HANSER

Leseprobe

zu

Licht und Beleuchtung im Medienbereich

von Roland Greule

Print-ISBN 978-3-446-46865-8 E-Book-ISBN 978-3-446-46866-5

Weitere Informationen und Bestellungen unter https://www.hanser-kundencenter.de/fachbuch/artikel/9783446468658 sowie im Buchhandel

© Carl Hanser Verlag, München

Widmung

Ich widme dieses Buch meinen Eltern, Hedwig und Georg Greule.

Mit der zweiten Auflage geht eine zusätzliche Widmung an meine Schwiegermutter Helene Eckert, die dem Lichtlabor der HAW-HH das immer und überall präsente "Lichtschwein" geschenkt hat, das bei allen Veranstaltungen der Lichtlabors immer dabei ist und allen Glück bringt.

Inhalt

Wid	mung		V
Vorv	wort		XXIII
Die	Autore	en	XXV
1	Einfü	hrung	1
2	Licht	und Strahlung	3
2.1	Strahl	lungsphysik und Fotometrie	3
2.2	Strahl	lung und Spektrum	4
	2.2.1	Sichtbare Strahlung	4
	2.2.2	UV-Strahlung	5
	2.2.3	IR-Strahlung	5
2.3	Physil	kalische Größen	6
	2.3.1	Strahlungsfluss $\Phi_{\rm e}$	6
	2.3.2	Strahlstärke $I_{\rm e}$	6
	2.3.3	Bestrahlungsstärke $E_{\rm e}$	6
	2.3.4	Strahldichte $L_{\rm e}$	7
	2.3.5	Strahlungsphysikalische und lichttechnische Größen	7
2.4	Licht-	und Emissionsspektren	7
	2.4.1	Kontinuierliches Spektrum	8
	2.4.2	Linienspektrum	8
2.5	Weiße	es und farbiges Licht	9
	2.5.1	Farbiges Licht	9
	2.5.2	Körperfarben	10

2.6	Schwa	arzer Strahler und Farbtemperatur	11
	2.6.1	Farbtemperatur bzw. ähnlichste Farbtemperatur	11
	2.6.2	Normlichtarten	14
3	Licht	technische Grundgrößen	15
3.1	Spekt	rale Hellempfindlichkeit	16
	3.1.1	Messaufbau	16
	3.1.2	Relative Hellempfindlichkeit bei Tagessehen	17
3.2	Lichts	strom Φ	18
	3.2.1	Hellempfindlichkeit bei photopischem Sehen	19
	3.2.2	Hellempfindlichkeit bei skotopischem Sehen	20
3.3	Lichta	ausbeute η	20
3.4	Lichts	stärke I	21
	3.4.1	Raumwinkel Ω	22
	3.4.2	Lichtstärkeverteilungskurve (LVK)	23
	3.4.3	Lichtstärkeverteilungskurve eines Stufenlinsenscheinwerfers	24
3.5	Beleu	chtungsstärke E	25
	3.5.1	Schräger Lichteinfall	26
	3.5.2	Fotometrisches Entfernungsgesetz	27
3.6	Belich	ntung H	29
3.7	Leuch	ntdichte L	29
3.8	Stoffk	ennzahlen	31
	3.8.1	Reflexionsgrad	31
		3.8.1.1 Diffuse Reflexion	31
		3.8.1.2 Gerichtete Reflexion	32
		3.8.1.3 Gemischte Reflexion	33
	3.8.2	Transmissionsgrad	34
	3.8.3	Absorptionsgrad	35
	3.8.4	Halbstreuwinkel	35
3.9	Übun	gsbeispiele	36

4	Kont	rast und Helligkeit	39		
4.1	Kontr	rast	39		
	4.1.1	Physiologischer Kontrast	39		
	4.1.2	Helligkeitsdetektion C	40		
4.2	Kontr	rastdefinition im Film- und Fernsehbereich	41		
	4.2.1	Objektkontrast	41		
	4.2.2	Lichtkontrast	42		
	4.2.3	Szenenkontrast	42		
	4.2.4	Kontrastumfang und Blendenstufen	43		
4.3	Ratio		44		
4.4	Hellig	gkeit und Helligkeitsmodelle	45		
	4.4.1	Helligkeitsmodelle	46		
	4.4.2	Helligkeitsmodell CIE-L*	48		
4.5	Übun	gsbeispiele	48		
5	Auge und Wahrnehmung 4				
5.1	Physi	ologie des Sehens	49		
	5.1.1	Optisches System des Auges	49		
	5.1.2	Netzhaut	50		
	5.1.3	Fovea Centralis	52		
	5.1.4	Sehnerv	53		
	5.1.5	Gesichtsfeld und Sehschärfe	53		
5.2	Nicht	-visuelle Wirkung von Licht	55		
5.3	Farbr	ezeptoren und Farbwahrnehmung	59		
	5.3.1	Dreifarbentheorie	59		
	5.3.2	SML-Zapfen	60		
	5.3.3	Gegenfarbentheorie nach Hering	61		
	5.3.4	Zonentheorie	61		
	5.3.5	Tag- und Nachtsehen	62		
	5.3.6	Verteilung der Rezeptoren	63		
5.4	Grun	dlagen der Wahrnehmung	63		
	5.4.1	Fixation und Saccaden	64		
	5.4.2	Sehschärfe	66		

	5.4.3	Akkommodation	67		
	5.4.4	Adaptation	67		
5.5	Konst	anzwahrnehmung	68		
	5.5.1	Helligkeitskonstanz	69		
	5.5.2	Farbkonstanz	69		
		5.5.2.1 Chromatische Adaptation	70		
		5.5.2.2 Stevens-und-Hunt-Effekt	70		
5.6	UV-, I	R- und Blaulichtgefährdung für Auge und Haut	70		
6	Farb	metrische Grundlagen	7 7		
6.1	Farbn	netrische Grundgrößen	77		
	6.1.1	Farbreizfunktion	78		
	6.1.2	Farbempfindung	78		
	6.1.3	Farbvalenz	78		
	6.1.4	Helligkeit	79		
	6.1.5	Farbton (Buntton)	79		
	6.1.6	Sättigung (Buntheit)	79		
	6.1.7	Farbmischung	80		
	6.1.8	Niedrige und höhere Farbmetrik	80		
6.2	Histor	Historische Entwicklung der Farbmetrik			
	6.2.1	Farbkreis	81		
	6.2.2	Dreidimensionale Farbsysteme	82		
	6.2.3	Farbordnungssysteme	83		
6.3	Farbräume 8				
	6.3.1	RGB-Farbraum	84		
	6.3.2	CIE-XYZ-Farbraum	85		
	6.3.3	Farbtafel	88		
	6.3.4	CIE-UCS-Farbtafel	89		
	6.3.5	CIE-L*u*v*	91		
	6.3.6	CIE-L*a*b*	92		
	6.3.7	Farbabstandsformeln	92		
	6.3.8	CIECAM02	94		
	6.3.9	Rec2020/BT.2020	95		

6.4	Addit	ive und subtraktive Farbmischung	96	
	6.4.1	Additive Farbmischung	96	
	6.4.2	Subtraktive Farbmischung	97	
6.5	Farbw	viedergabefaktoren und Farbwiedergabeindex	98	
	6.5.1	Farbwiedergabefaktor R_a	98	
	6.5.2	CQS	99	
	6.5.3	TM 30-15	100	
	6.5.4	TLCI-2012	102	
6.6	Farbfo	olien, Farbgläser und Konvertierungsfolien	103	
	6.6.1	Farbfolien	103	
	6.6.2	Farbgläser	104	
	6.6.3	Konversionsfolien, Neutralfilter und Korrekturfilter	106	
	6.6.4	MIRED	106	
	6.6.5	Mired Shift Value	106	
6.7	Übun	gsbeispiele	107	
7	Licht	- und Farbmesstechnik	109	
7.1	Visue	lle Fotometrie	109	
7.2	Physikalische Fotometrie			
	7.2.1	Beleuchtungsstärkemesser	110	
	7.2.2	Leuchtdichtemesser	112	
	7.2.3	Messung von Lichtstärke-Verteilungs-Kurven	114	
	7.2.4	Ulbrichtkugel (U-Kugel)	114	
	7.2.5	Spektrale Fotometrie	116	
7.3	Belich	ntungsmessung	116	
	7.3.1	Belichtung	116	
	7.3.2	Belichtungsmesser	116	
	7.3.3	Spotmeter	117	
7.4	Farbn	nessung	117	
	7.4.1	Gleichheitsverfahren	118	
	7.4.2	Licht- und Körperfarben	118	
		7.4.2.1 Spektraler Reflexionsgrad $\beta(\lambda)$	119	
		7.4.2.2 Farbvalenz von Körperfarben	119	

	7.4.3	Dreibereichsverfahren	119
	7.4.4	Spektralverfahren	120
7.5	Mess	geometrien	123
	7.5.1	Messgeometrie 45° 0°	123
	7.5.2	Messgeometrie diffus d/0°	123
	7.5.3	Messgeometrie diffus d/8°	123
7.6	Übun	gsbeispiele	124
8	Licht	quellen	125
8.1	Aufba	u und Wirkungsweise	126
8.2	Leben	sdauer und Lampenalterung	126
8.3	Glüh-	und Halogenlampen	127
	8.3.1	Die Glühlampe: Historie, Aufbau und Wirkungsprinzip	127
	8.3.2	Temperaturstrahlung	128
	8.3.3	Aufbau und Wirkprinzip der Halogenlampe	129
	8.3.4	Halogenlampen im Fernseh-, Film- und Theaterbereich	131
8.4	Niede	rdruckentladungslampen	131
8.5	Hocho	druckentladungslampen	134
	8.5.1	Hochdruck-Metallhalogendampflampen	134
	8.5.2	Hochdruckentladungslampen im Fernseh-, Film- und Theaterbereich	136
8.6	Lichte	emittierende Dioden (LED)	136
	8.6.1	Elektrolumineszenz	136
	8.6.2	Lichterzeugung im III-V-Halbleiter	137
	8.6.3	LED-Technologie	138
	8.6.4	Aufbau und Wirkungsgrad von LED-Lichtquellen	139
	8.6.5	Binning	141
	8.6.6	LED-Produkte und Applikationsfelder	142
	8.6.7	Einzel-LEDs und LED-Engines in Movinglights	144
8.7	Organ	nische lichtemittierende Dioden (OLED)	147
	8.7.1	Funktionsprinzip von OLED	147
	8.7.2	OLED-Display	148

