionale Signale und Systeme beschränken sich natürlich nicht auf zwei Dimensionen. Das elektrostatische Potenzial $\varphi(x,y,z)$ in der Umgebung einer elektrischen Ladung, die Temperaturverteilung T(x,y,z) in einem Raum oder die im Zuge einer computertomografischen Untersuchung gemessene Gewebedichte d(x,y,z) stellen Beispiele für dreidimensionale skalare Signale dar. Beispiele für dreidimensionale vektorielle Signale sind die elektrische Feldstärke $\vec{E}(x, y, z)$ in der Elektrostatik bzw. die magnetische Feldstärke $\vec{H}(x, y, z)$ in der Magnetostatik. Abschnitt 4.1 enthält weitere Details und Rechenbeispiele.

Ggf. umfassen vektorielle Signale auch mehr als drei Komponenten. So werden in der Fernerkundung zur Analyse von Vegetationszuständen häufig hyperspektrale Bilder

 $\vec{s}(x,y) = \begin{pmatrix} s_1(x,y) \\ s_2(x,y) \\ \vdots \\ s_I(x,y) \end{pmatrix}$ aufgenommen, mit einigen Dutzend oder einigen Hundert "Farbkanälen",

die vom Infrarotbereich bis in den Ultraviolettbereich verteilt sein können.

Eine weitere Kategorie mehrdimensionaler Signale sind Signale mit gemischt auftretenden räumlichen und zeitlichen unabhängigen Variablen. Ein Signal mit der Bezeichnung s(x,y,t) könnte ein schwarz-weißes Bewegtbild darstellen, wie man es aus dem Kino oder Fernsehen kennt. Im Rahmen derartiger Anwendungen werden in der Praxis natürlich **Bildfolgen** verwendet. Bild 1.7 zeigt schematisch ein einfaches Beispiel.

Bild 1.7 Bildfolge s(x,y,t) exemplarisch

Die Zeitkoordinate tritt dann, wie in Gl. 1.1 formuliert, in diskreter Form als ganzzahliges Vielfaches der reziproken Bildfolgefrequenz bzw. Bildrate f_B auf, d. h.

$$s(x, y, t) \stackrel{\circ}{=} s(x, y, k\Delta t) \operatorname{mit} \Delta t = 1/f_B.$$
(1.1)

Beim Farbfernsehen treten vektorielle Signale mit teils räumlichen, teils zeitlichen unabhängigen Variablen auf. In Abwandlung von Gl. 1.1 wäre ein derartiges Signal mit

$$\vec{s}(x, y, t) = \begin{pmatrix} s_R(x, y, t) \\ s_G(x, y, t) \\ s_B(x, y, t) \end{pmatrix} \text{bzw. } \vec{s}(x, y, t) = \begin{pmatrix} s_Y(x, y, t) \\ s_U(x, y, t) \\ s_V(x, y, t) \end{pmatrix}$$
(1.2)

zu bezeichnen.

Eine weitere Unterscheidung kontinuierlich – diskret trat beim analogen Fernsehen auf, als noch Bildröhren in Gebrauch waren. Bild 1.8 illustriert die lange Zeit verwendete Zeilenstruktur von Fernsehbildern mit kontinuierlicher x-Koordinate und diskreter y-Koordinate.

Bild 1.8 Zeilenstruktur eines analogen Fernsehbildes $s(x, i_{\nu}\Delta y, k\Delta t)$ schematisch

Potenziale bzw. Feldstärken in der Elektrodynamik sind Funktionen sowohl des Ortes als auch der Zeit. Zu nennen sind das skalare elektrische Potenzial $\varphi(x, y, z, t)$, die elektrische und die magnetische Feldstärke $\vec{E}(x, y, z, t)$ bzw. $\vec{H}(x, y, z, t)$, beides vektorielle Signale, sowie das magnetische Vektorpotenzial ($A_x(x, y, z, t), A_y(x, y, z, t), A_z(x, y, z, t)$)^{*T*}. Es handelt sich hier also um vierdimensionale Signale.

Die vektorielle Formulierung des Argumentes eines mehrdimensionalen Signals à la $s(\vec{r}) = s(x_1, x_2, ..., x_N)$ stellt die kompakteste, vielseitigste und abstrakteste Formulierung dar.

