
HANSER

Leseprobe

zu

Decker Maschinenelemente: Formeln

Bearbeitet von Frank Rieg, Frank Weidermann, Gerhard Engelken, Reinhard Hackenschmidt, Bettina Alber-Laukant und Stephan Tremmel

> Print-ISBN: 978-3-446-47331-7 E-Book-ISBN: 978-3-446-47450-5

Weitere Informationen und Bestellungen unter

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446473317

sowie im Buchhandel

© Carl Hanser Verlag, München

Inhalt

Vor	wort	ΧI
1	Konstruktionstechnik	1
	Maße, Abmaße und Toleranzen	1
	ISO-Toleranzsystem	1
	Passungen	1
	Rauheit der Oberflächen	2
3	Festigkeitsberechnungen	3
	Kräfte	3
	Momente	3
	Allgemeine Festigkeitsberechnung	3
	Beanspruchungen	4
	Knickung	6
	Hertz'sche Pressung	8
	Beanspruchbarkeit	9
	Kerbwirkung	11
	Betriebsfestigkeit nach der FKM-Richtlinie	13
4	Schmelzschweißverbindungen	31
	Berechnung der Spannungen in Schweißnähten	31
	Schweißverbindungen im Maschinen- und Gerätebau	35
5	Pressschweißverbindungen	36
	Punktschweißverbindungen	36
	Buckelschweißverbindungen	37
6	Lötverbindungen	38
	Berechnung von Lötverbindungen	38
7	Klebverbindungen	39
	Berechnung von Klebverbindungen	39
8	Nietverbindungen	41
	Berechnung von Nietverbindungen	41
9	Reibschlüssige Welle-Nabe-Verbindungen	44
	Grundlagen der Berechnung zylindrischer Pressverbände	44
	Berechnung bei rein elastischer Beanspruchung	45
	Berechnung bei elastisch-plastischer Beanspruchung	50
	Einpresskraft und Fügetemperaturen	51

	Spannelementverbindungen	52 53
10	Befestigungsschrauben	55
10	Gewinde	55
	Berechnung: Vordimensionierung und Überschlag	55
	Schraubenanziehmoment, Anziehfaktor	56
	Berechnung: Nachgiebigkeit von Schraube und Bauteilen	57
	Berechnung: Bleibende Verformung durch Setzen	59
	vorgespannte Schraubenverbindungen	59
	Haltbarkeit der Schraubenverbindungen	60
	Standardisierte Vorgehensweise	61
	Berechnung querbeanspruchter Schraubenverbindungen	63
11	Bewegungsschrauben	64
	Gewinde, Wirkungsgrad	64
	Berechnung der Haltbarkeit und der Stabilität	65
12	Formschlüssige Welle-Nabe-Verbindungen	67
	Längskeilverbindungen	67
	Passfederverbindungen	67
	Keilwellenverbindungen	67
	Zahnwellenverbindungen	68
	Polygonwellenverbindungen	68
	Kegelverbindungen	68
	Stirnzahnverbindungen	69
13	Stift- und Bolzenverbindungen	70
	Gelenkstifte oder Bolzen	70
	Steckstifte unter Biegekraft	71
	Querstifte unter Drehmoment	71
	Längsstifte unter Drehmoment	72
14	Federn	73
	Federsteifigkeit, Federarbeit, Schwingverhalten	73
	Zusammenwirken mehrerer Federn	74
	Zylindrische Schraubenfedern aus runden Drähten oder Stäben	75
	Tellerfedern als Druckfedern	81
	Spannungen in den Punkten OM, I bis IV	82
	Gewundene Schenkelfedern als Drehfedern	84
	Stabfedern als Drehfedern	87
	Spiralfedern als Drehfedern	88
	Blattfedern als Biegefedern	89
	9	

	Ringfedern als Druckfedern Luftfedern Gummifedern	91 91 93
15	Achsen und Wellen Biegemomente, Längskräfte und Torsionsmomente Überschlagrechnung auf Torsion und Biegung Achsen und Wellen gleicher Biegebeanspruchung Berechnung auf Gestaltfestigkeit (Dauerhaltbarkeit) Durchbiegung Verdrehwinkel Kritische Drehzahl Tragfähigkeitsberechnung von Wellen und Achsen nach DIN 743	94 94 95 95 99 103 104
16	Tribologie: Reibung, Schmierung und Verschleiß	109
17	Gleitlager Berechnung der Radiallager Berechnung der Axiallager	111 111 119
18	Wälzlager Tragfähigkeit und Lebensdauer Berechnung von Kegelrollen- und Schrägkugellagern Besondere Belastungsfälle Grenzdrehzahl Schmierung der Wälzlager	122 122 123 124 125 125
19	Lager- und Wellendichtungen	126
20	Wellenkupplungen und -bremsen Kupplungsmomente bei Ausgleichskupplungen Reibungskupplungen	127 127 132
21	Grundlagen für Zahnräder und Getriebe Übersetzung Evolventenverzahnung Planetengetriebe	137 137 137 139
22	Abmessungen und Geometrie der Stirn- und Kegelräder Null-Außenverzahnung Null-Innenverzahnung Null-Schrägverzahnung Profilverschiebung	147 148 148 150
	Geometrische Grenzen	152