9	Schei	inwerfer	151
9.1	Konve	entionelle Scheinwerfer	152
	9.1.1	Fluter und Rampen	152
	9.1.2	Blinder	154
	9.1.3	Parabolspiegel-Scheinwerfer	155
	9.1.4	Stufenlinsen-Scheinwerfer	157
	9.1.5	Profil-Scheinwerfer	159
	9.1.6	Stroboskope	161
	9.1.7	Zubehör	161
9.2	Movin	glights	162
	9.2.1	Scanner	162
	9.2.2	Spot-/Profile-Movinghead	163
	9.2.3	Wash-Movinghead	165
	9.2.4	Beam-Movingheads	167
	9.2.5	Movinglights im Outdoorbereich	167
9.3	Hybri	dscheinwerfer, komplexe Pixelsysteme und	
	kreati	ve Scheinwerfer	168
10	Licht	steuerung und Lichtstellpulte	1 <i>7</i> 1
10.1	Entwi	cklung der Lichtsteuerung	172
	10.1.1	Analoge Steuertechnik	174
	10.1.2	Analoges Multiplexing	174
	10.1.3	Digitales Multiplexing	174
	10.1.4	DMX-512	175
	10.1.5	DMX-512A	179
	10.1.6	DMX-512 RDM (Remote Device Management)	179
	10.1.7	Drahtloses DMX	179
10.2	Lichtn	netzwerke	180
	10.2.1	Ethernet	181
		10.2.1.1 Aufbau eines Ethernet-Netzwerkes (Topologie)	182
		10.2.1.2 Netzwerkkomponenten	182
	10.2.2	Proprietäre Herstellerprotokolle	183
	10.2.3	ArtNet	183

	10.2.4	ACN (A	rchitecture for Control Networks)	184
	10.2.5	Klingne	t	185
	10.2.6	Weitere	verbreitete Protokolle	185
10.3	Lichts	tellpulte		186
	10.3.1	Kompon	nenten von Lichtstellpulten	188
	10.3.2	Arbeits	weisen	188
11	Digita	al Lighti	ng	191
11.1	LED-W	/ände		192
	11.1.1	Grundla	agen	192
	11.1.2	Auflösu	ng und Farbe	193
	11.1.3	Helligke	eit	194
	11.1.4	Pixelpit	ch	194
11.2	Projek	ctionen .		195
	11.2.1	Projekto	oren	196
	11.2.2	Technis	che Grundlagen	196
		11.2.2.1	Geometrie und Entzerrung	196
		11.2.2.2	Farbe	197
		11.2.2.3	Helligkeit	197
		11.2.2.4	Auflösung und Format	198
11.3	Pixeln	napping -	- Pixel und Scheinwerfer	198
11.4	Medie	nserver .		200
	11.4.1	Überbli	ck Grundfunktionen	201
		11.4.1.1	Layer	202
		11.4.1.2	Content	203
		11.4.1.3	Texturen und Manipulation	203
		11.4.1.4	Ebenen	203
		11.4.1.5	Ausgabe	204
		11.4.1.6	Virtuelle Kamera und 3D-Raum	205
		11.4.1.7	Erweiterte Funktionen	205
		11.4.1.8	Zeitbasis	206
		11.4.1.9	Steuerung und Ansteuerung	206
		11 4 1 10	Integrierte Benutzeroberflächen	207

		11.4.1.11 Bedienung durch Lichtstellpulte	208
		11.4.1.12 Manager-Anwendung und Timeline	209
	11.4.2	Signale und Schnittstellen	211
		11.4.2.1 Ansteuerung und Synchronisation	211
		11.4.2.2 Bildschnittstellen	211
		11.4.2.3 Sonstige Schnittstellen	212
11.5	Berufs	sfeld "Digital Lighting"	213
12	Licht	führung	217
12.1	Licht ı	und Schatten	218
12.2	Lichte	infall und Schattenwirkung	219
	12.2.1	Gerichtetes Licht	220
	12.2.2	Kernschatten (Zentralschatten, Schlagschatten, Umbra)	221
	12.2.3	Halbschatten (Penumbra)	221
	12.2.4	Harter bzw. weicher Schatten	221
	12.2.5	Licht zur Orientierung	222
12.3	Ausle	uchtung von Personen (Personenlicht) nach McCandless	223
12.4	Lichtr	ichtungen	225
	12.4.1	Vorderlicht	226
	12.4.2	Seitliches Vorderlicht	226
	12.4.3	Oberlicht	226
	12.4.4	Kopflicht (Toplight)	227
	12.4.5	Hinterlicht bzw. Gegenlicht	227
	12.4.6	Seitenlicht	228
	12.4.7	Gassenlicht	229
	12.4.8	Rampenlicht, Unterlicht, Fußlicht	229
	12.4.9	Horizont- bzw. Hintergrundlicht	229
12.5	Lichtg	estaltung für Fernsehkameras	230
	12.5.1	Lichtrichtungen im Fernsehbereich	230
	12.5.2	Personenausleuchtung im Fernsehbereich	231
		12.5.2.1 Einpunkt-Ausleuchtung	232
		12.5.2.2 Zweipunkt-Ausleuchtung	232
		12.5.2.3 Dreinunkt-Ausleuchtung	232

		12.5.2.4 Vierpunkt-Ausleuchtung	233
		12.5.2.5 Personenbeleuchtung bei Green-/Blue-Box-Anwendung	233
		12.5.2.6 Personenbeleuchtung bei der Tagesschau	234
12.6	Lichts	etzung im Film	234
12.0	12.6.1	Fotografische Stile	234
	12.6.2	Normal-Stil	235
	12.6.3	Low-Key-Stil	235
		12.6.3.1 Unausgeglichener Low-Key	236
		12.6.3.2 Aufgehellter Low-Key	236
	12.6.4	High-Key-Stil	236
	12.6.5	Grundregeln der Lichtführung	236
13	Licht	gestaltung und Lichtdesign	239
13.1	Kurze	r historischer Überblick	240
13.2	Grund	regeln der Lichtgestaltung bzw. des Lichtdesigns	242
13.3	Lichtin	nszenierung nach McCandless	243
	13.3.1	Qualitäten des Lichts	243
	13.3.2	Funktionen des Lichts	244
	13.3.3	Theorie nach Richard Pilbrow	245
13.4	Erzeug	gung eines Looks	246
	13.4.1	Dramaturgieverlauf zur Erzeugung von Emotionen	246
		13.4.1.1 Dramaturgie	249
		13.4.1.2 Ästhetik	249
		13.4.1.3 Bühnenraum bzwdesign	249
		13.4.1.4 Video-Content	249
	13.4.2	Gestaltungsregeln	249
	13.4.3	Anordnung der Scheinwerfer	250
	13.4.4	Grundlagen Farbkonzept	252
13.5	Bühne	enbeispiele	253
	13.5.1	Kleine Bühne	253
	13.5.2	Mittlere Bühne	255
	13.5.3	Große Bühne	256
	13.5.4	Beispiel: Eurovision Song Contest 2012 in Baku – große Bühne	257

14	Theat	ter-Licht	259				
14.1	Kurzer historischer Überblick						
14.2	Veran	Verantwortliche					
14.3	Scheir	nwerfer und Standorte	263				
	14.3.1	Scheinwerfertypen	263				
	14.3.2	Standorte der Beleuchtungseinrichtungen	264				
14.4	Lichtk	onzeption und Produktion	265				
	14.4.1	Planung	266				
	14.4.2	Produktionsablauf	267				
	14.4.3	Beleuchtungsproben	268				
14.5	Bühne	e und Bühnenformen	268				
14.6	Bühne	en- und Lichtstile im Theater	269				
14.7	Spreck	n-, Musik- und Tanztheater	270				
	14.7.1	Sprechtheater	270				
	14.7.2	Musiktheater	271				
		14.7.2.1 Musical	271				
		14.7.2.2 Oper	271				
	14.7.3	Tanztheater	272				
14.8	Verstä	ndnisfragen	273				
15	Ferns	seh-Licht	275				
15.1	Studio	ıs	275				
	15.1.1	Aufsager- oder Schaltenstudio	275				
	15.1.2	Nachrichten-, Magazin- oder Spartenstudio	276				
	15.1.3	LED-Wand-Studio	278				
	15.1.4	Multifunktionsstudio	278				
	15.1.5	Show-Studio/-Atelier	279				
	15.1.6	Streaming-Studio	280				
15.2	Sendu	ngsgenre	281				
15.3	An de	r Lichtgestaltung beteiligte Personen	282				
	15.3.1	Regie	282				
	15.3.2	Setdesign	282				
	15.3.3	Lichtdesign	282				
	15.3.4	Kameramann	283				

