Leseprobe

zu

Erneuerbare Energien und Klimaschutz

von Volker Quaschning

Print-ISBN: 978-3-446-46867-2
E-Book-ISBN: 978-3-446-46868-9

Weitere Informationen und Bestellungen unter
https://www.hanser-kundencenter.de/fachbuch/artikel/9783446468672
sowie im Buchhandel

© Carl Hanser Verlag, München
Vorwort zur 1. Auflage

Neben den Klimafolgen zeigen immer neue Rekorde bei den Preisen für Erdöl oder Erdgas, dass diese unseren Bedarf nicht mehr lange decken können und schnellstmöglich andere Alternativen erschlossen werden müssen.

Der Weg dahin ist aber für viele noch ziemlich unklar. Oft traut man den regenerativen Energien nicht zu, eine wirkliche Alternative zu bieten. Dabei unterschätzt man völlig deren Möglichkeiten und prophezeit ein Zurück zur Steinzeit, wenn einmal das Erdöl und die Kohle erschöpft sein werden.

Dieses Buch soll solche Vorurteile zerstreuen. Es beschreibt klar und verständlich, welche verschiedenen Techniken und Potenziale zur Nutzung regenerativer Energien existieren, wie diese funktionieren und wie sie eingesetzt werden können. Das Zusammenspiel der verschiedenen Technologien ist dabei stets im Fokus. Am Beispiel Deutschlands wird auf-

Das Buch ist bewusst so geschrieben, dass es einem breiten Leserkreis die nötigen Informationen bietet. Es soll sowohl den Einstieg in die verschiedenen Technologien ermöglichen als auch für Personen mit einigen Vorkenntnissen interessante Hintergrundinformationen liefern.

Berlin, im Sommer 2008
Prof. Dr. Volker Quaschning

Vorwort zur 6. Auflage

Berlin, im Sommer 2021
Prof. Dr. Volker Quaschning
Hochschule für Technik und Wirtschaft HTW Berlin
www.volker-quaschning.de
Inhalt

1 Unser Hunger nach Energie ... 13
 1.1 Energieversorgung – gestern und heute .. 14
 1.1.1 Von der französischen Revolution bis ins 20. Jahrhundert 14
 1.1.2 Die Epoche des schwarzen Goldes .. 17
 1.1.3 Erdgas – der jüngste fossile Energieträger 20
 1.1.4 Atomkraft – gespaltene Energie .. 22
 1.1.5 Das Jahrhundert der fossilen Energieträger 26
 1.1.6 Das erneuerbare Jahrhundert .. 27
 1.2 Energiebedarf – wer was wo wie viel verbraucht 28
 1.3 Die SoDa-Energie ... 32
 1.4 Energievorräte – Reichtum auf Zeit ... 35
 1.4.1 Nicht-konventionelle Vorräte – Verlängerung des Ölzeitalters 36
 1.4.2 Ende in Sicht .. 38
 1.4.3 Das Ende der Spaltung .. 39
 1.5 Hohe Energiepreise – Schlüssel für den Klimaschutz 40

2 Klima vor dem Kollaps ... 43
 2.1 Es ist warm geworden – Klimaveränderungen heute 43
 2.1.1 Immer schneller schmilzt das Eis .. 43
 2.1.2 Naturkatastrophen kommen häufiger 47
 2.2 Schuldiger gesucht – Gründe für den Klimawandel 50
 2.2.1 Der Treibhauseffekt ... 50
 2.2.2 Hauptverdächtiger Kohlendioxid .. 51
 2.2.3 Andere Übeltäter ... 56
 2.3 Aussichten und Empfehlungen – was kommt morgen? 58
 2.3.1 Wird es in Europa bitterkalt? .. 61
 2.3.2 Empfehlungen für einen wirksamen Klimaschutz 63
 2.4 Schwere Geburt – Politik und Klimawandel 66
 2.4.1 Deutsche Klimapolitik .. 66
 2.4.2 Klimapolitik international ... 67
 2.5 Selbsthilfe zum Klimaschutz ... 69
Inhalt

3 Vom Energieverschwenden zum Energie- und Kohlendioxidsparen

3.1 Wenig effizient – Energiever(sch)wendung heute

3.2 Privater Energiebedarf – zu Hause leicht gespart

3.2.1 Private Elektrizität – viel Geld verschleudert

3.2.2 Wärme – fast ohne heizen durch den Winter

3.2.3 Transport – mit weniger Energie weiterkommen

3.3 Industrie und Co – schuld sind doch nur die anderen

3.4 Die eigene Kohlendioxidbilanz

3.4.1 Direkt selbst verursachte Emissionen

3.4.2 Indirekt verursachte Emissionen

3.4.3 Gesamtemissionen

3.5 Ökologischer Ablasshandel

4 Die Energiewende – der Weg in eine bessere Zukunft?

4.1 Kohle- und Kernkraftwerke – Krücke statt Brücke

4.1.1 Energie- und Automobilkonzerne – aufs falsche Pferd gesetzt

4.1.2 Braunkohle – Klimakiller made in Germany

4.1.3 Unterschätzer Klimakiller Erdgas

4.1.4 Kohlendioxidsequestrierung – aus dem Auge aus dem Sinn

4.1.5 Atomkraft – Comeback strahlend gescheitert

4.2 Effizienz und KWK – ein gutes Doppel für den Anfang

4.2.1 Kraft-Wärme-Kopplung – nur ohne Erdgas eine gute Lösung

4.2.2 Energiesparen – mit weniger mehr erreichen

4.3 Regenerative Energiequellen – Angebot ohne Ende

4.4 Deutschland wird erneuerbar

4.4.1 Der Elektrizitätssектор wird erneuerbar

4.4.2 Auf alle Sektoren kommt es an

4.4.3 Energiewende im Wärmesektor

4.4.4 Energiewende im Verkehrssektor

4.4.5 Sichere Energiesversorgung mit regenerativen Energien

4.4.6 Dezentral statt zentral – weniger Leitungen für das Land

4.5 Gar nicht so teuer – die Mär der unbezahlbaren Kosten

4.6 Energierevolution statt laue Energiewende

4.6.1 Deutsche Energiepolitik – im Schatten der Konzerne

4.6.2 Bürgerenergie und Klimajobwunder

5 Photovoltaik – Strom aus Sand

5.1 Aufbau und Funktionsweise

5.1.1 Elektronen, Löcher und Raumladungszonen

5.1.2 Wirkungsgrad, Kennlinien und der MPP

5.2 Herstellung von Solarzellen – vom Sand zur Zelle

5.2.1 Siliziumsolarzellen – Strom aus Sand

5.2.2 Von der Zelle zum Modul

5.2.3 Dünnschichtsolarzellen

5.3 Photovoltaikanlagen – Netze und Inseln

5.3.1 Sonneninseln
6 Solarthermianlagen – mollig warm mit Sonnenlicht................................. 172
 6.1 Aufbau und Funktionsweise... 174
 6.2 Solarkollektoren – Sonnensammelr... 176
 6.2.1 Schwimmbadabsorber... 176
 6.2.2 Flachkollektoren... 177
 6.2.3 Luftkollektoren... 178
 6.2.4 Vakuum-Röhrenkollektor.. 179
 6.3 Solarthermische Anlagen.. 181
 6.3.1 Warmes Wasser von der Sonne... 181
 6.3.1.1 Schwerkraftsysteme... 182
 6.3.1.2 Systeme mit Zwangsumlauf... 183
 6.3.2 Heizen mit der Sonne... 185
 6.3.3 Solare Siedlungen... 187
 6.3.4 Kühlen mit der Sonne... 188
 6.3.5 Schwimmen mit der Sonne... 189
 6.3.6 Kochen mit der Sonne... 190
 6.4 Planung und Auslegung... 191
 6.4.1 Solarthermische Trinkwassererwärmung...................................... 192
 6.4.1.1 Grobauslegung.. 192
 6.4.1.2 Detaillierter Planung... 193
 6.4.2 Solarthermische Heizungsunterstützung..................................... 194
 6.5 Ökonomie... 197
 6.5.1 Wann rechnet sie sich denn?... 197
 6.5.2 Förderprogramme.. 198
 6.6 Ökologie... 198
 6.7 Solarthermiamärkte.. 199
 6.8 Ausblick und Entwicklungspotenziale.. 201