Die Variablen $x_1, x_2, \ldots x_N$ repräsentieren ggf. teils räumliche, teils zeitliche Koordinaten.

Anstelle der bis dahin durchweg verwendeten kartesischen Koordinaten, kann, je nach den geometrischen Gegebenheiten einer Problemstellung, auch die Wahl anderer Koordinatensysteme vorteilhaft sein, etwa Zylinderkoordinaten bei der Beschreibung elektrischer oder magnetischer Felder in Lichtwellenleitern mit rotationssymmetrischem Querschnitt oder sphärische Koordinaten bei der Beschreibung elektrischer oder magnetischer Felder in der Ionosphäre.

2

Mehrdimensionale Signale

Mehrdimensionale Signale können physikalische Größen repräsentieren, die Funktionen mehrerer unabhängiger Variablen darstellen. Einige Beispiele, etwa Potenzial- bzw. Feldstärkeverteilungen, wurden im einführenden Kapitel 1 bereits kurz vorgestellt. Sie können aber auch reine Rechengrößen darstellen, wie sie etwa in der Bildverarbeitung (mehr dazu im Abschnitt 4.2!) gebräuchlich sind.

Bild 2.1 illustriert anhand eines sehr einfachen Beispiels die Kategorien:

- kontinuierliches Signal
- ortsdiskretes Signal als Ergebnis einer Abtastung, wie sie etwa bei einer Bildaufnahme mit dem CCD- oder CMOS-Bildsensor einer elektronischen Kamera erfolgt
- wertdiskretes Signal als Ergebnis einer Quantisierung, wie sie durch den Analog-Digital-Konverter (ADC) einer digitalen Kamera realisiert wird
- orts- und wertdiskretes Signal, das durch Abtastung und Quantisierung entsteht.

Bild 2.1 Kontinuierliches Signal und diskrete Signale

Die Wertdiskretisierung bei kontinuierlichen Ortskoordinaten wird in der Praxis nicht benutzt.

Im Gegensatz zu einem stochastischen Signal ist der Signalverlauf eines deterministischen Signals an sämtlichen Ortskoordinaten exakt bekannt, etwa als Formelausdruck oder durch eine abschnittsweise Definition. Bild 2.2 präsentiert ein zweidimensionales Rauschsignal. Zu Zeiten des terrestrischen analogen Fernsehens trat auf dem Bildschirm der ähnlich aussehende sogenannte "Schnee" auf, wenn das ständig vorhandene Rauschen des Empfängers nicht durch ein ausreichend starkes Signal überdeckt wurde.

Bild 2.2 Bildrauschen als zweidimensionales stochastisches Signal = Zufallssignal

Manche Autoren populärwissenschaftlicher Bücher zum Thema Kosmologie schreiben derartige "Fernsehbilder" der allgegenwärtigen kosmischen Hintergrundstrahlung zu.

Bild 2.3 zeigt das Ergebnis einer Simulation, die den Einfluss von Rauschen unterschiedlicher Stärke auf die Qualität eines Schwarz-Weiß-Bildes demonstriert.

Bild 2.3 Schwarz-Weiß-Bild + Rauschen unterschiedlicher Standardabweichung

Das ungestörte Bild 1.3 zeigt eine aus der Literatur zur Bildverarbeitung sehr bekannte Dame /31/. Die ganzzahligen, also quantisierten Helligkeitswerte im Bereich 0 ... 255 könnten so im 8-Bit-Analog-Digital-Konverter einer handelsüblichen elektronischen Kamera entstanden

sein. 8 Bit-Zahlen können bekanntlich $2^8 = 256$ verschiedene Werte annehmen (0, 1, 2... 255). Der Maximalwert 255 ist weiß dargestellt, der Minimalwert 0 schwarz.

Das Rauschen wurde durch normalverteilte Zufallszahlen mit Mittelwert 0 bei variierender Standardabweichung σ_n nachgebildet und zu den Helligkeitswerten des Bildes hinzuaddiert. Im Englischen spricht man auch von "Additive White Gaussian Noise (AWGN)".