	Profilüberdeckung	153
	Geradverzahnte Kegelräder	153
	Schräg- und bogenverzahnte Kegelräder	155
23	Gestaltung und Tragfähigkeit der Stirn- und Kegelräder	158
	Zahnkräfte an Stirnrädern	158
	Zahnkräfte an Kegelrädern	159
	Wirkungsgrad und Gesamtübersetzung	160
	Gestaltung der Räder aus Stahl und aus Gusseisen	162
	Gestaltung der Räder aus Kunststoffen	164
	Schmierung, Schmierstoffe	164
	Allgemeine Einflussfaktoren für die Tragfähigkeit	166
	Zahnfußtragfähigkeit der Stirnräder	168
	Grübchentragfähigkeit der Stirnräder	169
	Zahnfußtragfähigkeit der Kegelräder	170
	Grübchentragfähigkeit der Kegelräder	171
	Berechnung der Räder aus thermoplastischen Kunststoffen auf	
	Tragfähigkeit und Verformung	173
24	Zahnradpaare mit sich kreuzenden Achsen	175
	Eingriffsverhältnisse von Schraub-Stirnradpaaren	175
	Wirkungsgrad und Zahnkräfte an Schraub-Stirnradpaaren	175
	Tragfähigkeit von Schraub-Stirnradpaaren, Schmierung	176
	Geometrie der Schneckenradsätze	177
	Wirkungsgrad und Zahnkräfte an Schneckenradsätzen	179
	Gestaltung der Schnecken und Schneckenräder	180
	Schmierung von Schneckenradsätzen	180
	Tragfähigkeit von Schneckenradsätzen	181
25	Kettentriebe	182
	Kettenräder	182
	Schmierung der Kettentriebe	184
26	Flachriementriebe	185
	Theoretische Grundlagen für Riementriebe	185
	Riemenscheiben	185
	Geometrie der Flachriementriebe	186
	Übersetzung, Riemengeschwindigkeit, Biegefrequenz	188
	Berechnung der Antriebe mit Leder- und Geweberiemen	188
	Berechnung von Antrieben mit Mehrschichtriemen	189
	Spannrollentrieh	100

27	Keilriementriebe	
	Berechnung der Antriebe mit Keilriemen und Keilrippenriemen	192
28	Synchron- oder Zahnriementriebe	194
	Übersetzung und Geometrie der Synchronriementriebe	194
	Berechnung von Antrieben mit Synchron- oder Zahnriemen	196
29	Rohrleitungen	198
	Temperaturbedingte Längenänderung	198
	Rerechnung von Rohrleitungen	108

Der Verlag und die Autoren haben sich mit der Problematik einer gendergerechten Sprache intensiv beschäftigt. Um eine optimale Lesbarkeit und Verständlichkeit sicherzustellen, wird in diesem Werk auf Gendersternchen und sonstige Varianten verzichtet; diese Entscheidung basiert auf der Empfehlung des Rates für deutsche Rechtschreibung. Grundsätzlich respektieren der Verlag und die Autoren alle Menschen unabhängig von ihrem Geschlecht, ihrer Sexualität, ihrer Hautfarbe, ihrer Herkunft und ihrer nationalen Zugehörigkeit.

Vorwort

Decker *Maschinenelemente – Formeln* ist eine Ergänzung zum ebenfalls im Carl Hanser Verlag erschienenen Lehrbuchklassiker Decker *Maschinenelemente*. Die vorliegende 9. Auflage ist umfassend auf die 21. Auflage des Lehrbuchs (ISBN 978-3-446-47230-3) abgestimmt. Sie enthält alle wichtigen Gleichungen zur Berechnung von Maschinenelementen in übersichtlicher Anordnung. Bei der Vielzahl an Formeln für die Bemessung und den Festigkeitsnachweis von Maschinenelementen ist es zweckmäßig, eine Zusammenfassung in kompakter Form zur Verfügung zu haben, was von vielen Benutzern des Lehrbuches gewünscht wurde.