7 Solarkraftwerke – noch mehr Kraft aus der Sonne..................................... 203
 7.1 Konzentration auf die Sonne... 204
 7.2 Solare Kraftwerke... 206
 7.2.1 Parabolrinnenkraftwerke.. 206
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Windkraftwerke – luftiger Strom</td>
<td>225</td>
</tr>
<tr>
<td>8.1</td>
<td>Vom Winde verweht – woher der Wind kommt</td>
<td>226</td>
</tr>
<tr>
<td>8.2</td>
<td>Nutzung des Windes</td>
<td>229</td>
</tr>
<tr>
<td>8.3</td>
<td>Anlagen und Parks</td>
<td>233</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Windlader</td>
<td>233</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Große netzgekoppelte Windkraftanlagen</td>
<td>235</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Kleinwindkraftanlagen</td>
<td>238</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Windparks</td>
<td>240</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Offshore-Windparks</td>
<td>241</td>
</tr>
<tr>
<td>8.4</td>
<td>Planung und Auslegung</td>
<td>245</td>
</tr>
<tr>
<td>8.5</td>
<td>Ökonomie</td>
<td>247</td>
</tr>
<tr>
<td>8.6</td>
<td>Ökologie</td>
<td>250</td>
</tr>
<tr>
<td>8.7</td>
<td>Windkraftmärkte</td>
<td>251</td>
</tr>
<tr>
<td>8.8</td>
<td>Ausblick und Entwicklungspotenziale</td>
<td>253</td>
</tr>
<tr>
<td>9</td>
<td>Wasserkraftwerke – nasser Strom</td>
<td>255</td>
</tr>
<tr>
<td>9.1</td>
<td>Anzapfen des Wasserkreislaufs</td>
<td>256</td>
</tr>
<tr>
<td>9.2</td>
<td>Wasserturbinen</td>
<td>258</td>
</tr>
<tr>
<td>9.3</td>
<td>Wasserkraftwerke</td>
<td>261</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Laufwasserkraftwerke</td>
<td>261</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Speicherkraftwerke</td>
<td>263</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Pumpspeicherkraftwerke</td>
<td>264</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Gezeitenkraftwerke</td>
<td>266</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Wellenkraftwerke</td>
<td>266</td>
</tr>
<tr>
<td>9.3.6</td>
<td>Meeresströmungskraftwerke</td>
<td>267</td>
</tr>
<tr>
<td>9.4</td>
<td>Planung und Auslegung</td>
<td>268</td>
</tr>
<tr>
<td>9.5</td>
<td>Ökonomie</td>
<td>270</td>
</tr>
<tr>
<td>9.6</td>
<td>Ökologie</td>
<td>271</td>
</tr>
<tr>
<td>9.7</td>
<td>Wasserkraftmärkte</td>
<td>272</td>
</tr>
<tr>
<td>9.8</td>
<td>Ausblick und Entwicklungspotenziale</td>
<td>274</td>
</tr>
<tr>
<td>10</td>
<td>Geothermie – tiefgründige Energie</td>
<td>275</td>
</tr>
<tr>
<td>10.1</td>
<td>Anzapfen der Erdwärme</td>
<td>276</td>
</tr>
</tbody>
</table>
11 Wärmepumpen – aus kalt wird heiß ... 289
 11.1 Wärmequellen für Niedertemperaturwärme .. 289
 11.2 Funktionsprinzip von Wärmepumpen .. 292
 11.2.1 Kompressionswärmepumpen ... 292
 11.2.2 Absorptionswärmepumpen und Adsorptionswärmepumpen 294
 11.3 Planung und Auslegung .. 295
 11.4 Ökonomie ... 298
 11.5 Ökologie ... 300
 11.6 Wärmepumpenmärkte .. 302
 11.7 Ausblick und Entwicklungspotenziale ... 303

12 Biomasse – Energie aus der Natur .. 304
 12.1 Entstehung und Nutzung von Biomasse .. 305
 12.2 Biomasseheizungen ... 308
 12.2.1 Brennstoff Holz .. 308
 12.2.2 Kamine und Kaminöfen ... 312
 12.2.3 Scheitholzkessel ... 313
 12.2.4 Holzpelletsheizungen .. 314
 12.3 Biomasseheizwerke und Biomassekraftwerke .. 316
 12.4 Biotreibstoffe .. 318
 12.4.1 Bioöl .. 319
 12.4.2 Biodiesel .. 319
 12.4.3 Bioethanol ... 320
 12.4.4 BtL-Kraftstoffe ... 322
 12.4.5 Biogas ... 323
 12.5 Planung und Auslegung .. 324
 12.5.1 Scheitholzkessel ... 324
 12.5.2 Holzpelletsheizung ... 325
 12.6 Ökonomie ... 327
 12.7 Ökologie ... 329
 12.7.1 Feste Brennstoffe .. 329
 12.7.2 Biotreibstoffe ... 331
 12.8 Biomassemärkte ... 332
 12.9 Ausblick und Entwicklungspotenziale ... 333

13 Erneuerbare Gase und Brennstoffzellen ... 335
 13.1 Energieträger Wasserstoff .. 337
Inhalt

13.2 Methanisierung .. 341
13.3 Transport und Speicherung von EE-Gasen .. 342
 13.3.1 Transport und Speicherung von Wasserstoff .. 342
 13.3.2 Transport und Speicherung von erneuerbarem Methan .. 343
13.4 Brennstoffzellen – aus Gas wird Strom .. 345
13.5 Ökonomie .. 348
13.6 Ökologie .. 350
13.7 Märkte, Ausblick und Entwicklungspotenziale .. 351

14 Sonnige Aussichten – Beispiele für eine nachhaltige Energieversorgung 354
14.1 Klimaverträglich wohnen.. 354
 14.1.1 Kohlendioxidneutrales Standardfertighaus .. 355
 14.1.2 Plusenergie-Solarhaus .. 356
 14.1.3 Plusenergiehaus-Siedlung .. 357
 14.1.4 Heizen nur mit der Sonne .. 358
 14.1.5 Null Heizkosten nach Sanierung ... 359
14.2 Klimaverträglich arbeiten und produzieren ... 360
 14.2.1 Büros und Läden im Sonnenschiff .. 360
 14.2.2 Nullemissionsfabrik ... 361
 14.2.3 Kohlendioxidfreie Schwermaschinenfabrik .. 362
 14.2.4 Plusenergie-Firmenzentrale .. 363
 14.2.5 Nullenergie-Hotel .. 364
14.3 Klimaverträglich Auto fahren .. 365
 14.3.1 Weltumrundung im Solarmobil .. 365
 14.3.2 In dreißig Stunden quer durch Australien ... 366
 14.3.3 Solar geladen .. 367
14.4 Klimaverträglich Schiff fahren und fliegen .. 369
 14.4.1 Moderne Segelschiffsfahrt .. 369
 14.4.2 Solarfähre am Bodensee .. 370
 14.4.3 Höhenweltrekord mit Solarflugzeug .. 371
 14.4.4 Mit dem Solarflugzeug um die Erde .. 372
 14.4.5 Fliegen für Solarküchen .. 373
14.5 Alles wird erneuerbar .. 374
 14.5.1 Ein Dorf wird unabhängig .. 374
 14.5.2 Hybridkraftwerk für die sichere regenerative Versorgung .. 376
14.6 Happy End .. 377

Anhang ... 385
 A.1 Energieeinheiten und Vorsatzzeichen .. 385
 A.2 Geografische Koordinaten von Energieanlagen .. 386
 A.3 Weiterführende Informationen im Internet .. 389

Literatur .. 390

Register ... 394
Unser Hunger nach Energie

minimale und beherrschbare Umweltauswirkungen haben wird. Dieses Buch beschreibt,
wie diese Energieversorgung aussehen muss und welchen Beitrag jeder Einzelne leisten
kann, damit wir doch noch gemeinsam das Klima retten können. Zuerst ist es aber erfor-
derlich, die Ursachen der heutigen Probleme näher zu betrachten.

1.1 Energieversorgung – gestern und heute

1.1.1 Von der französischen Revolution bis ins 20. Jahrhundert

Zu Zeiten der französischen Revolution, also gegen Ende des 18. Jahrhunderts war in
Europa die tierische Muskelkraft die wichtigste Energiequelle. Damals standen 14 Millio-
en Pferde und 24 Millionen Rinder mit einer Gesamtleistung von rund 7,5 Milliarden
Watt als Arbeitstiere zur Verfügung [Köni99]. Dies entspricht immerhin der Leistung von
mehr als 100 000 Mittelklasseautos.

Leistung und Energie oder andersherum

Die Begriffe Leistung und Energie hängen untrennbar zusammen. Obwohl alle die
Unterschiede schon mal im Physikunterricht gehört haben sollten, werden beide Be-
griffe gerne verwechselt und fehlerhaft verwendet.
Die Energie ist die gespeicherte Arbeit, also die Möglichkeit Arbeit zu verrichten. Energie heißt
auf Englisch „energy“ und trägt das Formelzeichen \(E \). Die Arbeit heißt auf Englisch „work“ und
wird mit dem Formelzeichen \(W \) abgekürzt.