Die Beispiele machen klar, dass das überlagerte Rauschen erst bei recht hohen Standardabweichungen deutlich zu erkennen ist. Das visuelle System eines menschlichen Betrachters sorgt dafür, dass moderate Rauschbeiträge kaum wahrgenommen werden. Bild 2.4 zeigt das Helligkeitsprofil entlang einer Bildzeile, die ca. 1/4 der Bildhöhe vom oberen Rand entfernt liegt, das dem Helligkeitsprofil des ungestörten Bildes (schwarz) überlagert ist. Die Standardabweichung der normalverteilten Zufallszahlen liegt bei 10.

Bild 2.4 Helligkeitsprofil entlang einer Zeile eines verrauschten Bildes

Obwohl bei dieser Standardabweichung das Rauschen in einem Schwarz-Weiß-Bild mit natürlichem Motiv kaum wahrnehmbar ist, fällt es im Helligkeitsprofil sofort ins Auge.

2.1 Kontinuierliche Signale

Kontinuierliche Signale sind weder bzgl. ihrer Werte noch bzgl. ihrer Ortskoordinaten diskretisiert, also weder abgetastet noch quantisiert.

Da die Quantisierung von Signalwerten eine nichtlineare und i. A. nicht reversible Operation darstellt, wird die Signal- und später auch Systembeschreibung durch den Verzicht auf die Quantisierung tendenziell vereinfacht. Es treten keine Quantisierungsfehler auf, die, je nach Anwendung, zu Problemen, etwa Stabilitätsproblemen beim Entwurf digitaler Filter /28/, führen können.

Ein grundsätzlicher Verzicht auf die Abtastung mehrdimensionaler Signale wäre hingegen nicht praktikabel, da man damit auf die Nutzung der vielfältigen Möglichkeiten der Digitalen Signalverarbeitung, z. B. in der Bildverarbeitung, verzichten würde.

2.1.1 Kontinuierliche Signale im Ortsbereich

Anknüpfend an die Theorie eindimensionaler Signale, z. B. in /24/, zeigt Bild 2.5 ein willkürlich ausgewähltes dimensionsloses kontinuierliches Zeitsignal x(t).

Bild 2.5 Zeitsignal exemplarisch

Die Kurvendarstellung charakterisiert das Signal in eindeutiger Weise. Signalwerte mitsamt ihren zeitlichen Lagen können problemlos abgelesen werden.

Bild 2.6 zeigt ein äquivalentes zweidimensionales Signal s(x,y) in drei verschiedenen Darstellungsarten. Sollten einige Leser mit der "Interactive Data Language (IDL)" vertraut sein, so kennen sie möglicherweise die Grafikfunktion **SHOW3**, die – Nomen est omen – drei verschiedenartige grafische Darstellungen zweidimensionaler Signale überlagert, ein Schwarz-Weiß-Bild, ein Konturbild und eine perspektivische Darstellung mit Gitterlinien.

Der scheinbar willkürliche Sprung bei der Signalbezeichnung von x(...) zu s(...) ist wohl begründet. Würden die in der Theorie eindimensionaler Signale gebräuchlichen Bezeichnungen x(t) oder y(t) auch für mehrdimensionale Signale als Funktionen zweier oder mehrerer Ortskoordinaten beibehalten, so kämen womöglich verwirrende Formulierungen à la x(x, y,...) bzw. y(x, y,...) zustande.

Bild 2.6 Zweidimensionales Signal exemplarisch

Mittels der Gitterlinien können Signalwerte und deren Positionen aus der perspektivischen Darstellung gut abgelesen werden. Das Konturbild gewährleistet eine sehr genaue Lokalisierung charakteristischer Signalstrukturen, etwa lokaler Maxima oder Minima. Das Ablesen von Signalwerten aus dem Konturbild ist hingegen nicht ohne Weiteres möglich. Ggf. kann dem durch Beschriftung oder Farbcodierung der Konturen abgeholfen werden. Einen schnellen Überblick über das Erscheinungsbild eines zweidimensionalen Signals liefert die Schwarz-Weiß-Darstellung. Um feine Details gut erkennen zu können, kann anstelle eines Schwarz-Weiß-Bildes auch eine Falschfarbendarstellung sinnvoll sein.