	15.3.5	Beleuchtungsmeister/lichtsetzender Kameramann	283
	15.3.6	Lichtpult-Operator	283
	15.3.7	Oberbeleuchter/Beleuchter	283
	15.3.8	Bildingenieur	284
	15.3.9	Maske	284
	15.3.10	Kostüm	284
	15.3.11	Protagonisten	284
15.4	Einges	setzte Scheinwerfer	285
	15.4.1	Fresnel-Scheinwerfer	285
	15.4.2	Weitere Scheinwerfer im Fernsehstudio	286
15.5	Fernse	phsystem	287
	15.5.1	Die Fernsehübertragungskette	287
	15.5.2	High Dynamic Range und Wide Colour Gamut	288
	15.5.3	Display und Bildbeurteilung	289
	15.5.4	Kamera und Objektiv	290
		15.5.4.1 Objektiv	290
		15.5.4.2 Lichtempfindlichkeit, Arbeitsblende und Lichtniveau der Produktion	291
		15.5.4.3 Weißabgleich	292
15.6	Fernse	eh-Licht	293
	15.6.1	Lichtkonzepte	293
		15.6.1.1 Punktuelles Licht	293
		15.6.1.2 Flächiges Licht	295
	15.6.2	Ausleuchtung mehrerer Personen	295
	15.6.3	Beleuchtung bei Talk-Sendungen im Fernsehen	295
	15.6.4	Beleuchtung von Zuschauern im Fernsehen	296
	15.6.5	Beleuchtung des Sets im Fernsehen	296
15.7	Sende	ablauf	297
	15.7.1	Vor der Sendung	297
	15.7.2	Einleuchten	297
	15.7.3	Lichtplan	299
	15.7.4	Pultkonzept	299
	15.7.5	Lichtänderung während der Sendung	300

	15.7.6	Lichtwechsel	301
	15.7.7	Sendung	301
16	Film-	Licht	303
16.1	Kurze	r historischer Überblick	303
16.2	Filmempfindlichkeit		
	16.2.1	Belichtung	305
	16.2.2	Dichtewert D	305
	16.2.3	Gradation	305
	16.2.4	Lichtempfindlichkeit (ISO – DIN/ASA)	306
	16.2.5	Kontrastumfang beim Filmmaterial	307
	16.2.6	Lichtempfindlichkeit digitaler Filmkameras	307
	16.2.7	Schärfentiefe versus Tiefenschärfe	308
16.3	Person	nen	310
16.4	Messt	echnik	311
16.5	Einges	setzte Scheinwerfer	311
	16.5.1	Fresnel- und HMI-Scheinwerfer	312
	16.5.2	Dedo-Light	313
	16.5.3	Weichstrahlende Scheinwerfer	314
		16.5.3.1 Kino-Flo	314
		16.5.3.2 Chimera	315
	16.5.4	Dino Lights	316
	16.5.5	Spacelights	316
	16.5.6	Heliumballon	317
	16.5.7	Butterfly	317
	16.5.8	Bouncing	318
	16.5.9	Fahnen/French Flags	318
16.6	Lichts	tile im Filmbereich	319
16.7	Model	ling	320
17	Konze	ert-Touring-Licht	323
17.1	Kurze	r historischer Überblick	323
17.2	Person	nen	325
17.3	Einges	setzte Scheinwerfer	326

17.4	Bühne	enformen und Lichtdesign für Konzert-Touring	327
	17.4.1	Bühnenformen	327
	17.4.2	Lichtdesign	328
17.5	Lichtk	onzeption und Produktion	328
	17.5.1	Entwurfsphase	328
	17.5.2	Planungsphase	330
	17.5.3	Probenphase	330
	17.5.4	Aufbau vor Ort	331
	17.5.5	Einleuchten/Fokussieren/Presets ziehen	332
17.6	Beispi	ele	333
	17.6.1	SEEED BAM BAM Tour 2019	333
	17.6.2	Festival	335
17.7	Remot	e-Verfolger und Tracking-Systeme	336
	17.7.1	Remote-Verfolger (halbautomatisches Tracking-System) \dots	336
	17.7.2	Vollautomatische Tracking-Systeme	338
18	Licht	für wirtschaftsbezogene Veranstaltungen	341
18.1	Kurze	r historischer Überblick	342
18.2	Person	nen	343
18.3	Lichtd	esign und Lichtfachplanung	344
18.4	Produ	ktionsprozess	344
	18.4.1	Entwurfsphase	344
	18.4.2	Ausführungsphase	345
	18.4.3	Umsetzungsphase	345
18.5	Beispi	el Audi-Messestand IAA 2015	346
19	Licht	pläne und Lichtsimulation	349
19.1	Grund	llagen	349
	19.1.1	Modellbau	350
	19.1.2	Simulation	351
19.2	Lichtp	läne	352
19.3	Begrif	fe der Computersimulation	355
	19.3.1	Drahtgittermodell (Wireframe)	355
	19.3.2	Materialbeschreibung	356

	19.3.3	Beleuchtung	357
	19.3.4	Rendering	357
19.4	Reche	nalgorithmen	358
	19.4.1	Flat-Shading	358
	19.4.2	Gourand-Shading	359
	19.4.3	Phong-Shading	359
	19.4.4	Radiosity- bzw. Punkt-zu-Punkt-Verfahren	359
	19.4.5	Raytracing-Verfahren	361
19.5	Lichts	imulationsprogramme	363
	19.5.1	$Lichtberechnungsprogramm\ Relux\ Desktop\ und\ DIALuxEvo.\ .\ .$	364
	19.5.2	Echtzeit-Lichtsimulationsprogramme	365
	19.5.3	Spezielle Programme für den Einsatz im Showbereich	366
		19.5.3.1 grandMA 3D	366
		19.5.3.2 WYSIWYG Lighting Design	367
		19.5.3.3 depence ²	368
		19.5.3.4 Vectorworks Spotlight	368
	19.5.4	Virtual Reality	368
		19.5.4.1 CAVE (Cave Automatical Virtual Environment)	369
		19.5.4.2 VR- und MR-Brillen: Oculus Rift, HTC-Vive,	
		Hololens, Google Glass	369
		19.5.4.3 VR-Anwendung von GDTF-Daten und Unity-Engine	371
20	Ausb	ick: Lichttechnik in der Zukunft	373
20.1	Zusan	nmenwachsen von Eventtechnik und Lichtarchitektur	373
20.2	Neue S	Sende- und Videoformate (Zoom-Meetings,	
	Green-	-Screen-Studios für Online-Lehre)	375
20.3	Virtua	l Production	377
	20.3.1	Hybride virtuelle Produktion	378
	20.3.2	Live LED Wall In-Camera Virtual Production	378
20.4	Augm	ented Reality und Interaktivität	380
	20.4.1	Interaktivität	380
	20.4.2	Einsatz von AR und Interaktivität bei Medienfassaden	381
20.5	Cross-	Reality(XR)-Plattformen für hybride Eventformate	383

	20.5.1 XRchitecture		383
	20.5.2 Clubevent und Lichteditor mit XR/VR-	-Techniken	385
	20.5.3 Nutzungs- und Gestaltungsmöglichkeim Digitalen Theater		386
	20.5.4 Ausblick		388
20.6	BIM (Building Information Modelling)		388
20.7	Fotogrammetrie		390
20.8	Einsatz von KI und neuronalen Netzen im Lic	chtdesign	391
Lösu	ungen der Übungsaufgaben und Verstän	dnisfragen	393
Liter	eratur und weitere Informationsmedien .		395
Litera	raturverzeichnis		395
Fach	nzeitschriften		397
Weba	padressen (Verbände)		398
Bildı	Inachweis		399
Inde	ex		407

Vorwort

Das Thema Licht und Beleuchtung begleitet mich seit vielen Jahren im Berufsleben, beginnend mit dem Studium an der TU in Karlsruhe, der praktischen Umsetzung im Berufsalltag als Lichtplaner und Lichtdesigner bis hin zu der wissenschaftlichen Arbeit als Hochschullehrer. Dabei hat das Thema Farbe und die Faszination der Visualisierung von Licht mit Rechenprogrammen bis heute Bestand. Durch die rasante Entwicklung der LEDs und ihre Einsatzmöglichkeiten im Theater-, Fernseh- und Showbereich wird das Thema Licht und Farbe noch faszinierender wie bisher. Lassen Sie sich überraschen.

Danksagung

Ich möchte an dieser Stelle dem Hanser Verlag, vor allem meiner Lektorin Frau Werner, für die sehr gute Zusammenarbeit danken. Mein Dank geht auch an den Herausgeber der Reihe, meinem Kollegen Prof. Dr. Ulrich Schmidt.

Ein besonderer Dank geht auch an die Mitautoren Frau Alexandra Ehrlitzer, Herrn Martin Rupprecht, Herrn Fabian Oving und Herrn Dr. Roland Heinz. Vielen Dank für die Unterstützung im Kapitel 15 "Fernseh-Licht" durch Herrn Matthias Wilkens, sowie seine detaillierten Diskussionen, um dem Buch seine jetzige Form zu geben.

Danke an die Kollegen, die mir Bilder bzw. Grafiken zur Verfügung gestellt haben (Herbert Bernstädt, Markus Beug-Rapp, Marc Briede, Michael Feldmann, Carsten Grigo, Lutz Hassenstein, Markus Hegi, Berthold Jäger, Sebastian Jakob, Michael Kersten, Sofia Layer, Dominik Mentzos, Daniel Müller, Matthias Wilkens). Danke auch an Dr. Thomas Lemke für die Erstellung vieler Grafiken.

Ein Dankeschön an die Firmen, die mir Bildmaterial zur Verfügung gestellt haben (ArKaos, ARRI, Barco, BRAINPOOL, Christie, Coolux, Dedo Weigert, Despar, ETC, FGL, Highend Systems, JB-Lighting, Konica Minolta, Looplight, Lumiblade, MA Lighting, Martin Professional, MCI, Niethammer, Relux AG, SMI, Sony, TechnoTeam).