Die Leistung (engl.: „power“, Formelzeichen: \(P \)) gibt an, in welcher Zeit die Arbeit verrichtet
oder die Energie verbraucht wird.

\[
P = \frac{W}{t} \quad \text{Leistung} = \frac{\text{Arbeit}}{\text{Zeit}}
\]

Wenn zum Beispiel eine Person einen Eimer Wasser hochhebt, ist dies eine Arbeit. Durch die
verrichtete Arbeit wird die Lageenergie des Wassereimers vergrößert. Wird der Eimer doppelt
so schnell hochgehoben, ist die benötigte Zeit geringer, die Leistung ist doppelt so groß, auch
wenn die Arbeit die gleiche ist.

Die Einheit der Leistung ist Watt (Abkürzung: \(W \)). Für die Abkürzung der Einheit Watt wird der
gleiche Buchstabe wie für das Formelzeichen der Arbeit verwendet, was die Unterscheidung
nicht gerade erleichtert.

Die Einheit der Energie ist Wattsekunde (Ws) oder Joule (J). Daneben werden noch andere
Einheiten verwendet. Anhang A.1 beschreibt eine Umrechnung zwischen verschiedenen Ener-
gieeinheiten.

Da die benötigten Leistungen und Energien oft sehr groß sind, werden häufig Vorsatzzeichen
wie Mega (M), Giga (G), Tera (T), Peta (P) oder Exa (E) verwendet (vgl. Anhang A.1).

Abbildung 1.1 Brennholz, Arbeitstiere, Wind- und Wasserkraft deckten noch im 18. Jahrhundert weitgehend die weltweite Energieversorgung.

Fossile Energieträger – gespeicherte Sonnenenergie
Chemisch gesehen basieren fossile Energieträger auf organischen Kohlenstoff-Verbindungen. Bei der Verbrennung mit Sauerstoff entsteht daher nicht nur Energie in Form von Wärme, sondern auch das Treibhausgas Kohlendioxid sowie weitere Verbrennungsprodukte.

Um 1530 förderten Kohlebergwerke in Großbritannien ungefähr 200 000 Tonnen, um 1750 etwa 5 Millionen Tonnen und im Jahr 1854 bereits 64 Millionen Tonnen. Hauptkohleförderländer waren neben Großbritannien die USA und Deutschland, die um das Jahr 1900 gemeinsam einen Anteil von 80 Prozent an der Weltproduktion besaßen [Köni99].

Erneuerbare Energien – gar nicht so neu
Übrigens werden erneuerbare Energien bereits wesentlich länger genutzt als fossile Energieträger, obwohl zwischen traditionellen und heutigen Anlagen zur Nutzung erneuerbarer Energien technologische Quantensprünge liegen. Neu sind erneuerbare Energien deshalb dennoch nicht – nur die Erkenntnis, dass erneuerbare Energien langfristig die einzige Option für eine sichere und umweltverträgliche Energieversorgung sind.

1.1.2 Die Epoche des schwarzen Goldes

Drahtisch gestiegenen Erdölpreise warfen das Trendwachstum der Weltwirtschaft und des Energieverbrauchs um etwa vier Jahre zurück. Die Industrienationen, die stets niedrige Ölpreise gewohnt waren, reagierten schockiert. Autofreie Sonntage und Förderprogramme zur Nutzung erneuerbarer Energien waren die Folge. Differenzen zwischen den einzelnen OPEC-Staaten führten wieder zu steigenden Förderquoten und zu einem starken Preis-
1.1 Energieversorgung – gestern und heute

Dies zeigt sich vor allem im Automobilsektor. Die Autos wurden schneller, komfortabler, schwerer und PS-stärker, aber nur geringfügig sparsamer. Heute steht der glückliche Jahreswagenbesitzer mit 50 PS mehr als vor 20 Jahren im Stau, was jedoch durch die Klimaanlage und eine Hightech-Stereanlage erheblich angenehmer ist. Dafür ist auch der Tank größer, damit das schwerere Auto bei fast gleichem Verbrauch noch den Weg bis zu nächstbilligeren Tankstelle schafft. Als Folge der Klimadiskussion und der hohen Ölpreise müssen nun die Automobilkonzerne im Zeitraffertempo dem Auto Eigenschaften hinzufügen, die in den letzten Jahrzehnten kaum gefragt waren: Sparsamkeit und geringer Aus-
stoß von Treibhausgasen. Da viele Automobilunternehmen sich mit den neuen Anforde-
rungen schwertun, setzen sie weiterhin auf altbewährte Konzepte: Sie verhindern oder
verwässern durch ihren Einfluss auf die Politik die für den Klimaschutz dringend erforder-
lichen strengen Einsparvorgaben. Oder sie versuchen wie der VW-Konzern mit ille-
galen Methoden bestehende Vorschriften zu umgehen. Hätte Volkswagen die in den
USA gezahlten Strafen in die Entwicklung emissionsfreier Elektroautos gesteckt, wäre das
Unternehmen in diesem Bereich sicher weltweit führend und hätte ganz nebenbei einen
enormen Beitrag zum Klimaschutz geleistet. Möglicherweise wird sich der VW-Skandal
im Nachhinein für Deutschland noch als großer Glücksfall herausstellen. Er hat die techni-
schen Einspargrenzen herkömmlicher Verbrennungsmotoren aufgezeigt und den Umstieg
auf Elektroautos erheblich beschleunigt. Am Ende hat er vielleicht sogar verhindert, dass
deutsche Autohersteller durch ein kompromissloses Festhalten an alten Technologien
international komplett den Anschluss verlieren.
Eigentlich ist Erdöl aber viel zu schade, um es nur zu verbrennen. Neben dem Einsatz als
Energieträger, vor allem als Heizöl und Motorkraftstoff, ist Erdöl auch ein wichtiger Roh-
stoff in der chemischen Industrie. Es dient beispielsweise als Ausgangsstoff zur Herstel-
lung von Kunststoffstühlen, Plastiktüten, Nylonstrümpfen, Polyesterhenden, Duschgels,
Duftwässern oder Vitamintabletten.

1.1.3 Erdgas – der jüngste fossile Energieträger

Erdgas gilt als der sauberste fossile Energieträger. Bei der Verbrennung von Erdgas ent-
stehen weniger Schadstoffe und weniger klimaschädliches Kohlendioxid als bei der Ver-
brennung von Erdöl oder Kohle. Das ändert aber nichts an der Tatsache, dass bei der
Verbrennung von Erdgas für einen wirksamen Klimaschutz ebenfalls deutlich zu viele
Treibhausgase entstehen.

Das Ausgangsmaterial zur Entstehung von Erdgas bildeten meist Landpflanzen in den fla-
chen Küstengewässern der Tropen, zu denen vor 300 Millionen Jahren auch die nord-
deutsche Tiefebene zählte. Aufgrund fehlenden Sauertoffs in den Küstensumpfen konnte
das organische Material nicht verwesen und es entstand Torf. Mit der Zeit lagerten sich
neue Schichten aus Sand und Ton auf dem Torf ab, der sich im Lauf der Jahrhunderte in
Braun- und Steinkohle umwandelte. Durch hohe Drücke in Tiefen von einigen Kilometern
und die dort herrschenden Temperaturen von 120 bis 180 Grad entstand daraus dann das
Erdgas.

Erdgas ist jedoch nicht gleich Erdgas, sondern ein Gemisch verschiedener Gase, je nach
Vorkommen mit ganz unterschiedlicher Zusammensetzung. Der Hauptbestandteil ist
Methan. Oft enthält das Gas größere Mengen an Schwefelwasserstoff. Dieser ist giftig und
riecht bereits in geringen Konzentrationen extrem nach faulen Eiern. Darum muss Erdgas
häufig erst in Erdgasaufbereitungsanlagen mit chemischen-physikalischen Prozessen
gereinigt werden. Da in einer Erdgaslagerstätte meist auch Wasser enthalten ist, muss das
Gas getrocknet werden, um unnötig hohe Korrosionen in den Erdgasleitungen zu ver-
meiden.

Abbildung 1.3 Links: Bau einer Erdgaspipeline in Ostdeutschland, rechts: Erdgasspeicher Rehden, 60 Kilometer südlich von Bremen für 4,2 Milliarden Kubikmeter Erdgas (Fotos: WINGAS GmbH)

1.1.4 Atomkraft – gespaltene Energie

Kernenergienutzung in Deutschland

Unser Hunger nach Energie

1.1 Energieversorgung – gestern und heute

reaktiven Kühlmittels Natrium, ging das Kraftwerk niemals in Betrieb. Heute befindet sich in der Industrieruine des Kraftwerks der Freizeitpark Kernwasser Wunderland Kalkar.

Abbildung 1.4 Auf dem Gelände des niemals in Betrieb gegangenen schnellen Brutreaktors in Kalkar befindet sich heute der Freizeitpark Kernwasser Wunderland (Fotos: www.wunderlandkalkar.eu).