Völlig andere Verhältnisse herrschen bei der Darstellung eines detailreichen Signals im Stil von Bild 1.3. Aufgrund der großen Zahl verästelter Konturlinien wirkt die Konturdarstellung in Bild 2.7 sehr verwirrend. Man erkennt in etwa das Motiv aus Bild 1.3, die Lokalisierung bestimmter Bildstrukturen ist jedoch nur sehr eingeschränkt möglich.

Bild 2.7 Detailreiches Signal in Konturdarstellung

Die probeweise perspektivische Darstellung in Bild 2.8 liefert eine Art Reliefbild, das noch schwerer zu interpretieren ist als Bild 2.7.

Bild 2.8 Detailreiches Signal in Konturdarstellung

Bild 2.9 zeigt ein einfaches dreidimensionales Signal als räumlich-perspektivisches Konturbild. Kritisch sind Verdeckungen, auch bei Verwendung halbtransparenter Konturen und natürlich die fehlende Tiefeninformation auf Bildschirmen bzw. Papierbildern. Alternativ können mehrere Schnittbilder parallel dargestellt werden. Man kann auch versuchen, die Tiefeninformation durch eine Farbcodierung oder durch Stereopaare bereitzustellen.

Bild 2.9 Dreidimensionales Signal s(x,y,z) exemplarisch

In mehr als drei Dimensionen versagt die menschliche Vorstellungskraft komplett. Ggf. könnte eine zeitliche Folge von Darstellungen im Stil von Bild 2.9, die als Projektionen aus dem vierdimensionalen in den dreidimensionalen Raum oder als Schnittbilder interpretiert werden können, eine begrenzte geometrische Vorstellung höherdimensionaler Signale erzeugen.

2.1.1.1 Elementarsignale

Elementarsignale weisen sehr einfache, idealisierte Strukturen auf. Sie sind mathematisch leicht handhabbar und eignen sich daher sehr gut zur Illustration und zum Test systemtheoretischer Beziehungen und Methoden, etwa der im Abschnitt 2.1.2 behandelten mehrdimensionalen Fouriertransformation.

Nutzt man sie im Zuge der Modellierung bzw. Simulation physikalischer Vorgänge, so ist auf ein ausgewogenes Verhältnis der Genauigkeit der Modelle und ihrer einfachen mathematischen Handhabbarkeit zu achten.

In Bild 2.10 werden exemplarisch ein realitätsnahes und nicht ganz unkompliziertes zweidimensionales Signal (links) sowie eine Approximation, die unter Verwendung von Elementarsignalen erzeugt wurde (rechts), gegenübergestellt.

Index

Α

Abtastfrequenz 99, 108, 181, 184, 215 Abtastmatrix 86 ff., 103, 110, 140, 167, 182 Abtastraster 86 ff., 103, 110 f., 140, 170 Abtastung 10, 12, 67, 82 ff. 97 ff., 102 ff., 167 ff., 182 ff., 215, 264, 271 - ideale 86, 170 - impulsfolge 83, 86 ff. – mit Abtastapertur 192 Abtasttheorem 84, 85, 87, 181, 182 184 Addition 12, 32 ff., 41, 55, 58, 79, 101, 184, 198, 201, 213, 225, 230, 244, 275 f., 313 Airy-Muster 186 ff. Algebraische Gleichung 126, 132, 139 Algebraische Rekonstruktion 275, 278 ff. Amplitude 50 ff., 135 f., 161, 163, 232 ff., 237, 272 Anfangswert(e) 80 f., 126, 137 Antenne(n) 156, 164 ff. - Array 166 ff., 181 ff. Antennendiagramm 165 ff., 175 ff. Äquipotenzialfläche 146 ff. Astronomische Anwendung 183 f., 213 f., 281 Atmosphärische Turbulenz 283 f. Ausblendeigenschaft 24, 37f., 52 ff., 54, 57, 76, 83, 90 102, 107, 111, 113, 134 f., 146 ff. 170, 267 Ausgangssignal(e) 5, 7, 36, 121 ff., 230, 282 Autokorrelationsfunktion (AKF) 35, 67, 174 ff., 242,319