Die Formelsammlung kann auch unabhängig vom Lehrbuch genutzt werden, die Systematik, die Formelnummerierungen und die Bezeichnungen der zu berechnenden Größen stimmen jedoch vollständig mit dem Lehrbuch überein. Ihre Bedeutung ist erläutert und die vorzugsweise anzuwendenden Einheiten sind angegeben. Zum besseren Verständnis der Zusammenhänge wurden Abbildungen eingefügt. Die Angabe von Normen und anderen wichtigen Hinweisen, die beim Berechnen von Maschinenelementen zu beachten sind, ergänzen das Angebot der Berechnungsunterlagen.

An den entsprechenden Stellen wird auf Tabellen und Diagramme verwiesen, die für die Bestimmung der erforderlichen Werte von Festigkeiten, Sicherheiten, zulässigen Spannungen, Berechnungsfaktoren, Reibzahlen, Normteil- und Profilabmessungen, Toleranzen und dergleichen hinzugezogen werden können. All diese für die Berechnungen benötigten Werte sind in **Decker** *Maschinenelemente – Tabellen und Diagramme* zu finden. Der Tabellenband liegt dem Lehrbuch bei.

Mit dieser Formelsammlung liegt eine Arbeitshilfe vor, die eine rationelle Lösung von Aufgabenstellungen zur Berechnung von Maschinenelementen während des Studiums und in der Praxis ermöglicht. Sie ist insbesondere für den Einsatz in Klausuren und Prüfungsarbeiten geeignet. Auch für das Durchrechnen von Übungsaufgaben bietet sie Vorteile, da ein aufwendiges Blättern im Lehrbuch entfällt. In diesem Zusammenhang soll auf **Decker** *Maschinenelemente – Aufgaben* (17. Auflage, ISBN 978-3-446-47332-4) verwiesen werden. Diese Aufgabensammlung mit Übungsaufgaben zur Berechnung von Maschinenelementen ist ebenfalls vollständig auf das Lehrbuch abgestimmt.

Unter *plus.hanser-fachbuch.de* stehen über 100 Excel-Berechnungsprogramme und zahlreiche Videos als ergänzende Arbeitsmaterialien bereit. Hinzu kommt das Programmpaket BayMP (Bayreuther Maschinenelemente-Programme). Die kostenlos unter *www.baymp.de* erhältlichen Programme ermöglichen die Auslegung wichtiger Maschinenelemente (Wellen, Lager, Federn, Getriebe, Kupplungen usw.) – sei es online, computergestützt unter Windows, Linux bzw. macOS oder auf verschiedenen wissenschaftlichen Taschenrechnern.

Die Nutzung der Berechnungssoftware **MDESIGN Student**, die kostenfrei unter *https://mde sign.de/decker* bezogen werden kann, ermöglicht es Studierenden und Auszubildenden, als zukünftige Mitarbeiter in Konstruktion und Entwicklung professionelle Werkzeuge für die Auslegung und Berechnung von Maschinenelementen kennenzulernen und zu nutzen.

Der Verlag und die Verfasser hoffen, dass auch diese Auflage der Formelsammlung allen Benutzerinnen und Benutzern eine wertvolle Hilfe sein wird. An dieser Stelle sei allen Kolleginnen und Kollegen herzlich für ihre Ratschläge gedankt.

Frank Rieg
Frank Weidermann
Gerhard Engelken
Reinhard Hackenschmidt
Bettina Alber-Laukant
Stephan Tremmel

1 Konstruktionstechnik

Maße, Abmaße und Toleranzen

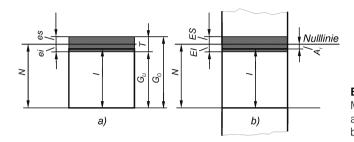


Bild 1.1 Maße und Abmaße a) an einer Welle, b) an einer Bohrung

Oberes Abma β ES (bzw. es) = $G_0 - N$

Unteres Abmaß EI (bzw. ei) = G_{11} - N

Istabma β $A_i = I - N$

Maßtoleranz $T = G_0 - G_0$ oder T = ES - EI (bzw. es – ei)

N Nennmaß, I Istmaß, G_{0} Höchstmaß, G_{11} Mindestmaß

Allgemeintoleranzen nach DIN ISO 2768-1 (siehe Tabelle 1.7)

ISO-Toleranzsystem

Für die Grundtoleranzgrade IT 5 bis IT 18 und Nennmaße bis 500 mm:

Toleranzfaktor
$$i = 0.45\sqrt[3]{D} + 0.001D$$
 in μ m (1.1)

Für Nennmaße über 500 mm bis 3150 mm:

Toleranzfaktor
$$I = 0.004D + 2.1$$
 in μm (1.2)

 $D = \sqrt{D_1 \cdot D_2}$ geometrisches Mittel aus den Zahlenwerten der Grenzwerte D_1 und D_2 des Nennmaßbereichs.