Von der konservativen Politik und einigen Unternehmen wurde die Kernenergie immer wieder als vermeintliche Zukunftstechnologie ins Feld geführt. Von der Vielzahl angekündigter Projekte der letzten Jahre wurde allerdings nur ein geringer Teil realisiert. Vor allem die enormen Kosten neuer Kernkraftwerke beenden meist recht schnell die nuklearen Träume. Um neue Kernkraftwerke in Europa überhaupt noch wirtschaftlich betreiben zu können, sind hohe Subventionen erforderlich. Für das umstrittene Neubauprojekt Hinkley Point C in Großbritannien sind für den Atomstrom Vergütungen vorgesehen, die deutlich über denen von Solar- und Windkraftanlagen liegen. Wenn die Kernenergie als höchst umstrittene Technologie aber nicht einmal mehr wirtschaftliche Vorteile aufweisen kann, sind die Tage der Kernenergie ganz sicher gezählt.

Langfristig werden in eine ganz neue Variante der Atomkraftnutzung große Hoffnungen gesetzt und Geldsummen investiert: in die Kernfusion. Als Vorbild hierfür dient die Sonne, die ihre Energie durch Verschmelzung von Wasserstoffkernen freisetzt. Dieser Vorgang soll auf der Erde nachvollzogen werden, ganz ohne Risiko einer unerwünschten Kettenreaktion à la Tschernobyl oder Fukushima. Doch die Sache hat einen Haken: Damit die Kernfusion in Gang kommt, müssen die Teilchen auf Temperaturen von mehreren Millio-

Ob diese Technologie überhaupt jemals funktionieren wird, kann derzeit keiner ernsthaft voraussagen. Spötter meinen, das Einzige, was sich seit Jahren bei der Kernfusion mit Sicherheit voraussagen lässt, ist die stets gleich bleibende Zeitspanne von 50 Jahren, in der ein funktionierender Reaktor einmal ans Netz gehen soll.

1.1.5 Das Jahrhundert der fossilen Energieträger

1.1 Energieversorgung – gestern und heute

Abbildung 1.5 Entwicklung des weltweiten Primärenergiebedarfs (Daten: [BP20])

1.1.6 Das erneuerbare Jahrhundert

Internet und Handy haben uns vorgemacht, wie schnell sich neue Technologien durchsetzen können. Vor allem der Ausbau der Windkraft und der Photovoltaik erfolgen derzeit rasant, mit Wachstumsraten, die an die Einführung des Internets und des Mobilfunks erinnern. Deutschland war lange Zeit Vorreiter bei der Nutzung erneuerbarer Energien. Bereits 2011 wurde hier die millionste Solaranlage eröffnet (Abbildung 1.6). Andere
Länder wie China haben aber inzwischen Deutschland die Führungsrolle beim Ausbau erneuerbarer Energien abgenommen, nachdem die deutsche Regierung den Zubau ab dem Jahr 2013 signifikant eingeschränkt hat. Dennoch besteht kein Zweifel: Das Zeitalter der erneuerbaren Energien hat bereits weltweit begonnen. Schon bald werden sie die Dominanz der fossilen Energien brechen. Es bleibt nur die Frage, ob die Ablösung schnell genug gelingt, um den ebenfalls immer schneller voranschreitenden Klimawandel noch rechtzeitig stoppen zu können. Die Chancen dafür stehen aber möglicherweise besser als viele derzeit zu hoffen wagen.

Abbildung 1.6 Links: Trotz der intensiven Nutzung fossiler Energieträger boomt der Windenergieausbau in den USA, rechts: die millionste Solarstromanlage in Deutschland
Fotos: Dennis Schwartz/REpower Systems SE und BSW-Solar

1.2 Energiebedarf – wer was wo wie viel verbraucht

Der Energiebedarf auf der Erde ist höchst unterschiedlich verteilt. Sechs Staaten der Erde, nämlich China, USA, Russland, Indien, Japan und Deutschland verbrauchen mehr als die Hälfte der Energie.

Möchte man eine Aussage treffen, welche Länder der Erde besonders viel Energie verbrauchen, darf natürlich nicht nur auf den Gesamtverbrauch geschaut werden. Die Be-
1 Unser Hunger nach Energie

völkerungszahl spielt dabei beim Vergleich auch eine entscheidende Rolle. Zwar verbraucht Indien mehr Energie als Deutschland. Bei über einer Milliarde Einwohnern ist dies aber auch zu erwarten. Der Pro-Kopf-Verbrauch in Indien beträgt rund als ein Sechstel des Verbrauchs in Deutschland. Obwohl Indien also das Land mit dem viert höchsten Primärenergieverbrauch der Erde ist, liegt der Pro-Kopf-Verbrauch unter der Hälfte des Welt durchschnitts.

Primärenergie, Apfelenergie und Birnenenergie

Primärenergie ist Energie in ursprünglicher, technisch noch nicht aufbereiteter Form wie zum Beispiel Kohle, Rohöl, Naturgas, Uran, Solarstrahlung, Wind, Holz oder Kuhmist (Biomasse).

Endenergie oder Sekundärenergie ist Energie in der Form wie sie der Verbraucherin oder dem Verbraucher zugeführt wird, wie zum Beispiel Erdgas, Benzin, Heizöl, Elektrizität oder Fernwärme.

Nutzenergie ist Energie in letztendlich genutzter Form, wie zum Beispiel Licht zur Beleuchtung, Wärme zur Heizung oder Antriebsenergie für Maschinen und Fahrzeuge.

Bei den Industrieländern hingegen gibt es ebenfalls große Unterschiede. Während viele Industrieländer wie Deutschland oder die USA noch bis zu mehr als 80 Prozent ihres Primärenergiebedarfs aus fossilen Energieträgern oder der Atomkraft decken, ist der Anteil erneuerbarer Energien in einzelnen Industrieländern bereits heute wesentlich höher. Die Alpenländer sowie Norwegen und Schweden haben einen deutlich höheren Anteil an
Wasserkraft. Auch die Biomasse spielt in einigen Ländern wie Schweden oder Finnland eine größere Rolle. In Island ist die Erdwärme die Energieform mit dem größten Anteil. Wasserkraft und Geothermie decken in Island zusammen weit über 80 Prozent des Energiebedarfs.

Die Demokratische Republik Kongo ist hingegen ein typisches Beispiel für die Energieversorgung der ärmsten Länder der Erde. Sie basiert noch zu mehr als 90 Prozent auf traditioneller Biomasse. Abbildung 1.8 zeigt die unterschiedliche Nutzung einzelner Energieformen bei der Deckung des Energiebedarfs in verschiedenen Ländern.

1.3 Die SoDa-Energie

Alle natürlichen, nicht technisch umgewandelten Energieformen sind nicht Bestandteil des Energiebedarfs im herkömmlichen Sinne, obwohl es eigentlich egal sein müsste, woher die Energie kommt, die unser Badewasser erwärmt, die Pflanzen zum Wachsen bringt oder für Beleuchtung sorgt. Die Verfügbarkeit von natürlichen Energieformen wie Sonnenenergie ist für uns aber so selbstverständlich, weil sie sowieso da ist und deshalb so wertlos erscheint, dass sie es nicht einmal in die Statistiken schafft. Dies verzerrt aber unseren Eindruck über den Energiebedarf und setzt die Möglichkeiten der erneuerbaren Energien in ein falsches Licht.

Wer nun meint, dass all diese Überlegungen statistische Haarspaltberei sind, irrt. Da der Klimaschock in der Öffentlichkeit angekommen ist, besteht das allgemeine Interesse, fossile Energieträger möglichst schnell durch regenerative Energien zu ersetzen. Doch viele
Unser Hunger nach Energie

haben den Eindruck, das ist schwer und in überschaubaren Zeiträumen fast unmöglich. Gebetsmühlenartig wird wiederholt, dass die Solarenergie in Deutschland einen verschwindend geringen Anteil des Energieaufkommens deckt. Wäre das wahr, wäre diese Skepsis sicher auch berechtigt. Tatsächlich sind es aber die fossilen und nuklearen Energieträger, die gerade einmal 0,6 Prozent am Energieaufkommen in Deutschland haben. Dass 0,6 Prozent in absehbarer Zeit zu ersetzen sind, dürfte eigentlich niemand ernsthaft bezweifeln.

Abbildung 1.9
Gesamtenergieaufkommen in Deutschland unter Berücksichtigung der SoDa-Energie, also natürlicher regenerativer Energieformen

Bleibt die Frage, was die SoDa-Energie wert ist. Erdöl frei Grenze kostete im Jahr 2020 knapp 3 Cent pro Kilowattstunde, Erdgas etwa 1,2 Cent pro Kilowattstunde, Tendenz steigend. Da solare Strahlungsenergie und Windenergie nicht so einfach speicherbar sind wie Erdöl oder Erdgas, soll im Folgenden ihr Wert unter der von Erdgas, also mit 1 Cent pro Kilowattstunde angesetzt werden, der Wert der SoDa-Wasserkraft wegen der besseren Speicherbarkeit mit 1,5 Cent pro Kilowattstunde. Damit berechnet sich ein Gesamtwert der SoDa-Energie von rund 6,5 Billionen Euro pro Jahr. Alleine die SoDa-Sonnenenergie ist nach dieser Berechnung rund 3,8 Billionen Euro wert.