В

Balkendiagramm 93, 192, 320 Basisfunktion(en) 23, 43 Basisvektor(en) 45, 90 f., 170 f., 175, 185 Bereichswachstumsverfahren 248 Besselfunktion 56 ff., 186, 289 Beugung 156 ff., 185 ff., 281 – sintegral 156, 160 ff. – sunschärfe 185 f. Bildbereich 68 ff., 80, 111 ff., 126 ff., 144 Bildfunktion 69 ff., 111 ff., 126 ff., 137 Bildschärfung 212 f. Biot-Savart, Satz von 151 Blende 185 Born'sche Näherung 288 Brennweite 185, 187

С

Canny 209 ff. CCD-Sensor 10, 185 Closing 229, 247 CMOS-Sensor 10, 185 Computeralgebra 1, 104, 126 f., 147 f., 155 f. 168 Computertomografie 7, 34, 39 f., 66, 92, 125, 258 ff. Covarianzmatrix 20 f., 307 Cramersche Regel 129, 269, 274

D

Delta

- ebene 25 ff., 38, 148, 306
- funktion 24 ff., 37 f., 54, 76, 308, 324
- gerade 24 ff., 38 f., 54 ff., 66, 76, 91, 99, 146 f., 152, 266 ff., 306
- kreis 25 ff., 57, 63 f., 77, 307
- kurve 25 ff., 58, 66, 99
- punkt 23 ff., 35, 37 f., 52 ff., 67 f., 76, 83 ff., 98, 103, 107, 111, 116, 133 ff., 145 f., 170, 175, 189, 281 ff.
- Detektor 124, 209, 258 ff., 324
- DFT 51 f., 108 ff., 215 f., 231, 254, 262 ff., 269, 321

Differenzialgl. 80 f., 125 ff., 138, 143, 200, 205, 218, 261, 286, 288 Differenzengleichung 139 f. Dilation 228 ff., 323 Dirac-Impuls 21 ff., 53 ff., 73 f., 102, 111, 116, 178, 267, 270, 282, 308 Dichteverteilung 34 f., 143 f., 149 ff., 186, 273, 275, 287 Drehmatrix 64, 67 Drehung 31 ff., 61 f., 64, 79, 100, 119, 283, 292 f.

Ε

Ebene 24 ff., 38, 88, 115, 148, 153, 256, 260, 286, 288, 307 Ebenengleichung 25 Eingangssignal(e) 5, 7, 36, 121 ff., 150, 230, 236 Einheitskreis 112, 114, 116, 142 Einheitsimpulsfolge 104, 117, 241 Einheitssprung 16 ff., 52 f., 68 ff., 96 ff., 281 f., 306 – folge 96 ff. Elektrostatik 9, 35, 146, 147 Elektrische Feldkonstante 132, 144 Ellipse 31, 34, 61 ff., 265 ff., 313 Elementarsignal(e) 15 f., 21, 29 ff., 52, 73, 95, 99, 103, 115 Entropie 243 Entwicklungskoeffizient(en) 40 ff., 83, 86, 314 Erosion 228 f., 323 Erwartungswert 204, 235 f. Exponentialfunktion 40, 42, 49., 65, 69, 73, 109, 222, 308 ff.

F

Fächerstrahlanordnung 259 f., 273, 276, 278 ff.
Falschfarbendarstellung 14
Faltung 36 ff., 65 ff., 79 ff., 101, 119 ff., 140 ff., 170 ff., 187 ff. 99 ff., 230 ff., 262 ff.
Assoziativeigenschaft 134

- Distributiveigenschaft 134
- Kommutativeigenschaft 36, 133, 144, 230
- Einselement = neutrales Element 134

Faltungsintegral 134 f., 144 f., 149 ff. Faltungsprodukt 65 f., 79, 134, 151, 174, 213, 234, 238, 245 Faltungssumme 101, 119, 140, 171 ff., 238 Farbbild 6 f., 192 ff. Feldlinien 146 f., 149, 153 f. Feldstärke - elektrische 7, 8, 24, 144 ff., 186 magnetische 7, 8, 150 ff. Feldwellenwiderstand 156 Fernfeld 156 ff., 181 ff. Fixpunkt 24 f., 28 Flächenladung 148 f. Formfaktor 248 f. Fourieranalyse 136 Fourierdeskriptoren 255 f. Fourierreihe 23, 43 ff., 71 ff., 86 ff., 106 Fouriersynthese 136. Fouriertransformation 15, 20, 47 ff., 79 - diskrete 108, 215 f., 309, 316 ff. - inverse 52, 67, 164, 290, 308 - schnelle (FFT) 108 f., 121, 166, 216, 220, 231 Fouriertransformierte 48 ff., 64 ff., 115, 135, 140, 164, 237, 267 ff. Fourier-Bessel-Transformation 56 Fraunhofer'sche Näherung 164 ff., 182 ff. Freeman, Randcodierung nach 252 ff. Fresnel'sche Näherung 161 ff. Füllfaktor 185