Eine *ISO-Grundtoleranz T* ist ein Vielfaches des Toleranzfaktors i bzw. I (siehe Tabelle 1.2). Die errechneten Werte sind nach vorgegebenen Regeln zu runden, und zwar die nach Formel 1.1 bis 100 μ m auf 1 μ m, bis 200 μ m auf 5 μ m und bis 500 μ m auf 10 μ m genau. Verbindliche Werte der Grundtoleranzen bis 3150 mm sind in DIN EN ISO 286-1 angegeben (Auszug siehe Tabelle 1.2). Für Nennmaße über 3150 mm gilt weiterhin DIN 7172.

Passungen

Spielpassung:

$$H\ddot{o}chstspiel \ S_{\rm g} = ES - ei = G_{\rm oB} - G_{\rm uW} \tag{1.3}$$

$$Mindestspiel S_{k} = EI - es = G_{uB} - G_{oW}$$

$$(1.4)$$

Übermaßpassung:

Höchstübermaß
$$U_{g} = es - EI = G_{oW} - G_{uB}$$
 (1.5)

Mindestübermaß
$$U_k = ei - ES = G_{nW} - G_{oB}$$
 (1.6)

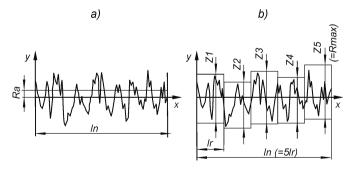
Übergangspassung:

Höchstspiel S_{σ} nach Formel 1.3 und Höchstüberma β U_{σ} nach Formel 1.5

ES, EI, es, ei oberes und unteres Abmaß der Bohrung bzw. der Welle, $G_{\alpha R}, G_{\alpha R}, G_{\alpha W}, G_{\alpha W}$ Höchstmaß und Mindestmaß der Bohrung bzw. der Welle.

Toleranz der Passung:

Passtoleranz
$$T_{\rm p}=S_{\rm g}-S_{\rm k}$$
bei Spielpassung(1.7) $T_{\rm p}=S_{\rm g}+U_{\rm g}$ bei Übergangspassung(1.8) $T_{\rm p}=U_{\rm g}-U_{\rm k}$ bei Übermaßpassung(1.9)


$$T_{\rm p} = T_{\rm B} + T_{\rm W}$$
 allgemein (1.10)

Zur Auswahl von Passungen siehe Tabelle 1.9.

Rauheit der Oberflächen

Rauheitsmessgrößen:

- Arithmetischer Mittenrauwert R_a (kurz Mittenrauwert) = arithmetisches Mittel der absoluten Beträge der Profilabweichungen y von der Mittellinie innerhalb der Gesamtmessstrecke l_n (Bild 1.2a).
- Gemittelte Rautiefe R_z = $(Z_1 + Z_2 + Z_3 + Z_4 + Z_5)/5$ als arithmetisches Mittel aus den Einzelrautiefen Z_i fünf aneinander grenzender Einzelmessstrecken l_e (Bild 1.2b).
- Maximale Rautiefe R_{max} = größte der auf der Gesamtmessstrecke l_{n} vorkommenden Einzelrautiefen Z_{i} , z. B. R_{max} = Z_{5} in Bild 1.2b.

Bild 1.2 Rauheitskenngrößen a) arithmetischer Mittelrauwert R_a , b) Einzelrautiefen als Grundlage für die Bestimmung der gemittelten Rautiefe R_z und von $R_{\rm max}$

Näherungsweise gilt $R_{\rm a} \approx 0.1~R_{\rm z}$ und $R_{\rm z} \approx R_{\rm max}$.

3

3 Festigkeitsberechnungen

Kräfte

Allg. Kraft
$$F = m \cdot a$$
 (3.1)

F in N Kraft, m in kg Masse, a in $\frac{m}{a}$ Beschleunigung.

Mehrere Einzelkräfte können im Spezialfall unter Anwendung des Satzes des Pythagoras zu einer Resultierenden zusammengefasst werden:

$$F_{\rm R}^2 = F_1^2 + F_2^2 \to F_{\rm R} = \sqrt{F_1^2 + F_2^2}$$
 (3.2)

F in N Kraft.