Natürliche regenerative Energieformen in der Größenordnung von 567 Billionen Kilowattstunden werden also alleine in Deutschland statistisch nicht erfasst. Dadurch verzerrt sich die öffentliche Wahrnehmung über die heutige Energieversorgung. Wir unterliegen dem falschen Eindruck, dass fossile und nukleare Energieträger den wesentlichen Anteil
am Energieaufkommen haben. In Wahrheit ist ihr Anteil kleiner als ein Prozent und regenerative Energien sollten sie für einen wirksamen Klimaschutz möglichst schnell ersetzen.
Hierfür stehen uns natürliche regenerative Energieformen im Wert von rund 6,5 Billionen Euro jährlich kostenlos zur Verfügung. Eigentlich können wir es uns nicht leisten, darauf zu verzichten.

1.4 Energievorräte – Reichtum auf Zeit

Konventionell oder nicht-konventionell, das ist hier die Frage

Reserven sind nachgewiesene und zu heutigen Preisen mit heutiger Technik wirtschaftlich gewinnbare Energierohstoffe.

Ressourcen sind nachgewiesene, aber derzeit technisch und/oder wirtschaftlich nicht gewinnbare sowie nicht nachgewiesene aber vermutete, also rein spekulative Energierohstoffmengen. Nur ein Teil der Ressourcen wird sich daher erschließen lassen. Entwicklung sich die Technik weiter oder steigen die Rohstoffpreise, werden einige Ressourcen nach und nach den Reserven zugeschlagen. Die Reserven steigen dann an und die Ressourcen nehmen ab.

Gesamtpotenzial bezeichnet man die Summe aus Reserven und Ressourcen. Dieses Potenzial wird sich nach heutigem Stand nicht in vollem Umfang erschließen lassen. Möglich ist aber, dass auch noch neue, unvermutete Vorkommen gefunden werden und damit die Reserven oder Ressourcen und das Potenzial wieder vergrößern.

Konventionelle Vorkommen sind Reserven oder Ressourcen, die mit herkömmlichen Förderverfahren erschlossen werden können. Dies ist Erdöl oder Erdgas in unterirdischen Hohlräumen, die sich über eine einfache Bohrung fördern lassen.

1.4.1 Nicht-konventionelle Vorräte – Verlängerung des Ölzeitalters

In den USA war das Zeitalter der Erdölförderung eigentlich schon weitgehend beendet. Die meisten erschließbaren konventionellen Vorkommen sind ausgebaut. Neue Vorkommen in Alaska oder der Tiefsee konnten wegen der enormen Risiken für die lokale Umwelt nur sehr eingeschränkt erschlossen werden. Nicht unwesentliche Ursachen für das starke militärische Engagement der USA im Nahen Osten in den letzten Jahren war die Sicherung des Zugangs zu den dortigen Energierohstoffen.
Doch nun hat in den USA eine neue Technik den Abbau von Erdöl- und Erdgas revolutio-
niert: Das sogenannte Fracking. Hierbei erschließt zuerst eine tiefe Bohrung den Unter-
grund. Dann wird eine Flüssigkeit mit hohem Druck in die Bohrung gepresst, die in der
Tiefe Risse ins Gestein sprengt. Durch diese Risse soll im Gestein eingeschlossenes Gas
oder Öl entweichen und über die Bohrung an die Oberfläche gelangen. Würde man für das
Verfahren reines Wasser verwenden, würden sich die Risse beim Rückpumpen des Was-
sers sofort wieder schließen. Darum wird das Wasser mit Sand und zahlreichen zum Teil
sehr giftigen Chemikalien versetzt. Das soll die Risse offenhalten, das Abfließen des Öls
oder Gases erleichtern und das Bakterienwachstum unterbinden.

Umweltschützer kritisieren beim Fracking zahlreiche unkalkulierbare Risiken (Abbildung
1.10). Das Sprengen der Risse im Untergrund kann kleine Erdbeben auslösen. Fracking-
chemikalien können bei unsachgemäßem Umgang in die Umwelt gelangen. Die Entsor-
gung der großen Mengen von wieder zurückgepumptem belastetem Abwasser ist proble-
matisch und über Risse und Spalten können Chemikalien oder Erdgas das Grundwasser
und damit letztendlich das Trinkwasser kontaminieren. In den USA wurde bereits an ver-
schiedenen Orten das Trinkwasser so verunreinigt, dass sich nicht brennbares Wasser
durch das darin gelöste Methan entzünden ließ. Entweicht Erdgas ungenutzt in die Atmo-
osphäre verstärkt es dort zudem den Treibhauseffekt. Bleibt die Frage, ob eine recht kurze
Verlängerung des Öl- und Gaszeitalters derartige Umweltfolgen rechtfertigen.
1.4.2 Ende in Sicht

Stetige technologische Fortschritte bei der Erschließung von Vorkommen an Erdöl und Erdgas haben in der Vergangenheit die Vorhersagen immer wieder revidiert. Vor allem wegen der noch sehr großen weltweiten Kohlevorräte könnten wir unseren Energiehunger durchaus noch über Jahrzehnte oder im Extremfall sogar noch über ein Jahrhundert mit fossilen Energieträgern befriedigen.

Abbildung 1.11 Verteilung der Erdölreserven der Erde nach Region (2018, Daten: BGR [BGR20])

Teilt man die bekannten, also sicher gewinnbaren Reserven durch die gegenwärtige Förderung, ergibt sich die momentane Reichweite. Diese beträgt bei Erdöl gerade einmal 39 Jahre (vgl. Abbildung 1.12). Die nicht-konventionellen Reserven können die Reichweite...

![Diagramm der Reichweite der bekannten Energiereserven und -ressourcen bei gegenwärtiger Förderung (2018, Daten: BGR [BGR20])](image)

Abbildung 1.12 Reichweite der bekannten Energiereserven und -ressourcen bei gegenwärtiger Förderung (2018, Daten: BGR [BGR20])

1.4.3 Das Ende der Spaltung

Was in der Öffentlichkeit wenig bekannt ist: Auch die Vorkommen an Uran sind stark begrenzt. Zwar ist der Anteil von Uran in der Erdrinde höher als der von Gold oder Silber, doch lässt sich auch von reinstem Natururan nur ein Anteil von unter einem Prozent ener-
getisch nutzen. Durch eine Anreicherung des nutzbaren Anteils an Uran U-238 wird Natururan überhaupt erst für den Einsatz in Kraftwerken verwendbar.

Um Natururan wirtschaftlich gewinnen zu können, muss der Erzanteil überdurchschnittlich hoch sein. Lediglich in Kanada existieren Vorkommen mit einem Uranerzgehalt von über einem Prozent. Sinkt der Uranerzgehalt, müssen erheblich größere Massen für den Abbau bewegt werden, wodurch der Energiebedarf für die Erzgewinnung und die Kosten deutlich ansteigen.

Der Anteil der Kernenergie an der weltweiten Primärenergieversorgung ist mit etwa 4 Prozent trotz intensiver Ausbaubemühungen einzelner Länder heute immer noch relativ gering. Wenige Länder wie Frankreich decken zwar bis zu 80 Prozent ihres Strombedarfs durch Kernkraftwerke. Doch Autos fahren auch in Frankreich mit wenigen Ausnahmen nicht mit Atomkraft und Häuser werden auch dort nur teilweise mit Kernenergie beheizt. Am gesamten Primärenergieaufkommen liegt deswegen der Anteil der Kernenergie selbst in Frankreich nur bei etwa 40 Prozent.

1.5 Hohe Energiepreise – Schlüssel für den Klimaschutz

Strategische Ölreserven sollen bei Stocken des ErdölNachschubs die Versorgung sichern und die Preise stabil halten. Deutschland bevorrangt zum Beispiel 25 Millionen Tonnen an Rohöl oder Rohölprodukten, die rund 90 Tage den kompletten Erdölbedarf des Landes decken könnten.