G

Gamma-Kennlinie 122 Gamma-Korrektur 123 Gaußfunktion 19 ff., 53 ff. 201 ff., 211, 283, 307 Gaußfilter 201 f., 204, 208 f., 213 Gefilterte Rückprojektion 92, 225, 266 ff., 283 Gegenstandsentfernung 185 Gewicht 17, 23 f., 52, 54, 74, 152, 166, 270 Gewichtsfaktor 64, 132 f., 212 f., 241, 244, 276 ff. Gewichtsfunktion 133 ff., 144 f., 150 f., 157 ff., 170 ff., 199, 204, 244, 269 f., 281 f., 317 f. Gibbs'sches Phänomen 218 ff., 234 f., 272 f. Glättungsfilter 141, 200 ff. 218 ff., 224 f., 236 Gleichungssystem 129, 239, 242 f., 269 f., 274, 277, 297, 302 ff. Gradient 144 ff., 205, 211 244 f., 277, 305 Gradientenverfahren 245 ff., 277 f. Grauwert 6, 34, 191 ff., 239 f., 298, 320 Green'sche Funktion 288 f. Grenzfrequenz, -index 184, 217 f., 234, 321

Η

Halbachse 31, 34 Hankelfunktion 289 Hankeltransformation 56 f., 59, 77, 107 Harmonische Schwingung 20 f., 40, 99 f., 135, 286.306 Helligkeit 6, 11 f., 51 f., 122 f., 194, 216 ff., 246 f. Helix 29 Helligkeitsprofil 12, 51 Hexagonalraster 43, 111, 167 ff., 182 ff., 294, 314 Histogramm 191 ff., 246 ff., 320 höherer Ordnung 193 f. - einebnung 196 ff. - spreizung 197 Hochpass 213 Homomorphes Filter 221 ff. Hysterese 210

Ideale Sammellinse 185 ff. IDFT 51 f., 321 Impedanztomografie 294 ff. Impulsantwort 133 f., 141, 271, 275 Intensität 6, 186 Interpolation 85, 90, 100, 118 f., 262 f., 266, 269, 274 f. – bilinear 262 f. Inverses Filter 231 ff. Inverses Problem 231 Iterationsverfahren 234, 237, 239 f., 243 ff., 272, 277 f., 299

Κ

Kanten 52, 62, 88, 200 ff., 218, 223 f., 228 f., 282, 322 f. - detektor 209 ff. Kegelschnitt(e) 63 ff. Klassifikation(sverfahren) 249, 255 ff. Kompaktheitshistogramm 248 Kompass-Operator 210 f. Komplexes Signal 20, 29, 32 ff., 40 ff. Konvergenz(bereich) 71 ff., 80, 103, 111 ff. 249.242 Koordinatensystem 24, 141, 161 ff., 261 ff. Kontrastmodifikation 194 ff. Konturdarstellung 14, 59 Konturintegral 115 Kreis 19 ff., 34, 48, 56 f., 61 ff., 112 f. 152 ff., 291 f. Kreisfunktion 19 f., 23, 30, 34, 56 ff., 76, 98 ff., 108, 15, 186 ff. Kreuzkorrelationsfunktion (KKF) 35 ff., 67, 101 f., 119, 193, 239, 242, 284 Kreuzkorrelationsfolge 101 f., 119