Momente

Allg. Moment
$$M = F \cdot l$$
 (3.3)

M in Nm Moment, F in N Kraft, l in m Hebelarm.

In der Statik können damit sechs Gleichgewichtsbedingungen für den Raum aufgestellt werden.

$$\sum F_X = 0 \quad \sum F_Y = 0 \quad \sum F_Z = 0 \tag{3.4}$$

$$\sum M_X = 0 \quad \sum M_Y = 0 \quad \sum M_Z = 0 \tag{3.5}$$

 $\begin{array}{llll} F_{\chi} & \text{in N} & \text{Kraft in x-Richtung,} \\ F_{\gamma} & \text{in N} & \text{Kraft in y-Richtung,} \\ F_{Z} & \text{in N} & \text{Kraft in z-Richtung,} \\ M_{\chi} & \text{in Nm} & \text{Moment um x-Achse,} \\ M_{\gamma} & \text{in Nm} & \text{Moment um y-Achse,} \\ M_{Z} & \text{in Nm} & \text{Moment um z-Achse.} \end{array}$

Allgemeine Festigkeitsberechnung

Die Spannung σ ist ein Maß für die Beanspruchung:

Spanning
$$\sigma = \frac{F}{A}$$
 (3.6)

 σ in $\frac{N}{mm^2}$ Spannung,

F in N Kraft

A in mm² beanspruchte Querschnittslänge.

Die Verformung (z.B. Verlängerung eines Stabes infolge einer Zugkraft) bezogen auf den Ausgangszustand (Ausgangslänge des Stabes) liefert ein dimensionsloses Maß für die auftretende Verformung, die sogenannte Dehnung ε :

Dehnung
$$\varepsilon = \frac{\Delta l}{l_0} = \frac{l_1 - l_0}{l_0}$$
 (3.7)

Dehnung, ε

 Δl in m Verlängerung/Verkürzung,

Ausgangslänge, in m

Länge im belasteten Zustand.

Der Zusammenhang zwischen der Beanspruchung, also der inneren Spannung σ , und der Dehnung ε wird durch ein Stoffgesetz beschrieben. Im Falle eines isotropen, linear-elastischen Materials gilt beispielsweise:

$$\sigma = E \cdot \varepsilon \tag{3.8}$$

 σ in $\frac{N}{mm^2}$ Spannung,

 $\begin{array}{ll} E & \text{ in } \frac{N}{\text{mm}^2} \ \text{ E-Modul,} \\ \varepsilon & \text{ Dehnung} \end{array}$

Beanspruchungen

Grundbeanspruchungsarten

Zugbeanspruchung: $\sigma_z = \frac{F_z}{A}$

Druckbeanspruchung: $\sigma_{\rm D} = \frac{F_{\rm D}}{A}$

Flächenpressung
$$p = \frac{F}{A}$$
 bzw. (3.9)

$$p = \frac{F}{A_{\text{proj}}} \text{ (beispielsweise Zapfen in einer Lagerschale)}$$
 (3.10)

Biegebeanspruchung
$$\sigma_{\rm b}(z) = \frac{M_{\rm b}}{I_{\rm y}} \cdot z$$
 (3.11)

$$\textit{Maximale Biegespannung } \sigma_{\text{b, max}} = \frac{M_{\text{b}}}{W_{\text{b,v}}} \tag{3.12}$$

Schubbeanspruchung
$$\tau_{\rm m} = \frac{Q}{A}$$
 (3.13)

Torsions bean spruchung
$$\tau_{\rm t}(z) = \frac{M_{\rm t}}{I_{\rm t}} \cdot z$$
 (3.14)

$$\textit{Maximale Torsions spanning } \tau_{\text{t,max}} \left(z = \frac{D}{2} \right) = \frac{M_{\text{t}}}{I_{\text{t}}} \cdot \frac{D}{2} = \frac{M_{\text{t}}}{W_{\text{t}}}$$
 (3.15)

F in N Kraft,

A in mm² beanspruchte Querschnittsfläche,

 $A_{\rm proj}$ in ${\rm mm}^2$ $\,$ bean spruchte projizierte Querschnittsfläche (siehe Bild 3.23 in ME),

 σ in $\frac{N}{mm^2}$ Spannung,

au in $\frac{N}{mm^2}$ Spannung,

M, in Nmm Biegemoment,

I in mm⁴ Flächenträgheitsmoment,

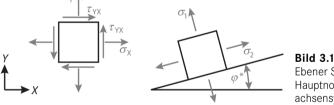
z in mm Randfaserabstand,

 $W_{\rm h}$ in mm³ Biegewiderstandsmoment,

Q in N Querkraft,M₁ in Nmm Torsionsmoment,

 $I_{\rm t}$ in mm 4 Torsionsflächenträgheitsmoment,

 W_t in mm³ Torsionswiderstandsmoment.