In den 1970er-Jahren begann auch ein verstärktes staatliches Engagement für die Weiterentwicklung der Nutzung erneuerbarer Energien. Viele fehlgeschlagene Mammutprojekte zeigten aber, dass sich eine kostengünstige und nachhaltige Energieversorgung nicht erzwingen lässt, sondern nur das Ende einer lang anhaltenden Entwicklung sein kann. Den-

Angebot und Nachfrage werden in der Übergangszeit aber auch die Preise für erneuerbare Energien schwanken lassen, wie der Preisanstieg für Holzbrennstoffe im Jahr 2006 gezeigt hat. Langfristig gesehen werden aber die Preise für erneuerbare Energien durch stetige technische Weiterentwicklungen und rationellere Fertigungsprozesse kontinuierlich sinken, während die Preise für fossile Energieträger und die Kernenergie weiter ansteigen.

2 Klima vor dem Kollaps

2.1 Es ist warm geworden – Klimaveränderungen heute

2.1.1 Immer schneller schmilzt das Eis

Nach der letzten Eiszeit haben sich die weltweiten Temperaturen um rund 3,5 Grad Celsius erhöht. Durch die Erwärmung und die abtretenden Eismassen sind die Meeresspiegel um über 120 Meter angestiegen. Heute dicht besiedelte Gebiete waren während der letzten Eiszeit durch meternhohe Eispanzer bedeckt und ehemals fruchtbare Landschaften sind seitdem im Meer versunken. Über die letzten 7000 Jahre waren die Klimabedingungen auf der Erde allerdings außerordentlich konstant. Die Meeresspiegel haben sich so gut wie gar nicht und die Temperaturen nur um wenige Zehntel Grad Celsius verändert. Diese Klimastabilität
war eine der wesentlichen Voraussetzungen dafür, dass sich die Menschheit weiterentwickeln konnte. Unsere Zivilisation mit ihren Siedlungsgebieten und landwirtschaftlichen Flächen hat sich auf die stabilen Bedingungen eingestellt. Zerstören wir diese Stabilität, wird das enorme Auswirkungen auf das Leben haben, wie wir es heute kennen.

Ein Blick auf die Entwicklung seit der letzten Eiszeit ist auch hilfreich, wenn es um die Einschätzung künftiger Temperaturveränderungen geht. *Abbildung 2.1* zeigt, dass bereits relativ kleine Temperaturänderungen große Auswirkungen haben können. Eine Erwärmung von 1 Grad Celsius klingt für Viele erst einmal nicht sehr dramatisch. Setzt man das in Relation zu dem Temperaturanstieg seit der letzten Eiszeit, ist bereits dieser Wert mehr als bedenklich.

Abbildung 2.1 Temperatur- und Meeresspiegeländerung seit 20 000 v. Chr. bis 2020

Daten: [NASA21, Mar13, Sha12, Fle98], Zeitraum 1951 bis 1980 entspricht null

Durch den Einfluss der Menschen ist die Temperatur in den letzten 100 Jahren bereits um gut 1 Grad Celsius angestiegen und der Anstieg beschleunigt sich immer mehr. Man braucht kein Klimaexperte zu sein, um zu erkennen, dass der jüngste Anstieg keine normale Entwicklung sein kann. Vor allem das vergleichsweise hohe Tempo des Temperaturanstiegs bereitet Klimaexperten Sorgen. Eine natürliche Erklärung gibt es für diesen extremen Anstieg nicht.

2.1 Es ist warm geworden – Klimaveränderungen heute

Beobachtete Klimaveränderungen [IPC07, EEA10, NOAA13, NASA21]

- Die letzten 50 Jahre sind die wärmsten seit Beginn der Temperaturenmessung.
- Die Temperaturen der letzten 50 Jahre sind doppelt so hoch wie die der letzten 100 Jahre. Die Erwärmung der Arktis erfolgte mehr als doppelt so schnell.
- Die Temperaturen der letzten 50 Jahre waren höher als jemals zuvor in den vergangenen 1300 Jahren.
- Der Meeresspiegel ist seit 1993 durchschnittlich um 3,1 Millimeter pro Jahr gestiegen, im 20. Jahrhundert insgesamt um 17 Zentimeter. Mehr als die Hälfte geht auf die thermische Ausdehnung der Meere zurück, etwa 25 Prozent auf Abschmelzen der Gebirgsgletscher und etwa 15 Prozent auf das Abschmelzen der arktischen Eisschilde.
- Die Häufigkeit von heftigen Niederschlägen hat zugenommen.
- Die Häufigkeit von Temperaturextremen hat zugenommen.

Die globale Erwärmung erfolgt nicht auf allen Teilen der Erde gleichmäßig. Vor allem im Bereich der Arktis hat die Temperaturänderung stellenweise schon 2 Grad Celsius überschritten (Abbildung 2.2). Generell erwärmt auch das Land schneller als die Ozeane. Bei einer durchschnittlichen Erwärmung von mehr als 4 Grad Celsius könnten sich einige Gebiete auf dem Festland zu regelrechten Todeszonen entwickeln, in denen der Mensch wegen der enormen Hitze ohne technische Hilfsmittel nicht für längere Zeit überleben könnte.

Als Folge der Erwärmung dehnt sich das Wasser der Meere aus. Durch die Zunahme der Temperaturen schmelzen auch mehr und mehr arktisches Eis und das ewige Eis der Gletscher ab. Die Eisbedeckung des Meers in der Arktis ist innerhalb von 30 Jahren um über 50 Prozent zurückgegangen (Abbildung 2.3). Neben den Eismassen der Arktis schmelzen...
2.1 Es ist warm geworden – Klimaveränderungen heute

Bislang sind die Meeresspiegel in den letzten 100 Jahren lediglich um rund 20 Zentimeter angestiegen. Sollte künftig das Festlandeis auf Grönland oder der Antarktis spürbar ab - schmelzen dürfte sich der Anstieg der Meeresspiegel aber spürbar beschleunigen.

2.1.2 Naturkatastrophen kommen häufiger

Mit den globalen Temperaturen nehmen auch die Wetterextreme zu. Größere Temperatur- unterschiede verursachen heftigere Stürme, stärkere Regenfälle sowie häufigere Hochwasser und Überschwemmungen.

Abbildung 2.4 Anzahl der weltweit Vertriebenen durch klima- und wetterbedingte Natur- katastrophen wie Stürme und Überschwemmungen (Daten: IDMC [iDMC20])
Beispiele großer Naturkatastrophen

- **Winter 1990:** Die Orkane Daria, Herta, Vivian und Wiebke töten 272 Menschen in Europa und richten Schäden von 12,8 Milliarden Euro an.
 - August 2003: Die größte Hitzewelle in Europa seit Beginn der Klimaauzeichnungen fordert 70.000 Menschenleben und verursacht Schäden in der Höhe von 13 Milliarden Euro.
- **Oktober 2010:** Eine ungewöhnliche Dürre in Ostafrika versetzt dramatische Ernteausfälle. Rund 260.000 Menschen verhungern.
- **Juni 2013:** Elf Jahre nach der Jahrhundertflut von 2002 sorgen schon wieder extreme Niederschläge für massive Überschwemmungen und Rekordwasserstände in Deutschland, Österreich und Tschechien. Es gibt erneut Todesopfer und Milliardenschäden.
- **Sommer 2018:** Eine Hitzewelle und eine Rekorddürre treffen Deutschland. Über 1200 Menschen sterben durch die Hitze. Die Schäden in der Land- und Forstwirtschaft betragen viele Milliarden Euro.
- **Winter 2019/2020:** Monatelange Dürre und große Hitze begünstigten Buschbrände in Australien. Die Feuer erfassten insgesamt eine Fläche von 126.000 km². Über eine Milliarde Tiere und 33 Menschen fielen den Flammen zum Opfer.

Auch die Zahl der Sachschäden nehmen nach Beobachtungen der Münchener Rückversicherungs-Gesellschaft kontinuierlich zu. In Rekordjahren überstieg die weltweite Schadenssumme bereits 200 Milliarden Euro.

Abbildung 2.5 Schäden durch Hurrikans in den USA (Fotos: US Department of Defense | Pixabay)

Abbildung 2.6 Schäden durch Hochwasser und Unwetter in Deutschland
Fotos: Wikimedia Commons - Stefan Penninger | Pixabay
Während momentan die finanziellen Schäden durch Naturkatastrophen zumindest in Deutschland noch überschaubar sind, rechnet man mit einem deutlichen Anstieg bis zum Ende des Jahrhunderts. Bei einer ungebremsten globalen Erwärmung um 4,5 Grad Celsius errechnete das Deutsche Institut für Wirtschaftsforschung DIW Gesamtkosten des Klimawandels nur für Deutschland von rund 3000 Milliarden Euro bis zum Jahr 2100 [Kem07].

2.2 Schuldiger gesucht – Gründe für den Klimawandel

2.2.1 Der Treibhauseffekt

Ohne den schützenden Einfluss der Atmosphäre würden auf der Erde Temperaturen von etwa –18 Grad Celsius herrschen. Wir säßen dann auf einem Eisplaneten.

2.2 Schuldiger gesucht – Gründe für den Klimawandel

Atmen wir das Klima kaputt?