L

Ladung 7, 24, 126, 131 f., 143 ff., 189 Laplacetransformation 68 ff., 112 ff., 126 ff., 138 ff., 308 Laplacetransformierte 69 ff., 111 ff., 116, 126 ff., 137 f. – einseitige 70 ff., 77 ff., 113 ff. - inverse 70, 80, 309 - zweiseitige 74 ff. 79 ff. Laplace-Operator 212 f., 241 Least Squares 235 ff., 238 ff., 277 Leistungsdichte 186, 236 f. Leitungsgleichungen 127 ff. Leitwertmatrix 297 ff. Leuchtdichtesignal 6, 192 Linear 12, 36, 64, 79, 94, 116 ff., 121 ff., 144 ff., 150, 156, 162 ff., 171, 177, 183 ff., 196 ff., 223 ff., 235 ff. und verschiebungsinvariant 36, 121 ff., 135 f., 144, 150, 199, 203f., 224, 235, 243, 251 Linienintegral 38, 147 ff.2

Linienladung 147 f., 15 Lorentz-Funktion 22 f., 53 LSI-System 123, 132 ff., 187, 220, 230, 237, 281

Μ

Magnetostatik 149 ff. Mathematica 22, 59, 96, 147 Median 224 ff., 246 Medianfilter 224 ff., 247 Merkmalsextraktion 249 ff. Merkmalsvektor 255 ff. Mittelwert 12, 51, 200, 224, 231 ff., 281 Modell(ierung) 15, 19 f., 29, 34, 167 ff., 184 ff., 221, 261, 295, 301, 303 Modulationsübertragungsfunktion (MTF) 188 f. Moment(e) 250 f., 255 f. - gewöhnlich 250 – normiert 251 ff. zentral 255 ff. Morphologische Operationen 223 ff., 229 f., 323 Multiplikation 30 ff., 54, 67, 83 ff., 89, 94, 100 f. 108 f., 130, 136, 157, 189, 201 f., 220 f., 230, 235, 306 - eigenschaft 83

Ν

Nachbarschaftsoperator 191, 199 f. Nahfeld 156 ff. Normalenform 24 f. Normalenvektor 24 ff., 38 f., 55, 262, 279 Normalverteilt 11, 177

0

Opening 229 f. Orthogonalität 38, 51, 55 ff., 61, 91, 282 Ortsdiskretes Signal 10, 92 Ortsfrequenz 23, 42 f., 50 ff., 80 ff., 102 ff., 135 f. 140, 163 ff., 181 ff., 204, 213 ff., 230 ff., 262 ff. barrich 40 f. 49 ff. 67 f. 83 ff. 102, 187, 216

 bereich 40 f., 49 ff., 67 f., 83 ff., 102, 187, 216, 220, 231, 240, 264, 277, 288 ff. spektrum 51 ff., 80, 79, 87 ff., 106, 108 ff., 165, 168, 183, 204, 216 ff., 230, 234 ff., 240, 242, 262 ff., 267 f
Ortsskalierung 30, 61 ff., 82, 102 ff. 119, 305

Ρ

Parallelprojektion 38 f., 91, 262 ff. Parallelstrahlanordnung 258 ff., 273 ff., 278 f., 281 ff. Partitionierung 302 ff. Phase 20, 50 ff., 60, 135 f., 157, 159 Phasengang 136, 233 Phasor 136, 157, 166 Periode 20 f., 40 ff., 47, 68, 83, 91, 104 ff., 110, 141, 215 ff. Periodische Fortsetzung 39 f., 51, 84 Periodizitätsmatrix 43 ff., 86 Periodizitätsvektor 69, 73 Permeabilität 15 Permittivität 144, 287 Planet 213, 281 ff. Point Spread Function 133 Poissongleichung 131 ff., 144 Poissonverteilung 243 Polarkoordinaten 55 ff. 90 ff., 172, 262 f., 274 Polarraster 90 ff., 172, 262 f., 275, 294 f., 303 f. (Knoten-)Potenzial 8 ff., 146 ff., 297 ff. Projektion 15, 66, 91 ff., 99, 262 ff. Punktantwort(folge) 133 ff., 140 f., 188, 201 ff., 219, 228 f., 238, 240, 280 ff. Punktoperator 190 f.

Q

Quantisierung 10, 12, 191 f., 197 Quelle 174, 219, 258 ff.