Zusammengesetzte Beanspruchungen

Die Hauptspannungen im ebenen Spannungszustand berechnen sich wie folgt:

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
(3.16)

$$\sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
(3.17)

Bild 3.1 erläutert die Spannungskomponenten.

Ebener Spannungszustand (links) und

Hauptnormalspannungen mit Hauptachsensystem (rechts)

Die Art und Weise der Überführung des mehrachsigen Spannungszustands in den einachsigen ist abhängig von der Richtung der Spannungskomponenten. Sind die Komponenten gleich gerichtet, wie es bei auftretender Zug-/Druckbeanspruchung zusammen mit Biegebeanspruchung der Fall ist, können die Spannungskomponenten mit dem aus der Mechanik bekannten Superpositionsprinzip zusammengefasst werden.

$$\sigma_{\max} = \sigma_{\rm Z} + \sigma_{\rm b, max}$$

$$\sigma_{\rm min} = \sigma_{\rm Z} - \sigma_{\rm b,max}$$

Zur Überführung in den einachsigen Spannungszustand gibt es grundsätzlich eine Reihe von Festigkeitshypothesen, in der Praxis haben sich jedoch die im Folgenden genannten Hypothesen bewährt.

Normalspannungshypothese

Die Hauptspannungen werden nachfolgend mit σ_1 , σ_2 und σ_3 bezeichnet und sind absteigend sortiert, sodass σ_1 die größte Hauptspannung darstellt.

Vergleichsspannung
$$\sigma_{V} = |\sigma_{I}| < K$$
 (3.18)

Vergleichsspannung im mehrachsigen Spannungszustand
$$\sigma_{\rm V} = \sigma_{\rm max} = 2 \cdot \tau_{\rm max}$$
 (3.19)

$$\sigma_{\rm V}$$
 in ${{
m N}\over {
m mm}^2}$ Spannung,

$$\sigma_1$$
 in $\frac{N}{mm^2}$ Spannung,

$$\sigma_{
m max}$$
 in ${{
m N}\over {
m mm}^2}$ Spannung,

$$au_{\mathrm{max}}$$
 in $\frac{\mathrm{N}}{\mathrm{mm}^2}$ Schubspannung,

$$K$$
 in $\frac{N}{mm^2}$ Werkstoffkennwert.

Gestaltänderungsenergiehypothese

Für den räumlichen Spannungszustand ergibt sich die Vergleichsspannung wie folgt:

$$\sigma_{V} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2} - \left(\sigma_{x} \cdot \sigma_{y} + \sigma_{y} \cdot \sigma_{z} + \sigma_{x} \cdot \sigma_{z}\right) + 3 \cdot \left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2}\right)}$$
(3.20)

Die Vergleichsspannung für den zwei- und einachsigen Spannungszustand vereinfacht sich zu folgenden Gleichungen:

$$\sigma_{V} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} - \sigma_{x} \cdot \sigma_{y} + 3 \cdot \tau_{xy}^{2}}$$
(3.21)

$$\sigma_{\rm V} = \sqrt{\sigma_{\rm x}^2 + 3 \cdot \tau_{\rm xy}^2} \tag{3.22}$$

Knickung

Knickung kann bei schlanken (wesentlich kleinere Querschnittsfläche im Vergleich zur Stablänge) druck- und/oder torsionsbelasteten Stäben auftreten. Maßgeblich beeinflusst wird die Knickung von der Querschnittsfläche und vom Flächenträgheitsmoment I, woraus sich der Trägheitsradius i ergibt:

Knickung
$$i = \sqrt{\frac{I}{A}}$$
 (3.23)

i in mm Trägheitsradius,

I in mm⁴ Flächenträgheitsmoment,

A in mm² Querschnittsfläche.

Schlankheitsgrad
$$\lambda = \frac{l_{K}}{i}$$
 (3.24)

 $l_{
m K}$ in mm freie Knicklänge nach Bild 3.2,

 λ Schlankheitsgrad.