Wenn eine Pflanze verbrennt, verrottet oder eben als Kohlenhydratlieferant endet, entsteht dabei genauso viel Kohlendioxid wie diese zuvor aus der Luft entnommen hat. Die natürlichen Kreisläufe sind also CO₂-neutral und verursachen keinen Anstieg der Konzentration. Das gilt aber nicht für die Urlaubsfahrt nach Italien und den Transport der Spaghettinudel nach Deutschland.

2.2.2 Hauptverdächtiger Kohlendioxid

Erst gegen Ende der 1950er-Jahre gelang der Nachweis, dass die Kohlendioxidkonzentration in der Atmosphäre ansteigt [Rah04]. Heute gilt als bewiesen, dass die Zunahme der Kohlendioxidkonzentration die Hauptursache für die beobachtete Erwärmung ist.

Die Emissionen in den einzelnen Ländern sind dabei genau wie der Energieverbrauch höchst unterschiedlich (Tabelle 2.1). Während beispielsweise ein Einwohner der Demokratischen Republik Kongo gerade einmal 30 Kilogramm, also 0,03 Tonnen CO₂ pro Jahr auf die Waage bringt, fallen in China bereits fast 7 Tonnen pro Kopf an. In Deutschland sind es gut 8 Tonnen, in den USA etwa 15 Tonnen. Würde man das Kohlendioxid, das die Deutschen pro Jahr erzeugen, über den Boden der gesamten Landesfläche verteilen, würde jeder Deutsche einen Meter tief im CO₂ versinken. Das Kohlendioxid der Demokratischen Republik Kongo über die Landesfläche verteilt würde den Boden hingegen nicht einmal einen Millimeter hoch bedecken.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. China</td>
<td>9 571</td>
<td>1 400</td>
<td>6,84</td>
<td>6. Deutschland</td>
<td>696</td>
<td>83</td>
<td>8,40</td>
</tr>
<tr>
<td>2. USA</td>
<td>4 921</td>
<td>327</td>
<td>15,03</td>
<td>7. Südkorea</td>
<td>606</td>
<td>52</td>
<td>11,74</td>
</tr>
<tr>
<td>3. Indien</td>
<td>2 308</td>
<td>1 351</td>
<td>1,71</td>
<td>8. Iran</td>
<td>580</td>
<td>82</td>
<td>7,09</td>
</tr>
<tr>
<td>5. Japan</td>
<td>1 081</td>
<td>126</td>
<td>8,55</td>
<td>10. Indonesien</td>
<td>543</td>
<td>268</td>
<td>2,03</td>
</tr>
<tr>
<td>Welt</td>
<td>33 513</td>
<td>7 588</td>
<td>4,42</td>
<td>170. DR Kongo</td>
<td>2</td>
<td>84</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Register

A
Ablasshandel 92
Absorber 173, 210
Absorptionswärmpumpe 294
Adsorptionswärmpumpe 294
alkalische Elektrolyse 340
aquaTurm-Hotel 364
Arbeitsplätze 133
Archimedes 205
artikische Eisbedeckung 46
Atombombe 23
Atomkraft 22, 106
Atomkraftwerk 24
Auftriebsprinzip 232
Aufwindkraftwerk 213
Auslegung
Holzpelletslagerraum 326
Photovoltaik 154
Scheitholzkessel 324
solare Heizungsunterstützung 194
solare Trinkwassererwärmung 192
Solarkraftwerke 216
Solarthermieanlagen 191
Wärmepumpe 295
Wasserkraftwerke 268
Windkraft 245
Ausrichtung Solaranlage 158
Autarkie 151, 161
Autobahn 121

B
BAFA 198, 328
Bahn 84
Barrel 19
Batterie 146, 152, 234
Batteriekapazität 156
Be- und Entlüftung 82
Beaufort-Windskala 230
Berechnung
Batteriekapazität 156
Größe des Erdwärmekollektors 295
Holzpelletslagerraumgröße 326
Kollektorgröße 193
Kollektorwirkungsgrad 175
Leistung des Windes 229
Leistungszahl der Wärmepumpe 291
Photovoltaikanlagenleistung 159
Photovoltaikleistung 157
PV-Leistung für Inselnetzsysteme 155
Scheitholzkesselleistung 324
Solarkraftwerksleistung 217
Speichergröße 193
Wasserkraftwerksleistung 269
Windkraftjahresleistung 245
Bet’scher Leistungsbeiwert 231
BHKW 108
Biodiesel 319
Bioethanol 320
Biogas 323
Biogasanlage 323
Biomasse 117, 304
Entstehung 305
Heizungen 308
Heizwerke 316
Kraftwerke 316
Märkte 332
Nutzung in Deutschland 333
Ökologie 329
Ökonomie 327
Potenziale 307
Treibstoffe 318, 331
Bioöl 319
Biotreibstoffe 318, 331
Blockheizkraftwerke 108
Bohrturm 279
Bohrung
 Tiefengeothermie 278
 Wärmepumpe 297
Braunkohlekraftwerk Jänschwalde 99
Braunkohletagebau 100
Brennstoffzelle 345
Brennstoffzellenstacks 348
Bruttoinlandsprodukt 109
BiL-Kraftstoffe 322
Bypassdioden 143

C
C4-Pflanzen 307
Clean Development Mechanism 93
COP 291

D
Dämmung 81
Dampfreformierung 339, 350
direkt-normale Bestrahlungsstärke 217
Dish-Stirling-Kraftwerk 212
DNI 217
Dreiliterhaus 80, 355
Dünnschicht-Photovoltaikmodul 143

E
EEG 94
EE-Gas 336
EEG-Umlage 128
Eigentümer erneuerbarer Energien 132
Eigenverbrauch 151, 161
Eisbedeckung 46
Eiszeit 43
Elektrizitätsversorgung 113, 122
Elektroauto 121
Elektroherd 73
Elektrolyse 340
Emissionshandel 93
Endenergie 30, 72
Endenergieverbrauch 74, 116
Verkehr 84
Energie 14, 29, 72
Energiekonzern 97, 130
Energipolitik 130
Energiereserven 39
Energiesparen 71
Energiesparlampen 76, 92
Energiespartipps 78, 85
Energiewende 96
EnEV 80
Erdgas 20, 102, 117, 328
Erdgasspeicher 21, 344
Erdkern 276
Erdöl 17, 36, 117, 328
Erdölbarrel 19
Erdölpreise 41
Erdölreserven 38
Erdwärmekollektor 295
Erneuerbare-Energien-Gesetz 94
 Biomassekraftwerke 329
 geothermische Kraftwerke 285
 Wasserkraft 271

F
FCKW 56, 57, 300
Fenster 81
Festmuster 310
Fischtreppe 271
FKW 56, 58, 70, 300
Flachkollektor 177
Flatcon-Technologie 215
Flüssigwasserstoff 342
fossile Energieträger 16
fossile Stromerzeugung 130
Fotovoltaik siehe Photovoltaik
Fracking 37, 102
Francis-Turbine 260
Fresnelkollektor 205
Fridays for Future 381
Fukushima 24

G
Gasheizung 73
Geothermie 275
 HDR-Kraftwerk 283
Heizwerk 280
Kraftwerk 281
Märkte 287
Ökologie 286
Ökonomie 285
Wärmepumpe 289
geothermischer Tiefengradient 277
Gezeitenkraftwerke 266
globale Zirkulation 227
Goldisthal 265
Golfstrom 59, 63
Greta Thunberg 381
Grönlandeis 59, 61
grüner Strom 73
GuD-Kraftwerke 107, 209

H
Hadley-Zelle 227
Halbleiter 136
Harrisburg 24
Häufigkeitsverteilung 246
Haushaltsstrompreise 128
HDR 279
Heizkosteneinsparungen 79
Heizwert von Holz 312
Helios 371
Herstellung
 Biodiesel 320
 Bioethanol 320
 BiL-Kraftstoffe 322
 RME 320
 Solarzellen 140
 HFKW 300
Hohlspiegel 205
Holz 308
Holzbriketts 309
Holzfeuchte 311
Holzpellets 309
 Heizung 314, 325
 Norm 310
 Preise 328
 Holzständerbauweise 81
 Hot Dry Rock 279, 283
 Hurrikan Katrina 48
 Hybridkraftwerk 376