R

Randverteilung 129 f. Randwert 80 ff., 137 ff. Rangordnung 224 ff. Raumkurve 29 Raumladungsdichte 24, 131 f., 144 ff. Rauschen 11 ff. 35 f., 204 ff., 215 ff., 224 ff., 230 ff., 265, 270 ff. Rechteck 192
funktion 17 ff., 21 ff., 31 ff., 49 ff., 75 f., 84 ff., 106, 152, 164, 307 f.
raster 82 ff., 103, 110, 167, 171, 181 f., 262, 275, 293, 304
signal 29, 61, 75, 164
folge 41 ff., 97 ff. 105 ff., 117, 215
Rechtsschraubenregel 154
Reguläre(s) Abtastraster 86 ff.
Regularisierung 241 ff., 277
Restauration 231 ff.
Rotation 151, 215 ff., 262
Rotationssymmetrie 55 ff., 107, 166, 174, 268
Rückprojektion 266 ff., 275, 283

S

Schwarz-Weiß-Bild 6, 13 ff., 93 f. 192, 197, 208, 212, 216 Segmentierung 246, 248 Separierbarkeit 18 ff., 23 ff. 31 ff., 42 ff., 49 ff., 61, 65, 74 ff., 79 ff., 84 f., 117 ff., 282, 305 ff. Scherung 32, 62, 79, 100 Shepp and Logan Head Phantom 34 ff., 64 f. 264 ff. si-Funktion 166 ff., 307 sinc-Funktion 49 ff. 59, 62, 75, 84 f., 89, 106 Skalar 43 Skalares Signal 6, 7, 9, 144 Skalarprodukt 24, 279 Skalierung 30 ff., 56 f., 59 ff., 64 ff., 79, 100 ff., 118 ff., 132, 168 f., 215, 238, 305 Skalierungsfaktor 30, 65, 119 Skalierungsmatrix 30, 61, 118 Sobel-Operator 208 ff. Spaltenvektor 43 ff., 86, 201, 277 f. Sphärische Symmetrie 58 f., 188, 281, 306 Sprungantwort 281 Sprungfolge 96 f., 100, 103 ff., 111 ff. Standardabweichung 11 f., 19, 54 f., 69, 74 f., 217, 219 ff., 231 ff., 251 Stromdichte 29, 149 ff. Stromfaden 151 f., 153 ff., 156 Stromschleife 153, 156 Strukturierendes Element 223 f. Superposition 36, 48, 69, 91, 94, 122, 133, 275 f., 305

Symmetrie(en) 49, 58 f., 166, 168 ff., 264, 268 System 7 ff., 14, 121 ff., 140 ff., 239 ff., 275 ff. Systemrelation 121

Т

Teilspektrum 109 f. Telegraphengleichung 131, 136 Tiefpass 124, 136, 217 ff., 234, 246, 267 Transformationsmatrix 31, 63 ff. 79, 100 Translation 29 ff., 37 60, 64, 67, 77 f. 100, 132

U

Übertragungsfunktion 136 ff., 188 f. Unscharfe Maskierung 213 Unterabtastung 85, 92

V

Varianz 20, 125, 204 f., 234, 244, 251, 307
Vektor 6 ff., 24 f., 28 ff. 35 ff., 44 ff., 48 f., 73, 88, 100, 103, 118, 124 f., 134, 152, 155 244, 256 ff., 277, 279, 286 ff.
Matrix-Schreibweise 64, 277, 297
Vektorielles Signal 6 ff., 150, 156, 244
Verschiebung 29, 123 ff.
Verschiebungsvektor 30, 35, 37, 78, 100, 118, 133 ff.

W

Wegintegral 70, 73, 79, 113 f. Wertdiskretes Signal 10 f., 92 Wertskalierung 30, 65, 79, 100 f., 118, 122, 132 Wiederholraster 43, 45 ff., 110, 182 Wiener Helstrom-Filter 235 ff., 272 f. Wiener Khintchine-Theorem 67, 306

Υ

Y-Signal 6, 192

Ζ

Zeile-Spalte-Transformation 109 ff. Zeilenvektor 44 f., 48, 201 f., 277 Zeitsignal 13, 24, 40 f., 47 ff., 54, 69 ff., 77 ff., 96, 102 f., 108 f., 124, 215 – diskretes 10, 99 ff.

- Z-Transformation 112 ff. 139 ff.
- einseitige 115 ff., 139f
- inverse 70, 72, 113, 115, 140, 309
- zweiseitige 121