Und ein großes Dankeschön auch an meine Frau für das intensive Korrekturlesen und die Zeit, die sie mit mir bzgl. Diskussionen und Details verbracht hat.

Roland Greule

Hamburg, September 2014

■ Vorwort zur 2. Auflage

Seit Erscheinen des Buches hat sich im Bereich Event sowie der Scheinwerfer- und LED-Technik sehr viel geändert und rasant weiterentwickelt. Aus diesem Grund wurden vor allem die Kapitel 17 Konzert-Touring-Licht, Kapitel 9 Scheinwerfer und Kapitel 10 Lichtsteuerung und Lichtstellpulte überarbeitet und aktualisiert. Zudem wurde ein neues Kapitel 18 Licht für wirtschaftsbezogene Veranstaltungen ergänzt, da die Eventbranche in diesem Bereich sehr erfolgreich ist. Natürlich wurden die anderen Kapitel allgemein überarbeitet, aktualisiert und auch teilweise umstrukturiert und thematisch zusammengefasst. In Kapitel 19 Lichtpläne und Lichtsimulation wurde der Bereich AR (Augmented Reality) und VR (Virtual Reality) mit aufgenommen. Kapitel 20 (Lichttechnik in der Zukunft) wurde völlig neu bearbeitet und deutlich erweitert, auch in Richtung AR/XR (eXtented Reality) und Interaktivität bis hin zu hybriden Events.

Danksagung

Ich möchte an dieser Stelle dem Hanser Verlag, vor allem meinen Lektoren Frau Kubiak und Herrn Katzenmayer, für die sehr gute Zusammenarbeit danken.

Wie schon bei der ersten Auflage geht ein besonderer Dank an die Mitautoren:innen Herrn Dr. Roland Heinz (Kap. 8), Herrn Fabian Oving (Kap. 9 +10), Herrn Martin Rupprecht (Kap. 11), Frau Alexandra Ehrlitzer (Kap. 14), Herrn Matthias Wilkens (Kap. 15), Herrn Jens Langner (Kap. 17+18), Herrn Martin Kuhn (Kap. 17.6) und Frau Anke von der Heide (Kap. 20.5),

Danke an die Kollegen:innen und Firmen, die mir Grafiken und Bilder zur Verfügung gestellt haben.

Und auch wieder ein großes Dankeschön an meine Frau für das intensive Korrekturlesen.

Roland Greule

Hamburg, August 2021

Die Autoren

Dipl.-Ing. (FH) Alexandra Ehrlitzer hat Medientechnik an der HAW Hamburg studiert. Sie war freie Lichtplanerin und Lichtdesignerin und arbeitete als wissenschaftliche Mitarbeiterin in Forschungsprojekten zu Lichtwirkung an der HAW. Seit einigen Jahren arbeitet Frau Ehrlitzer bei der Firma macom in den Bereichen Nachwuchsförderung und Lichtplanung.

Prof. Dr.-Ing. Roland Greule lehrt am Department Medientechnik der HAW Hamburg die Fächer Licht- und Beleuchtungstechnik, Lichtdesign, Farbmetrik und Digital Reality. Parallel forscht er zur Lichtwahrnehmung, der emotionalen Wirkung von Licht und Farbe und der fotorealistischen Lichtsimulation von Innenräumen. Er ist seit 2017 Leiter des Forschungs- und Transferzentrums Digital Reality.

Dr. habil. Roland Heinz leitete von 2006–2013 die Philips Lighting Academy in Hamburg. Er gründete mit Partnern 2014 die Lichtplaner-Akademie. Herr Heinz lehrt zudem seit 2001 an der TU Graz und an der Hochschule München die Fächer Lichterzeugung und Innovationsmanagement.

M.Sc. Jens Langner hat an der Beuth Hochschule für Technik Berlin studiert. Im Anschluss war er mehrere Jahre bei der RGB GmbH als Lichtfachplaner im Automotivbereich tätig. Seit 2017 arbeitet er als Business Development Manager für die Firma Robe Deutschland GmbH. Er war Initiator des VLLV e.V. (Verband der Lichtdesigner und Licht- und Medienoperator in der Veranstaltungswirtschaft e.V.). Des Weiteren ist er Projektleiter für NRG Germany (Next Robe Generation), ein Nachwuchsförderprogramm der Firma Robe für den lichttechnischen Nachwuchs. Seit 2020 moderiert er die digitalen Lichtgespräche, eine Streamingsendung, in der Lichtdesigner über ihre Projekte erzählen. Herr Langner ist an mehreren Hochschulen als Gastdozent tätig.

B.Sc. Fabian Oving hat Medientechnik an der HAW Hamburg studiert. Er ist seit 6 Jahren wiss. Mitarbeiter des Lichtlabors der HAW-Hamburg. Neben seiner Arbeit als Freiberufler im Bereich Veranstaltungstechnik und Lichtprogrammierung arbeitet er auch als Gastdozent an verschiedenen Departements der HAW.

Dipl.-Ing. (FH) Martin Rupprecht hat Medientechnik an der HAW Hamburg studiert. Er ist freier Lichtdesigner, Spezialist für Digital Lighting und unterrichtet als Lehrbeauftragter im Department Medientechnik das Fach Lichtdesign und Digital Lighting.

Dipl.-Ing. (FH) Matthias Wilkens hat Medientechnik an der HAW Hamburg studiert. Er ist seit vielen Jahren als Bildingenieur beim NDR und als Lehrbeauftragter an der HAW-Hamburg für das Fach Videotechnik tätig. Er arbeitet auch als Dozent bei BET Michael Mücher in Hamburg.

Einführung

Wie der Theaterreformer Adolf Appia zu Anfang des 19. Jahrhundert sagte: "Licht wird nicht mehr gemalt, sondern geleuchtet", ist der Einsatz von Licht und Beleuchtung im Medienbereich vielfältig. Beginnend vom Theaterstück über Fernsehsendungen, den Film bis hin zu großen Events. Der visuelle Kanal ist bei Menschen immer noch dominant, da rund 80% der Wahrnehmung über das Auge erfolgt.

Die Wirkung des Lichts im Medienbereich kann man in verschiedene Bereiche unterteilen. Licht macht Objekte wahrnehmbar und ist verantwortlich für die Güte der Wahrnehmung. Licht hat eine dramatische Rolle in der Weise, dass es als untrennbarer Teil der szenischen Handlung auftritt. Licht rückt die Bühne, die Filmkulisse, aber auch die Architektur ins "rechte Licht". Licht bringt Farben und Oberflächen zur Geltung. Licht beeinflusst die physiologischen Vorgänge beim Sehen und Erkennen und Licht wirkt motivierend auf die Menschen.

In diesem Lehrbuch wird der Bogen vom Theater über das Fernsehen, den Film bis zum Event- und Showbereich gezogen. Dabei wird im ersten Drittel des Lehrbuches die Theorie betrachtet, wie z.B. die physikalischen Eigenschaften des Lichts, die lichttechnischen Grundgrößen wie Lux und Lumen bis hin zur Physiologie des Auges.

Ausgehend von dem menschlichen Auge und unter Berücksichtigung der Helligkeits- und Farbwahrnehmung werden dann die grundlegenden Parameter der Farbmetrik vorgestellt. Wer sich mit Licht und Beleuchtung beschäftigt, muss die Grundlagen der Farbmetrik kennen sowie die dazu notwendigen Messtechniken. Auf dieser Theorie aufbauend, werden im zweiten Teil des Buches die "Geräte", d.h. die Lichtquellen, die Scheinwerfer, die Lichtstellanlagen und die Medienserver erläutert.

In den letzten Kapiteln des Buches werden dann die Anwendungen betrachtet. Dabei werden die Besonderheiten bei der Theaterbeleuchtung, dem Fernsehlicht, der Filmbeleuchtung sowie das Besondere beim Show- und Event-Licht und das Zusammenwirken der verschiedenen Bereiche aufgezeigt.

Abschließend werden umfangreich die Lichttechnik der Zukunft und ihre Möglichkeiten vorgestellt sowie das Zusammenwachsen der Lichttechnik mit der Lichtarchitektur betrachtet.

Am Ende dieses Buches werden Sie verstehen, warum es in den letzten Jahren ein immer stärkeres Zusammenwachsen der verschiedenen Bereiche Licht, Video und Netzwerktechnik gibt. Andererseits werden Sie die unterschiedlichen Herangehensweisen in den einzelnen Medienbereichen kennenlernen, je nachdem, ob Sie über Licht im Theater, im Fernsehen, beim Film oder über Event sprechen.

Es ist ein Grundlagenbuch, geschrieben für Studierende in Medienstudiengängen wie z.B. Medientechnik, Veranstaltungstechnik und Mediengestaltung, für Auszubildende im AV- und im Veranstaltungsbereich sowie für Lichtplaner und Lichtdesigner. Natürlich auch für all diejenigen, die sich für das Thema Licht und Beleuchtung in Medien interessieren.

Bevor der Bereich der Lichttechnik genauer und ausführlich behandelt wird, werden die physikalischen Grundlagen kurz erläutert. Licht bzw. optische Strahlung ist bis zum Auftreffen auf das Auge bzw. die Netzhaut eine elektromagnetische Welle und gehört zu dem Bereich der Physik. Erst durch die wellenlängenabhängige Bewertung des Lichts durch die in der Netzhaut vorhandenen Rezeptoren (Zapfen und Stäbchen) müssen neue Einheiten (lichttechnische Einheiten) verwendet werden. Den Bereich der optischen Strahlung kann man in Strahlenoptik, Wellenoptik und Quantenoptik unterteilen. Da bei der klassischen Lichttechnik immer in Dimensionen gearbeitet wird, die deutlich größer sind als die betrachteten Wellenlängen, wird in den weiteren Kapiteln von der Strahlungsoptik bzw. der Strahlungsphysik ausgegangen.