3

Bild 3.2Die vier Knickfälle nach *Euler*

Im Anschluss an die Berechnung des Schlankheitsgrads ist zum Vergleich der Grenzschlankheitsgrad λ_{Grenz} zu ermitteln:

Grenzschlankheitsgrad
$$\lambda_{\text{Grenz}} = \pi \sqrt{\frac{E}{\sigma_{\text{p}}}}$$
 (3.25)

$$E$$
 in $\frac{N}{mm^2}$ E-Modul,

$$\sigma_{\rm p} = {\rm in} \; {N \over {
m mm}^2} \; {
m Proportionalitätsgrenze}.$$

Unter Verwendung des Schlankheitsgrads λ und des Grenzschlankheitsgrads $\lambda_{\rm Grenz}$ erfolgt die Differenzierung zwischen der elastischen Knickung nach *Euler* und der unelastischen Knickung nach *Tetmajer*:

$$\lambda < \lambda_{\text{Grenz}}$$
: Knickung nach Tetmajer (3.26)

$$\lambda \ge \lambda_{\text{Grenz}}$$
: Knickung nach Euler (3.27)

Kann für den vorliegenden Knickfall eine elastische Knickung nach *Euler* angenommen werden, ermittelt sich die Knickspannung (σ_{κ}) wie folgt:

Knickspannung
$$\sigma_{\rm K} = \sigma_{\rm K,Euler} = \frac{\pi^2 \cdot E}{\lambda^2}$$
 (3.28)

Im Falle unelastischer Knickung nach *Tetmajer* ergeben sich folgende materialabhängige Zusammenhänge:

$$\sigma_{\rm K} = \sigma_{\rm K,Tetmajer} = 310 - 1,14 \cdot \lambda \qquad \qquad {\it für St\"{a}hle S235J, E335} \qquad (3.29)$$

$$\sigma_{\rm K} = \sigma_{\rm K,Tetmajer} = 335 - 0.62 \cdot \lambda$$
 für Federstahl (3.30)

$$\sigma_{\rm K} = \sigma_{\rm K,Tetmajer} = 776 - 12 \cdot \lambda + 0{,}053 \cdot \lambda^2$$
 für Grauguss (3.31)

Die nach einer der vorangegangenen Gleichungen ermittelte Knickspannung $\sigma_{\rm K}$ dient abschließend dem Knicknachweis:

$$S = \frac{\sigma_{\rm K}}{\sigma_{\rm vorh}} = \frac{\sigma_{\rm K}}{\sigma_{\rm d}} > \frac{5...10 \ Knickfall \ nach \ Euler}{3...8 \ Knickfall \ nach \ Tetmajer}$$
(3.32)

3

Hertz'sche Pressung

Kugel gegen Kugel

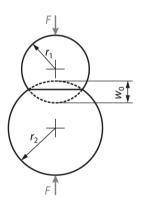
Die Abplattung im Kugel-Kugel-Kontakt beschreibt einen Kreis mit dem Radius a als Berührfläche:

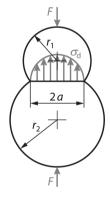
$$a = \sqrt[3]{\frac{1,5 \cdot F \cdot \left(1 - \nu^2\right)}{E \cdot \varrho}} \tag{3.33}$$

Das Maximum $\sigma_{\mathrm{d,max}}$ ist mittig in der Berührfläche und wird als p_0 bezeichnet:

$$\sigma_{\rm d,max} = -\varrho_0 = \frac{1}{\pi} \sqrt[3]{\frac{1,5 \cdot F \cdot E^2 \cdot \varrho^2}{\left(1 - \nu^2\right)^2}}$$
 (3.34)

$$Maximum \ der \ Abplattung \ \omega_o = \sqrt[3]{\frac{2,25 \cdot F^2 \cdot \left(1 - v^2\right)^2 \cdot \varrho}{E^2}} \tag{3.35}$$


a in mm Radius,


F in N Kraft,

Querkontraktion,

 $E = \text{in } \frac{N}{mm^2}$ E-Modul,

 w_0 in mm Abplattung.

Bild 3.3

Resultierende Spannungsverhältnisse (rechts) infolge Hertz'scher Pressung zwischen zwei Kugeln (links)

Kugel gegen Ebene

Im Falle eines Kugel-Ebene-Kontakts ist lediglich die Krümmung p_2 der Ebenen null zu setzen (eine Ebene besitzt einen unendlich großen Radius).

$$\tau_{\text{max}} = 0.31 \cdot \sigma_{\text{d,max}} \tag{3.36}$$

$$z = 0,47 \cdot a \tag{3.37}$$

z in mm Tiefenort des Maximums.