I
IPCC 59

J
Jahresarbeitszahl 118, 291
Jahresdauerlinie 269
Joint Implementation 92

K
Kalina-Prozess 282
Kalkar 24
Kältemaschine 293
Kältemittel 292, 300
Kamin, Kaminofen 313
Kammersysteme 266
Kaplan-Turbine 259
Karbonschmelzen-Brennstoffzelle 347
Kavernenspeicher 344
Kernenergie 22, 106
Kernenergieausstieg 107
Kernfusion 26
KfW-40-Haus 80
KfW-60-Haus 80
Kleinwindkraftanlagen 238
Klimaschutz 63, 69
Klimaveränderungen 43
Klimawandel 59
Knallgasreaktion 335
Kohlendioxid 51, 56, 105, 339
 Abtrennung 105
 Bilanz 87
 Konzentration 52, 53
 Sequestrierung 103
 Kohlendioxidemissionen
 Deutschland 67
 Heizung 88
 Kraftwerk Jänschwalde 100
 Länder der Erde 52
 Nahrungsmittel 89
 Papierverbrauch 90
 Spritverbrauch 85
 Verkehr 84
 Wasserstoffherstellung 350
 kohlendioxidfreie Kraftwerke 105
 Kollektor 173, 176, 205
 Kollektorgröße 193
 Kollektorwirkungsgrad 175
 Kombikraftwerk 124
 Kompressionswärmpumpe 292
 kontrollierte Be- und Entlüftung 82
 konventionelle Vorkommen 35
 Konzentration von Solarstrahlung 204
 Konzentrator 205
 Konzentratorzellen 215
 konzentrierende Photovoltaik 214
 Kraftstoffvertrag je Hektar 331
 Kraft-Wärme-Kopplung 107
 Kraftwerk
 Atom 24, 106
 Aufwind 213
 Biomasse 316
 Blockheiz 108
 Braunkohle 99
 Dish-Stirling 212
 Geothermie 281
 Gezeiten 266
 HDR 283
 Jänschwalde 99
 kohlendioxidfreies 105
 Kombi 124
 konzentrierende Photovoltaik 214
 Lauftemperatur 261
 Meeressströmung 267
 ORC 281
 Parabolrinnen 206
 Photovoltaik 144
 Pumpenspeicher 264
 SEG 208
 Solarturm 210
 Speicherkraftwerk 263
 Wellen 266
 Wind 225
 Kurzschlussstrom 139
 Kvaerner-Verfahren 339
KWK 107
Kyoto-Protokoll 68

L
Lachgas 56
Ladepark Kreuz Hilden 368
Laufwasserkraftwerke 261
Leeraufspannung 139
Leistung 14
Leistungsbewert 231
Leistungszahl 291
Leitungen 126
LH2 342
Linienkonzentrator 205
Lithosphäre 277
Luftkollektor 178
Luftreceiver 210

M
Manhattan-Projekt 23
Märkte
Biomasse 332
Geothermie 287
Photovoltaik 168
Solarkraftwerke 221
Solarthermieanlagen 199
Wärmepumpe 302
Wasserkraft 272
Wasserstoff 351
Windkraft 251
Maximum Power Point 139
Meerespiegelanstieg 45, 59, 60
Meeresströmungskraftwerke 267
Mehrwertsteuer 166
Methan 56, 102, 118, 336
Konzentration 103
Leckagen 102
Speicherung 343
Methanisierung 341
Modulpreisentwicklung 170
monokristallines Silizium 141
Moon-Speech 382
MPP 139

N
Naturkatastrophen 48
Neigungsgewinne 158
Netze 126
Netzparität 165
nicht-konventionelle Vorkommen 35, 36
Niedrigenergiehaus 80
Nullemissionsfabrik 361
Nullheizkostenhaus 359
Nutzenergie 30, 72

O
offener Kamin 312
Offshore-Windkraft 241
Ökologie
Biomasse 329
Geothermie 286
Photovoltaik 167
Solarkraftwerke 220
Solarthermieanlagen 198
Wärmepumpe 300
Wasserkraft 271
Wasserstoffherstellung 350
Windkraft 250
Ökonomie
Biomasse 327
goethermische Anlagen 285
Photovoltaik 162
Solarkraftwerke 219
Solarthermieanlagen 197
Wärmepumpe 298
Wasserkraft 270
Wasserstoff 348
Windkraft 247
Ölkrise 18
Ölparität 165
Ölpreise 41, 328
Ölsande 36
OPEC 18, 40
ORC-Kraftwerk 281
Orkan Kyrill 48
Oxidation, partielle 339
oxidkeramische Brennstoffzelle 347
oxygene Photosynthese 305
Ozon 57
Ozonloch 57, 58
Ozonschicht 57

P
Parabolrinnenkraftwerk 206
partielle Oxidation 339
Passatwind 227
Passivhaus 80
Pelton-Turbine 260
PEM-Brennstoffzelle 347
Performance Ratio 159
petrothermale Geothermie 283
Photosynthese 305
Photovoltaik 134
Arbeitsplätze 133
Autarkiegrad 151, 161
Dünnenschichtmodul 143
Eigenverbrauchsanteil 151, 161
Energiewende 122
Funktionsweise 135
Heizungsunterstützung 154
Register

Inselnetzanlagen 144
Konzentratorenzellen 215
Märkte 168
Modul 142
Modulpreisentwicklung 170
Netzanschluss 150
netzgekoppelte Anlagen 147
netzgekoppeltes Batteriesystem 152
Ökologie 167
Ökonomie 162
optimale Ausrichtung 158
Wirkungsgrad 138
Planung
Biomasseheizung 327
giothermische Anlagen 284
Photovoltaik 154
Photovoltaikanlage 162, 167
Scheitholzkessel 324
solare Heizungsunterstützung 194
solare Trinkwassererwärmung 192
Solarkraftwerke 216
Solarthermikanlagen 191
Wärmepumpe 295, 298
Wasserkraftwerke 268
Windkraft 245
Plusenergiehaus-Siedlung 357
Plusenergie-Solarhaus 356
polykristalline Solarzellen 141
Porenspeicher 343
Power-to-Gas-Technologie 118, 125, 336
PR 159
Primärenergie 30, 72
Primärenergiebedarf
Biomasseanteil 332
Energieträger 31
Entwicklung weltweit 26
Pro-Kopf 29, 109
Pro-Kopf-Primärenergiebedarf 29, 109
Pumpspeicherkraftwerke 264
Punktkonverter 206
PV siehe Photovoltaik
PVC 176

R
Rapsöl-Methylester 320
Raummeter 310
Receiver 210
Reduktionsziele 63
regenerative Stromversorgung 123, 124
regenerative WärmeverSORGUNG 117
regenerativer Stromimport 224
regeneratives Energieangebot 111
Reserven 35
Ressourcen 35
Rinnennkraftwerk 206
RME 320
Rohöl einheit 385
Rohr-Turbine 259
Rotorblatt 232
Rundholz 309
S
Scheitholz 309
Scheitholzkessel 313, 324
schneller Brutreaktor 25
Schüttraummeter 310
Schwerkraftsystem 182
Schwimmbadabsorber 176
Schwimmbaderwärme 190
Schwimmsysteme 266
Scientists for Future 381
Segelschiffahrt 369
SEGS-Kraftwerke 208
Sektorkopplung 114, 125
selektive Beschichtung 178
selektiver Absorber 178
Silizium 140
SoDa-Energie 32
solar beheiztes Mehrfamilienhaus 358
Solar Impulse 372
Solarabsorber 173
Solarauto 366
solare Chemie 215
solare Deckungsraten 192, 195
solare Direktverdampfung 209
solare Heizungsunterstützung 185, 194
solare Nahwärmeversorgung 188
solare Schwimmbaderwärme 190
solare Strahlungsnachfrage
Deutschland 157
Welt 216
solare Trinkwassererwärmung 184, 192
solares Kühlen 188
Solarfähre 370
Solarflugzeug 371
Solargas 336
Solarcooker 191
Solarkollektor 173, 176
Solarwerkzeug 203
Aufwindkraftwerke 213
Dish-Stirling-Kraftwerk 212
konzentrierende Photovoltaik 214
Märkte 221
Ökologie 220
Ökonomie 219
Parabolrinnenkraftwerk 206
Photovoltaik 147
Planung 216
Solarwärmeheizung 210
Solarküche 373
Register

Ökologie 300
Ökonomie 298
Wärmequellen 290
Wärmequellen für Wärmepumpen 290
Wärmeverluste 81
Wind 227
Windgas 336
Windgeschwindigkeit 228, 246
Windgeschwindigkeitsrekorde 230
Wind-Inselsystem 234
Windkraft 225
Anlagenaufbau 236
Auftriebsprinzip 232
Auslegung 245
Energiewende 122
Märkte 251
netzgekoppelte Anlagen 235
Offshore 241
Ökologie 250
Ökonomie 247
Planung 245
Windlader 233
Windpark 240
Wirkungsgrad
Biomassekraftwerk 317
Biomassenachwachstum 306
Brennstoffzelle 348
Dampfturbine 209
Kamine und Kaminöfen 312
Kollektor 175
Methanisierung 341
offener Kamin 312
ORC-Kraftwerk 282
Photovoltaik 138
Scheitholzkessel 313
World Solar Challenge 366

Z
Zugdrachen 369