2.1 Strahlungsphysik und Fotometrie

Während die Strahlungsphysik Begriffe wie z.B. Strahlungsleistung oder Bestrahlungsstärke verwendet, benutzt die Fotometrie bzw. die Lichttechnik Begriffe wie Lichtstrom oder Beleuchtungsstärke. Der Unterschied zwischen den strahlungsphysikalischen und den fotometrischen Größen liegt darin, dass die Strahlungsphysik energetische Größen verwendet, die Fotometrie diese Größen jedoch unter Einbeziehung des Auges bzw. konkret der **spektralen Hellempfindlichkeit** des menschlichen Auges betrachtet. D.h., das menschliche Auge gewichtet die einzelnen Wellenlängen des sichtbaren Lichts unterschiedlich, sodass die Licht- und Beleuchtungstechnik nicht mit physikalischen Begriffen/Einheiten arbeiten kann, sondern eigene, neue Begriffe wie Lichtstrom, Lichtstärke, Beleuchtungsstärke und Leuchtdichte benötigt.

Wellenlänge und Frequenz

Da es sich bei Licht um eine elektromagnetische Strahlung handelt, werden die Begriffe Wellenlänge oder Frequenz verwendet. Zwischen der Wellenlänge λ und der Frequenz f einer Strahlung besteht folgender Zusammenhang:

$$c = f \cdot \lambda \tag{2.1}$$

c = Lichtgeschwindigkeit (299 999 km/sec)

f = Frequenz (Hz)

 λ = Wellenlänge (nm)

■ 2.2 Strahlung und Spektrum

Die Strahlung, die der Mensch erkennen kann (380 nm – 780 nm), gehört zum Gesamtbereich der elektromagnetischen Strahlung, die von der kosmischen Strahlung bzw. Höhenstrahlung (10⁻¹⁵ m) bis zu den technischen Wechselströmen reicht (10⁷ m). Der Bereich der optischen Strahlung reicht vom kurzwelligen Bereich der UV-Strahlung (Wellenlänge ab 100 nm) bis zum langwelligen Infrarot-Bereich (Wellenlänge bis 10⁶ nm). Im langwelligen Bereich schließen sich die technischen Strahlungen wie Mikrowellenstrahlung etc. an, im UV-Bereich die Röntgenstrahlung, siehe auch Bild 2.1.

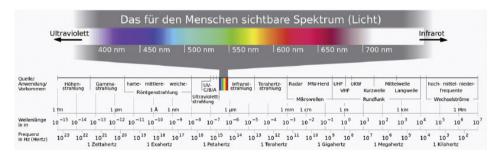


Bild 2.1 Gesamtes Spektrum der elektromagnetischen Wellen

2.2.1 Sichtbare Strahlung

Von der optischen Strahlung insgesamt vermag das menschliche Auge nur den relativ schmalen Bereich von etwa 380 nm bis 780 nm Wellenlänge als Licht zu empfinden, der nach dem Eintritt in das Auge eine Hellempfindung auslöst, siehe Bild 2.2.

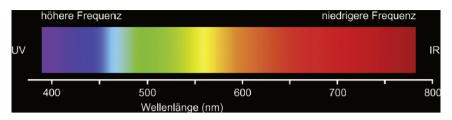


Bild 2.2 Sichtbare Strahlung bzw. Farbspektrum

2.2.2 UV-Strahlung

Der Bereich der Ultraviolettstrahlung (UV) von 100 nm bis 380 nm Wellenlänge wird in drei Bereiche unterteilt (UV-C, UV-B, UV-A):

- UV-C von 100 nm bis 280 nm (hat eine stark keimtötende Wirkung, es wandelt Luftsauerstoff in Ozon um),
- UV-B von 280 nm bis 315 nm (bildet im menschlichen Körper das Vitamin D2, erzeugt Sonnenbrand),
- UV-A von 315 nm bis 380 nm (bräunt die menschliche Haut).

Eine sehr wichtige Anwendung findet die UV-Strahlung in Gasentladungslampen, z.B. Leuchtstofflampen, in denen die UV-Strahlung mithilfe von Leuchtstoffen in sichtbares Licht umgewandelt wird. Andererseits erzeugen Hochdruckmetalldampflampen (z.B. HMI) einen Anteil von bis zu 25% an UV-Strahlung von der Gesamtleistung, sodass diese Leuchtmittel beim Einsatz in Scheinwerfern durch ein Glas abdeckt werden, damit das Auge nicht geschädigt wird (Glas lässt Licht ab 380 nm kaum noch durch).

2.2.3 IR-Strahlung

Am langwelligen Ende des Lichts schließt sich die IR-Strahlung an, auch Wärmestrahlung genannt. Der Bereich der IR-Strahlung wird wie der UV-Bereich ebenfalls in drei Bereiche unterteilt: IR-A (780 nm – 1400 nm), IR-B (1400 nm – 3000 nm), und IR-C (3000 nm – 1 mm).

■ 2.3 Physikalische Größen

Wie zu Beginn des Kapitels erwähnt, soll in diesem Kapitel nur die physikalische Strahlung betrachtet werden. Die physikalische Strahlung ist gekennzeichnet durch ein tiefgesetztes e (e = energetisch) im Vergleich zu den lichttechnischen Größen mit einem tiefgesetzten v (v = visuell). Oftmals wird bei den lichttechnischen Größen auf das v verzichtet.

2.3.1 Strahlungsfluss Φ_e

Jede Strahlung ist ein Energiestrom. Die ausgestrahlte, transportierte oder eingestrahlte Energie pro Zeiteinheit wird in der Einheit W (1 W = 1 Joule/sec) definiert. Der Strahlungsfluss $\Phi_{\rm e}$ entspricht der Strahlungsleistung.

2.3.2 Strahlstärke la

Die Strahlstärke I_e , auch Intensität genannt, ist der Anteil der gesamten Strahlungsleistung Φ_e , der von einer Lichtquelle im Raumwinkelelement d Ω emittiert wird.

$$I_{e} = d\Phi_{d} / d\Omega \left[W / sr \right] \tag{2.2}$$

I_e = Strahlstärke

 Φ_{α} = Strahlungsfluss

 Ω = Raumwinkel

2.3.3 Bestrahlungsstärke E

Um die Intensität einer Lichtquelle zu definieren, wird der Begriff Bestrahlungsstärke E_e verwendet. Die Einheit ist Watt pro m^2 .

$$E_e = d\Phi_e / dA \left[W / m^2 \right] \tag{2.3}$$

E_e = Bestrahlungsstärke

 Φ_e = Strahlungsfluss

A = bestrahlte Fläche

2.3.4 Strahldichte L_e

Die Strahldichte L_e gibt an, welche Strahlungsleistung $d^2\Phi_e$ von einer Fläche A der Strahlungsquelle in ein Raumwinkelelement $d\Omega$ ausgesendet wird.

$$L_e = d^2 \Phi_e / (dA \cdot d\Omega) [W \cdot m^2 / sr]$$
(2.4)

L_o = Strahldichte

 $d^2\Phi_{\mu}$ = Strahlungsleistung

A = Fläche

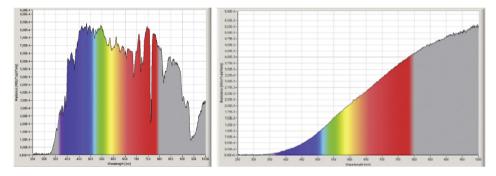
Ω = Raumwinkel

2.3.5 Strahlungsphysikalische und lichttechnische Größen

Tabelle 2.1 zeigt die strahlungsphysikalischen und die lichttechnischen Größen im Vergleich.

3 . <i>3</i>	
Strahlungsphysikalische Größe	Lichttechnische Größe
Strahlungsfluss $\Phi_{\rm e}$	Lichtstrom Φ
Strahlstärke I _e	Lichtstärke I
Bestrahlungsstärke E _e	Beleuchtungsstärke E
Strahldichte L _e	Leuchtdichte L
spezifische Ausstrahlung M _e	spezifische Lichtausstrahlung M
Strahlungsmenge Q _e	Lichtmenge Q
Restrahlung H	Relichtung H

Tabelle 2.1 Strahlungsphysikalische und lichttechnische Größen


2.4 Licht- und Emissionsspektren

Man unterscheidet bei der Strahlung bzw. der Emission von Strahlung zwischen natürlichen Lichtquellen (Sonne, Tageslicht) und künstlichen Lichtquellen (Halogenlampe, LED etc.). Das Licht bzw. die Strahlung werden dabei von den Lichtquellen emittiert (ausgestrahlt). Die Strahlung von natürlichen und künstlichen Lichtquellen kann sehr unterschiedliche Spektren (Emissionsspektren) besitzen. Des Weiteren unterscheidet man bei den Spektren zwei Arten von Strahlung. Entweder wird das Licht kontinuierlich abgestrahlt wie z.B. beim Tageslicht oder einer Glühlampe oder als Linienspektrum wie bei einer Leuchtstofflampe.

2.4.1 Kontinuierliches Spektrum

Bei der thermischen Anregung von Atomen und Molekülen in Festkörpern entsteht im Wesentlichen ein kontinuierliches Spektrum (Sonne, Glühlampe). Die Darstellung erfolgt näherungsweise durch den Planck'schen Strahler bzw. Schwarzen Körper, Definition und Details siehe Abschnitt 2.6.