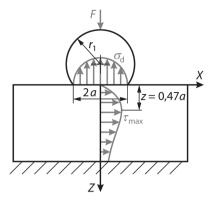
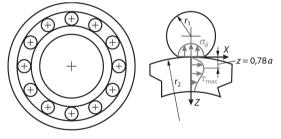


Bild 3.4

Resultierende Spannungsverhältnisse infolge Hertz'scher Pressung zwischen einer Kugel und einer Ebene nach [3.12]

Zylinder gegen Zylinder

Die Breite 2a der resultierenden rechteckförmigen Berührfläche lautet formelmäßig:


$$a = \sqrt{\frac{8 \cdot F \cdot (1 - \nu^2)}{\pi \cdot E \cdot l \cdot \varrho}}$$
(3.38)

Der Druckspannungsverlauf ist auch beim Zylinder-Zylinder-Kontakt halbkreisförmig. Die maximale Druckspannung $\sigma_{\rm d,max}$ bzw. p_0 bildet sich in der Mitte der Berührfläche aus:

$$\sigma_{\rm d,max} = -p_0 = -\sqrt{\frac{F \cdot E \cdot \varrho}{2 \cdot \pi \cdot l \cdot \left(1 - \nu^2\right)}} \tag{3.39}$$

$$z = 0.78 \cdot a \tag{3.40}$$

$$\tau_{\text{max}} = 0.30 \cdot \sigma_{\text{d,max}} \tag{3.41}$$

Bild 3.5

Resultierende Spannungsverhältnisse infolge Hertz'scher Pressung zwischen zwei Zylindern am Beispiel eines Wälzlagers

Beanspruchbarkeit

Dynamische Beanspruchung

Die Mittelspannung $\sigma_{\rm m}$ sowie die Ausschlagspannung $\sigma_{\rm a}$ ist aus der *Oberspannung* $\sigma_{\rm o}$ und der *Unterspannung* $\sigma_{\rm u}$ berechenbar:

Mittelspannung
$$\sigma_{\rm m} = \frac{\sigma_{\rm o} + \sigma_{\rm u}}{2}$$
 (3.42)

Ausschlagspannung
$$\sigma_{\rm a} = \frac{\sigma_{\rm o} - \sigma_{\rm u}}{2}$$
 (3.43)

Sind hingegen die Mittelspannung und die Ausschlagspannung bekannt, ist über folgende Beziehungen die Oberspannung σ_0 und die Unterspannung σ_u feststellbar:

Oberspannung
$$\sigma_{0} = \sigma_{m} + \sigma_{a}$$
 (3.44)

Unterspanning
$$\sigma_{\rm u} = \sigma_{\rm m} - \sigma_{\rm a}$$
 (3.45)

Eine weitere Kenngröße zur Charakterisierung dynamischer Beanspruchungen stellt das Spannungsverhältnis $\it R$ dar:

Spannungsverhältnis
$$R = \frac{\sigma_{\rm u}}{\sigma_{\rm o}}$$
 (3.46)

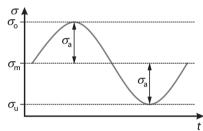


Bild 3.6
 Schwingspiel bzw. Lastwechsel

Dauerschwingfestigkeit bzw. Dauerfestigkeit
$$\sigma_{\rm D} = \sigma_{\rm m} \pm \sigma_{\rm a}$$
 (3.47)

Dauerfestigkeitsschaubild nach Haigh

Das nach B.P. Haigh benannte Dauerfestigkeitsschaubild stellt eine alternative Darstellungsweise zum Smith-Diagramm dar. Es bietet die Möglichkeit, die Ausschlagspannungen $\sigma_{\rm a}$ zum einen für den Dauerfestigkeitsbereich, aber zum anderen auch für den Zeitfestigkeitsbereich in Abhängigkeit von der Mittelspannung $\sigma_{\rm m}$ und dem Spannungsverhältnis R zu ermitteln. Analog zum Smith-Diagramm liegt beim Haigh-Diagramm die Mittelspannung $\sigma_{\rm m}$ auf der Abszisse. Auf der Ordinate ist die Ausschlagspannung $\sigma_{\rm a}$ aufgetragen.

$$\tan \alpha = \frac{\sigma_{\rm a}}{\sigma_{\rm m}} = \frac{1 - R}{1 + R} \tag{3.48}$$

$$\sigma_{\rm a} = \sigma_{\rm w} \sqrt{1 - \left(\frac{\sigma_{\rm m}}{R_{\rm m}}\right)} \tag{3.49}$$

$$\sigma_{\rm a} = \sigma_{\rm w} \left[1 - \frac{\sigma_{\rm m}}{R_{\rm w}} \right] \tag{3.50}$$