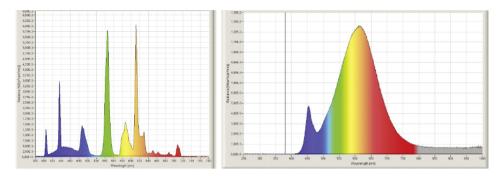

Die wichtigste natürliche Strahlungsquelle ist dabei die Sonne. Sie entspricht dem Spektrum eines Schwarzen Körpers mit einer Temperatur von ungefähr 6000 K. Beim Durchgang durch die Erdatmosphäre wird das Spektrum der Sonne jedoch verändert. Bild 2.3 links stellt den typischen Spektralverlauf von Tageslicht dar (Novembertag in Hamburg).

Bild 2.3 Links: Spektrum Tageslicht (Hamburg, November 2012, bewölkter Himmel); rechts: Spektrum einer Glühlampe (60 W)

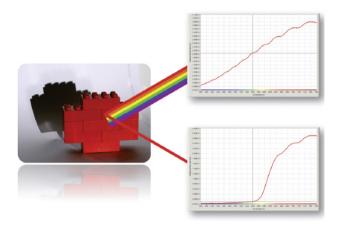
2.4.2 Linienspektrum

Man spricht von Linienspektren, wie z.B. bei Leuchtstofflampen, Energiesparlampen oder Metalldampflampen, wenn nur einzelne Spektrallinien im Spektrum vorhanden sind. Der extremste Fall eines Linienstrahlers mit nur einer einzigen Linie ist der Laser. Bei der Anregung durch Elektronenstöße in Gasen entsteht ein Linienspektrum mit markanten Frequenzen, die für die Zusammensetzung des Gases charakteristisch sind. Je nach Zusammensetzung des Gases können unterschiedliche Spektren erzeugt werden (siehe Bild 2.4).

Bild 2.4 Links: Spektrum einer Leuchtstofflampe, rechts: Spektrum einer LED (Master Bulb, 12 W, Philips)

■ 2.5 Weißes und farbiges Licht

Das Sonnenlicht (weißes Licht) setzt sich aus verschiedenen Wellenlängen zusammen. Schickt man Sonnenlicht durch ein Glasprisma, so kann das Licht durch Brechung beim Eintritt bzw. beim Austritt aus dem Glasprisma in seine spektralen Bestandteile zerlegt werden. Zu jeder Wellenlänge gehört eine ganz bestimmte Farbe, die vom menschlichen Auge gesehen werden kann. Umgekehrt können die Strahlen verschiedener Wellenlängen wieder zu weißem Licht zusammengefügt werden.


Bei den üblichen Sehbedingungen/Umgebungsbedingungen sieht der Mensch das Tageslicht als weißes Licht, er kann die einzelnen Spektralbereiche nicht unterscheiden bzw. auflösen, obwohl das weiße Licht, wie im vorhergehenden Abschnitt ausgeführt, aus den einzelnen Spektralbereichen (Farben) zusammengesetzt ist.

2.5.1 Farbiges Licht

Da der Mensch die einzelnen Spektrallinien von Licht nicht unterscheiden bzw. auflösen kann, sieht er eine farbige Fläche bzw. eine reflektierende farbige Fläche nur als Ganzes. Zum Vergleich, das Ohr bzw. das Gehör kann die einzelnen Frequenzen eines Tones deutlich unterscheiden. Das bedeutet, das Auge kann nicht unterscheiden, ob das Licht, das auf eine Oberfläche fällt, z. B. ein gelbes Licht, aus dem reinen spektralen Gelb besteht oder aus zwei Spektralfarben (Rot und Grün), die als Mischung auch gelbes Licht erzeugen.

2.5.2 Körperfarben

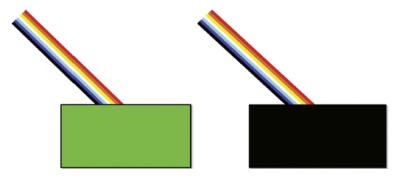

Man spricht von Körperfarben, wenn Licht auf eine Fläche fällt und von dieser Fläche zum Teil reflektiert und/oder absorbiert wird. Das bedeutet, farbige Gegenstände strahlen nicht selbst die Farben aus (sind also keine Selbstleuchter), sondern es werden nur die Wellen der entsprechenden Farben reflektiert, die auf dem Gegenstand und im Spektrum des Lichts gleichzeitig vorhanden sind (siehe Bild 2.5).

Bild 2.5 Beleuchtung von roten Legosteinen mit kontinuierlichem Licht. Rechtes oberes Bild, Spektrum der verwendeten Halogenlampe, rechtes unteres Bild, reflektiertes Licht bzw. Spektrum

Fehlen bei künstlichem Licht einige Wellenlängen aus dem Bereich von 380 nm bis 780 nm, so können die Gegenstände auch nicht in den gewohnten Farben erscheinen, das Erscheinungsbild wird verfälscht wahrgenommen.

In Bild 2.6 fehlt beim einfallenden Spektrum die grüne Spektralfarbe. Entsprechend wird diese Farbe bzw. Spektrallinie von der grünen Kiste nicht reflektiert, was zur Folge hat, dass die Box unter dieser speziellen Anstrahlung schwarz wirkt.

Bild 2.6 Links: einfallendes Licht auf eine grüne Box, wobei bei dem Spektrum die grüne Spektralfarbe fehlt, rechts: Die Box wirkt dadurch schwarz

■ 2.6 Schwarzer Strahler und Farbtemperatur

Grundlage für die Bestimmung der Farbe einer Lichtquelle bzw. der Farbtemperatur ist der Planck'sche Strahler, auch Schwarzer Strahler genannt. Der Planck'sche Strahler dient zur Untersuchung von Lichtemissionen von erhitzten Körpern und ist Grundlage der meisten Lichtquellen. Der Schwarze Strahler lässt sich durch einen Kunstgriff verwirklichen, siehe Bild 2.7.

Bild 2.7Schematische Darstellung eines Planck'schen Strahlers

Der schwarze Hohlraum eines Körpers absorbiert im Prinzip alles Licht, das durch eine Öffnung einfällt, die klein ist im Verhältnis zum Durchmesser des Hohlraumes (1/60). Trotzdem tritt ein sehr geringer Teil des Lichtes wieder aus der Öffnung heraus, der gemessen bzw. bewertet werden kann.

Wird nun dieser Körper zum Glühen gebracht, so kann man das durch die Öffnung austretende Licht bzw. seine Farbigkeit mit der Temperatur des erhitzten Strahlers korrelieren (Farbigkeit = Temperatur). Bei niedrigen Temperaturen hat man das Gefühl, dass dieser Körper alles Licht "schluckt". Erst ab Temperaturen von ca. 800 °C bzw. 1073 Kelvin beginnt dieser Strahler leicht rötlich zu glühen.

2.6.1 Farbtemperatur bzw. ähnlichste Farbtemperatur

Um Licht von verschiedenen Lichtquellen zu charakterisieren und dabei das unterschiedlich farbige Aussehen eindeutig zu definieren, werden Lichtquellen durch den Begriff der Farbtemperatur gekennzeichnet, anstatt farbaussagende Begriffe wie rötlich, bläulich etc. zu verwenden. Die Farbtemperatur wird in Kelvin (K) angegeben. Die Kelvin-Temperaturskala beginnt beim absoluten Nullpunkt, der tiefsten Temperatur, die es gibt (–273 °C).

Wenn ein sogenannter "Schwarzer Körper" langsam erhitzt wird, durchläuft sein Aussehen eine Farbskala von Dunkelrot, Rot, Orange, Gelb, Weiß, bis hin zu Hellblau. Je höher die Temperatur ist, umso weißer wird die Farbe, die aus der Öffnung des Schwarzen Körpers austritt. Die ähnlichste Farbtemperatur entspricht der Temperatur, in Kelvin angegeben, die ein Schwarzer Körper haben würde, wenn seine Farbe der zu betrachtenden Lichtquelle am ähnlichsten ist.

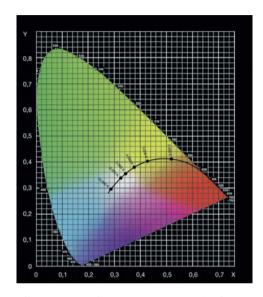
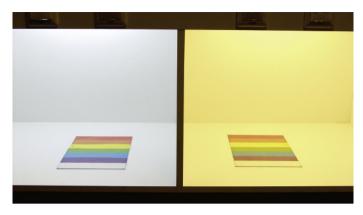



Bild 2.8 Verlauf der Farbtemperatur im CIE xy-Farbraum

Die ähnlichste Farbtemperatur Tn eines zu kennzeichnenden Strahlers ist diejenige Temperatur des Schwarzen Strahlers, bei der dessen Farbart dem zu kennzeichnenden Strahler am nächsten kommt. Der Farbort des zu kennzeichnenden Strahlers liegt in diesem Fall nur in der Nähe des Kurvenzuges (Details siehe Kapitel 6 "Farbmetrische Grundlagen") für den Schwarzen Strahler.

Eine Glühlampe mit 40 W Leistung besitzt z.B. eine Farbtemperatur von 2650 K. Ein Halogenbrenner, wie er typischerweise in Scheinwerfern für den Fernseh- und Filmbereich eingesetzt wird, besitzt eine Farbtemperatur von 3200 K. Man kann vereinfacht sagen, je geringer der Kelvinwert ist, umso rötlicher erscheint die Lichtquelle. Steigt die Farbtemperatur, so erscheint die Lichtfarbe immer bläulicher (siehe Bild 2.9).

Bild 2.9 Verschiedene Lichtfarben in einem Farbabmusterungskasten: linker Kasten 6500 K (Tageslichtweiß), rechter Kasten 2700 K (Warmweiß)

Tabelle 2.2 Auflistung verschiedener Farbtemperaturen

Farbtemperaturen		
Kerzenlicht	1850 K	
Glühlampe 40 W	2650 K	
Normlicht A	2855,4 K	
Halogenglühlampe	3200 K	
Normlicht D65, Fernsehbildweiß (Europa)	6504 K	
Tageslicht bei bedecktem Himmel	6700 – 7000 K	
blauer Himmel ohne direkte Sonne	12 000 – 30 000 K	

Zur Charakterisierung der Lichtfarbe bei Leuchtstofflampen wurden drei Bereiche festgelegt:

- ww: warmweiße Lichtfarbe, Farbtemperatur kleiner als 3300 K,
- nw: neutralweiße Lichtfarbe, Farbtemperatur 3300 K bis 5000 K,
- tw: tageslichtweiße Lichtfarbe, Farbtemperatur größer als 5000 K.

Es gibt eine Vielzahl von Leuchtstofflampentypen, die sich z.B. in Farbwiedergabe und Lichtfarbe unterscheiden. Die einzelnen Lampenhersteller haben je nach Ausführung und Zusammensetzung ihre eigenen Bezeichnungen. Die "de luxe"-Lichtfarben z.B. besitzen eine besonders gute Farbwiedergabeeigenschaft, allerdings auf Kosten einer geringeren Lichtausbeute. Die Lichtfarbe einer Lampe sagt jedoch nur etwas über das farbliche Aussehen der Lampe aus, nicht aber über die Farbwiedergabeeigenschaften der Lichtquelle.

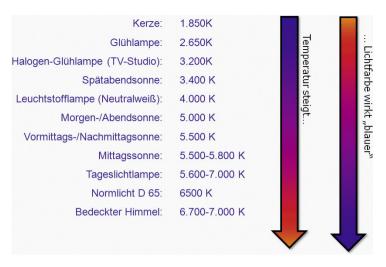


Bild 2.10 Schematische Darstellung der Farbtemperaturwerte und der Farberscheinung

2.6.2 Normlichtarten

Unter Normlicht versteht man Lichtarten, die für die bevorzugte Verwendung in der nationalen und internationalen Norm empfohlen werden können. Die nachstehend genannten Normlichtarten sind wie folgt festgelegt:

- **Normlichtart A:** entsprechend der Strahlung des Schwarzen Körpers bei Tn = 2855,4 K für Glühlampen.
- Normlichtart C: entsprechend dem Tageslicht mit der "ähnlichsten Farbtemperatur" von Tn = 6774 K für künstliches Tageslicht im spektralen Bereich (Sonnenlicht und Himmelslicht).
- Normlichtart D 65: entsprechend dem Tageslicht mit der "ähnlichsten Farbtemperatur" Tn = 6504 K für natürliches Tageslicht (Tageslicht mit UV-Anteil).

Index

Symbole

Beleuchter 283 2°-Gesichtsfeldgröße 85 2°-Normalbeobachter 85 Beleuchtungsmesser 311 3-in-1-LEDs 193 Beleuchtungsstärke 25 Beleuchtungsstärke, vertikale 25 360°-Projektion 198 Beleuchtungsstärkemesser 26, 110 Belichtung 29, 116, 304 Α Belichtungsmesser 116, 311 Best Boy 242 Abmusterungskasten 98 Absorptionsgrad 35 Bildingenieur 284 ACN 184 BIM (Building Information Modelling) Adaptation 67 388 Adaptation, chromatische 70 Binning 141 Adaptationsleuchtdichte 39, 46 blaues Licht 71 Blaulichtgefährdung (Blue Hazard) 71 Adolphe Appia 240 Akkommodation 49, 67 Blende 304 Akkommodationsbreite 49 Blendenstufe 43 aktinische Messverfahren 110 Blendenumfang 43 Ambient Light 361 Blinder 154 ANSI\American Nation Standards Bouncing 318 BRDF (Bidirectional Reflectance Institut 198 ANSI-Lumen 196 Distribution Function) 33 BT.2020 95 Arbeitsblende 291 ArtNet 183 Bühnendesign 246 ArtNet-Protokoll 183 Bühnenstile 269 ASA 306 **Building Information Modelling** Aufhelllicht 231 (BIM) 388 Aufhellung 231 Bump-Mapping 356 Auflösung 193 Buntheit 78 Augenlicht 231 Buntton 78 Augmented Reality 380 Butterfly 317

В

С	digitales Theater 386
CO/C180-Darstellung 23	Digital Lighting 191 Dino Lights 316
CAM02-UCS 94	DIN-System 89
Candela 21	Diskrimination 39
CAVE 369	DMX-512 175
Chimera 314	
Chroma-Key-Hintergrund 275	DMX-512A 179
CIE 17, 48, 78, 83	DMX-2000 179
CIECAM02-UCS 94	DMX-Adresse 209
CIE-Farbdiagramm 88	DMX-Booster 177
CIE-L*a*b* 92	DMX (Digital Multiplex) 172
CIE-L*u*v* 91	DMX-Merger 178
CIE-UCS 89	DMX-Splitter 177
CIE-XY-Farbraum 12	DMX-Tester 178
CIE-XYZ-Farbraum 85	Dogma95 235, 319
circadianer Wirkungsfaktor 56	DoP (Director of Photography)
circadiane Wirkung 18	241, 282, 310
Color Gamut 88	Dramaturgie 246
Computersimulation 351	Dreibereichsverfahren 119
Content 201, 203	Dreifarbentheorie 59, 61
cosinusgetreue Bewertung 112	Dreipunkt-Ausleuchtung 232, 293
Cosinus-Korrektur 112	dritter Rezeptor 18, 56
cosinustreu 26	
Cosinuswinkel 26	E
CP 60 155	
CP 61 155	Echtzeit-Lichtsimulations-
CP 62 155	programme 365
CQS 99	Edward Gordon Graig 240
Creative LED 194	Einleuchten 297
	Einpunkt-Ausleuchtung 232
CRI (color rendering index) 98	Eiserner Vorhang 265
Cry Engine 244	Elektrolumineszenz 136
Cry Engine 366	Elektronenleitung 137
CTB 107	Ethernet 181
CTO 107	Ethernet-Netzwerk 181
CueList 209	EVG 133
Cues 209 , 239	Eye-Tracking-System 64
D	F
D/F 01	
D65 91	f1-Fehler 111
Dedo-Light 313	Fahnen 318
depence ² 368	Falschfarbenbild 113
DIALuxEvo 364	Farbabstand 92
Dichtewert 305	Farbabstandsformel 93

Farbabstandsschwellen 90 Führungslicht 231 Farbdifferenzschwelle 93 Fußlicht 229 Farbfilter 103, 162 Farbfilter, dichroitischer 105 G Farbfolien 103 Farbkonstanz 69 Gain 198 Farbkreis 81 Gammawert 306 Farbmetrik 80 Ganglienzellen 18 Farbmetrik, höhere 80 Gassenlicht 229 Farbmetrik, niedrige 80 GDTF-Daten 371 Farbmischung 78 Gegenfarben 61 Farbmischung, additiv 96 Gegenfarbentheorie 61 Farbmischung, subtraktiv 96 Gegenlicht 227 Farbordnung 83 Gleichheitsverfahren 118 Farbordnungssysteme 83 Gloriole 231 Farbort 12 Glühlampe 126 f. Farbraum 82 Gobo (Vignette) 161 Farbreiz 78 Goniophotometer 114 Gourand-Shading 359 Farbreizfunktion 78, 122 Farbsystem 82 Gradation 305 Farbtafel 88 grandMA2 fullsize 187 Farbtemperatur 11 grandMA 3D 366 Farbton 78 Grassmann 82 Farbunterschiedsschwellen 90 Graukarte 31 Farbvalenz 78, 119 Green-Screen-Studio 375 Farbvalenzmetrik 80 Farbwiedergabe 98, 133 н f-Blende 291 Halbschatten 221 Film Noir 235, 319 Fixation 64 Halbstreuwinkel 35 Flathead 314 Halogen-Kreisprozess 129 Flat-Shading 358 Halogenlampe 129 Fluter 152 Hauptlicht 231 Fokussieren 268 HDMI 211 Fotogrammetrie 390 Heat-Map 65 Fotometrie 3 Hellempfindlichkeit 17 Fotometrie, physikalisch 110 Hellempfindlichkeit, relative 17 Hellempfindlichkeitskurve, spektrale 17 Fotometrie, spektral 116 Fotometrie, visuell 109 Helligkeit 45, 78 fotometrisches Entfernungsgesetz Helligkeitseindruck 29 Helligkeitskonstanz 69 27, 110 Fovea centralis 52 High Dynamic Range (HDR) 95, 288 French Flags 318 High-Flux-LED 138 High-Key-Stil 236 Fresnel-Scheinwerfer 285 Frostfolie 162 HiLite 365

Hinterlicht 227, 231	Layer 202
HMI 5	Layout Schedule 267f.
Hochdruckentladung 133	Lebensdauer 126
Hochdruckentladungslampe 134	LED 136, 139
Hochdruckmetalldampflampen 5	LED-Chip 137
Hololens2 371	LED-Engine 144
Honeycomb Grids 315	LED-Fluter 152
Hook-Up Schedule 267	LED-Retrofits 143
Horizontlicht 229	LED-System 191
HSV-System 89	Lens Shift 196
HTC-Vive Pro 370	Leuchtdichte 29
Hybridscheinwerfer 168	Leuchtdichtekamera 113
,2	Leuchtdichtekoeffizienten 33
	Leuchtdichtemesser 116
I	Leuchtstofflampen 131
Indikatrix 33	LEVK – Lichteinfallsstärkeverteilung 321
Infrarot-Bereich 4	Lichtarchitektur 373
Interaktivität 380	Lichtausbeute 20
Iris 161	Lichtdesign 242, 282
IR-Strahlung 5	Lichtdesigner 242
in otherward	Lichteinfallsstärke 321
	Lichtempfindlichkeit 291, 306
K	Lichtgestaltung 242
Kameramann, lichtsetzender 241	Lichtinszenierung 240
Kantenlicht 231	Lichtkontrast 42
Kernschatten 221	Lichtnetzwerke 180
key-light 234, 246	Lichtplan 299, 349, 352
Keystone-Korrektur 196	Lichtquelle 125
Kicker 231	Lichtsimulation 349
KI (Künstliche Intelligenz) 391	Lichtsimulationsprogramm 363
Kino-Flo 314	Lichtstärke I 21
Kontrast 39	Lichtstärkeverteilungskurve
Kontrast K 41	(LVK) 23, 114
	(LVIX) 20, 114
Kontract nogativ 10	Lichtetallnulta 186
Kontrast, negativ 40	Lichtstellpulte 186
Kontrast, positiv 40	Lichtsteuerung 172
Kontrast, positiv 40 Kontrastumfang 43	Lichtsteuerung 172 Lichtsteuerung, hybrid 186
Kontrast, positiv 40 Kontrastumfang 43 Konversionsfolien 106	Lichtsteuerung 172 Lichtsteuerung, hybrid 186 Lichtsteuerung, manuell 186
Kontrast, positiv 40 Kontrastumfang 43 Konversionsfolien 106 Kopflicht 227	Lichtsteuerung 172 Lichtsteuerung, hybrid 186 Lichtsteuerung, manuell 186 Lichtstile 269
Kontrast, positiv 40 Kontrastumfang 43 Konversionsfolien 106	Lichtsteuerung 172 Lichtsteuerung, hybrid 186 Lichtsteuerung, manuell 186 Lichtstile 269 Lichtstrom 18
Kontrast, positiv 40 Kontrastumfang 43 Konversionsfolien 106 Kopflicht 227	Lichtsteuerung 172 Lichtsteuerung, hybrid 186 Lichtsteuerung, manuell 186 Lichtstile 269 Lichtstrom 18 Licht, weiches 222
Kontrast, positiv 40 Kontrastumfang 43 Konversionsfolien 106 Kopflicht 227	Lichtsteuerung 172 Lichtsteuerung, hybrid 186 Lichtsteuerung, manuell 186 Lichtstile 269 Lichtstrom 18 Licht, weiches 222 Lightbanks 315
Kontrast, positiv 40 Kontrastumfang 43 Konversionsfolien 106 Kopflicht 227 Körperfarben 10, 78	Lichtsteuerung 172 Lichtsteuerung, hybrid 186 Lichtsteuerung, manuell 186 Lichtstile 269 Lichtstrom 18 Licht, weiches 222 Lightbanks 315 Linienspektrum 7
Kontrast, positiv 40 Kontrastumfang 43 Konversionsfolien 106 Kopflicht 227 Körperfarben 10, 78 L L70B50-Wert 126	Lichtsteuerung 172 Lichtsteuerung, hybrid 186 Lichtsteuerung, manuell 186 Lichtstile 269 Lichtstrom 18 Licht, weiches 222 Lightbanks 315 Linienspektrum 7 Live LED Wall In-Camera Virtual
Kontrast, positiv 40 Kontrastumfang 43 Konversionsfolien 106 Kopflicht 227 Körperfarben 10, 78	Lichtsteuerung 172 Lichtsteuerung, hybrid 186 Lichtsteuerung, manuell 186 Lichtstile 269 Lichtstrom 18 Licht, weiches 222 Lightbanks 315 Linienspektrum 7

Look 217, 246, 293, 296
Louver 315
Lowel-Light 315
Low-Key, aufgehellter 236
Low-Key-Stil 235
Low-Key, unausgeglichener 236
Lux 25
Luxmeter 110
LVK 23

M

MacAdam-Ellipsen 90 MARK 175 Master-Client-Struktur 209 Maxibrute 316 Max Keller 261 McCandless 35, 223, 240, 243 Medienfassaden 381 Medienserver 197, 200, 208 Melatonin 18 Messgeometrie 123 MIDI 212 Mired 106 Mired Shift Value 106 Mired-Wert 106 Modelling 320 Movingheads 163 Movinglights 162 Movinglight-Steuerung 186 Multifunktionsstudio 278 Multiplexing 174 Munsell 82 Munsell-System 89 Myopie 67

N

Nachtsehen 18
Natural Color System (NCS) 83
NCS-System 89
Netzhaut 3
Netzwerkknoten 182
Neutralfilter 106
nicht-visuelle Wirkung 55

Niederdruckentladungslampen 131
Niederdruckgasentladung 131
Normalenvektor 26
Normal-Stil 235
Normfarbwerte 92
Normlichtart A 14
Normlichtart C 14
Normlichtart D 65 14
Normvalenzsystem XYZ 78

0

Oberbeleuchter 242, 310
Oberlicht 226
Objektkontrast 41
Oculus Rift 369
OLED 147, 373
OLED-Display 148
Opazität 117
Open Air 324
Opera-Beleuchtung 275

P

PAN 286 PAN-Richtung 158 Parabolspiegel-Scheinwerfer 155 Patchen 267 Patchplan 330 Phong-Shading 359 Phosphoren 133 Physiologie 49 Physiologie des Auges 1 Pixelmapping 198, 204 Pixelpitch 194 Planck'scher Strahler 8, 11 Plankonvex-Scheinwerfer 157 Plot (Draufsicht) 267 Power over Ethernet 182 Previsualisierung 349 Primärvalenzen 84 Primärvalenzsystem 85 Profil-Scheinwerfer 159 Projektionen 195

psychometrische Helligkeit 119 psychometrische Helligkeits- funktion 91	Schuhkarton-Modelle 350 Schwarzer Körper 12 Schwarzer Strahler 11 Schwarzschwelle 46
R	Schwellenkontrast 40 Section (Seitenansicht) 267
Radiosity-Programme 358	Sehen, mesopisches 18
Radiosity-Verfahren 359	Sehen, photopisches 16, 18
RAL-Design-System 89	Sehen, skoptisches 18
Rampe 154	Sehleistung 39
Rampenlicht 229	Sehschärfe 66
Ratio 44	Seitenlicht 228
Raumwinkel 22	Selbstleuchter 10,78
Raumwinkelelement 7	Selbststrahler 125
Raytracing-Programme 358	Setdesigner 195
Raytracing-Verfahren 361	Sets 293
RBG-Farbraum 84	Set Up 268
RDM 179	Show-Studio 279
Rec2020 95	Simulation 351
Reflexion, diffuse 31	Simultankontrast 252
Reflexion, gemischte 33	SMPTE 212
Reflexion, gerichtete 32	Softedge-Blending 198
Reflexionsgrad 31, 114, 119	Solid Modeling 356
Refreshrate 175	Sonnenlicht 9
Relux 364	Source Four 72, 160
Remission 117	Spacelights 316
Remissionsgrad 31	Speicherlichtsteuerung 186
Remote-Verfolger 336	spektraler Strahlungsfluss 18
Rendering 357	Spektrallinien 8
RESET-Signal 175	Spektralverfahren 120
Revit 388	Spektralwertkurven 86
RGBW 193	Spektrum, kontinuierliches 8
Rigg 324	Spitzlicht 231
	Spotmessung 116
S	Spotmeter 117, 311
	Stäbchen 3, 50
Saccade 64	Standard-Objektiv 291
Sättigung 78	Stevens-und-Hunt-Effekt 70
Scanner 162	Strahldichte 7
Scan-Path 65	Strahlung, optisch 3
Schärfentiefe 308	Strahlungsfluss 6, 18
Schatten 217	Strahlungsfunktion 119
Schattigkeit 218	Strahlungsleistung 7, 18
Scheinwerfer 151	Strahlungsphysik 3
Scheinwerfersymbole 352	Stroboskop 161

Stromlaufplan 332 V Stufenlinsen-Scheinwerfer 157 Vectorworks 368 Szenenkontrast 42 Video-Content 249 Vierpunkt-Ausleuchtung 233 т Virtual Production 375 Virtual Reality 368 Tagessehen 16f. virtuelle Kamera 205 TCLI-2012 102 visueller Cortex 51 Teleobjektiv 291 visueller Kanal 1 Temperaturstrahlung 128 VI-Bereich 207 Textur 203 Vorabvisualisierung 349 Tiefenschärfe 308 Vorderlicht 226 **TILT 286** Vorderlicht, seitliches 226 TILT-Richtung 158 V(λ)-Kurve 17, 111 Timeline 209 TM 30-15 100 Top Hat **162** W Toplight 227 Weber-Fechner-Bereich 46 Torblende 161 Weber-Fechner'sche Regel 46 Tracking-System 336 Weißabgleich 69, 292 Transmission, diffuse 34 weißes Licht 9 Transmission, gemischte 34 Weißlicht 191 Transmission, gerichtete 34 Weißstandard 121 Transmissionsgrad 34 Weitwinkelobjektiv 291 Wellenlänge 3 U Wendy Lights 316 Wide Color Gamut (WCG) 95, 288 Überfarben 85 Wien'scher Verschiebungssatz 129 U-Kugel 114 Wireframe 355 Ulbrichtkugel 114 WYSIWIG 367 Ultra High Definition (UHD) 95, 288 Ultraviolettstrahlung (UV) 5 Х Unbuntpunkt 86 Xenonlampe 135 Unity 3D 366 XLR-Stecker 175 Unreal 3D 366 XRchitecture 383 Unterlicht 229 UV-A 5 UV-B 5 Z UV-Bereich 4 UV-C 5 Zapfen 3, 50 UV-C-Strahlung 73 Z-Brücke (Zuschauerbrücke) 265

Zonentheorie 61

Zweipunkt-Ausleuchtung 232

UV-Mapping 202