HANSER

Leseprobe

zu

Electromagnetic Design

von Frank Gustrau

Print-ISBN: 978-3-446-47418-5 E-Book-ISBN: 978-3-446-47724-7

Weitere Informationen und Bestellungen unter https://www.hanser-kundencenter.de/fachbuch/artikel/9783446474185 sowie im Buchhandel

© Carl Hanser Verlag, München

Vorwort

Die Theorie elektromagnetischer Felder ist seit jeher wesentlicher Bestandteil ingenieurwissenschaftlicher Studiengänge im Bereich der Elektro- und Informationstechnik und fest in den Curricula verankert. Das Fach verbindet physikalische Grundlagen mit modernen Anwendungsfeldern.

Im Grundlagenbereich werden Lehrveranstaltungen wie die *Elektromagnetische Feldtheorie* und im weiteren Studienverlauf die Fortführung und Vertiefung des Themas als *Theoretische Elektrotechnik* von Studierenden häufig als schwierige Fächer angesehen, weil sie intensiv auf mathematische Zusammenhänge aus den Bereichen Vektoranalysis sowie Differential- und Integralrechnung zurückgreifen und gleichermaßen abstraktes wie räumliches Denken fordern. Die ernsthafte Auseinandersetzung mit diesen physikalischen Grundlagen ist allerdings von großem und dauerhaften Nutzen. Einerseits verankert es die vereinfachenden Modelle der Netzwerkanalyse in der komplexeren physikalischen Betrachtung und hält damit den Modellcharakter und die Grenzen der Methoden bewusst. Andererseits ist der komplexe Ansatz unumgänglich, wenn es darum geht, moderne technische Entwicklungen in der Informationsund Elektrotechnik zu verstehen und mitzugestalten.

Wesentliche Themenbereiche wie die *Hochfrequenztechnik* mit ihren räumlich ausgedehnten Wellenleiterstrukturen und Antennen, sowie der Bereich der *Elektromagnetischen Verträglichkeit* (EMV), der sich mit parasitären Kopplungen sowie Störaussendungen und Störeinkopplungen beschäftigt, sind ohne feldtheoretisches Verständnis seit jeher undenkbar.

In anderen Bereichen ist die Feldsimulation weniger etabliert. War zum Beispiel bis vor kurzem der Entwurf von elektronischen Schaltungen noch mit Schaltplänen für die Funktionalität und dem Leiterplatten-Layout mit Designregeln für die Herstellung zu bewerkstelligen, so ist aufgrund der steigenden Packungsdichten und der sich immer weiter erhöhenden Taktraten digitaler Schaltungen die konkrete Umsetzung oft nur mit feldtheoretischen Betrachtungen und Optimierungen des Layouts zu beherrschen.

Um den gestiegenen Anforderungen beim Entwurf von Komponenten, Schaltungen und Systemen zu begegnen, stehen mittlerweile umfangreiche und anwendungsfreundliche Softwarewerkzeuge zur Verfügung, die sehr unterschiedliche methodische Ansätze unter einer Oberfläche vereinen. Die *elektromagnetische Co-Simulation* bringt dabei Schaltungssimulation und Feldsimulation zusammen. Kritische Subsysteme können genauer mit einem Feldsimulator untersucht und weniger kritische Schaltungsteile mit dem klassischen Schaltungssimulator berechnet werden. Schaltungsentwicklerinnen und Schaltungsentwickler müssen also zunehmend darauf eingestellt sein, elektromagnetische Feldsimulationen durchzuführen.

Das vorliegende Buch erlaubt Studierenden den Einstieg in das Themengebiet der elektromagnetischen Feldtheorie und der computergestützten 3D-EM-Simulation. Dreh- und Angelpunkt für die analytischen Betrachtungen sind die *Maxwell'schen Gleichungen* in Differentialund Integralform. Dabei wird auf Anschaulichkeit und mathematische Berechenbarkeit gleichermaßen geachtet. Analytische Berechnungen und numerische Beispiele in den einzelnen Kapiteln vertiefen das Verständnis und verknüpfen Theorie und praktische Anwendung. Die analytischen Betrachtungen in den einzelnen Kapiteln zur Feldtheorie werden mit numerischen Berechnungen verglichen. Die EM-Simulationen in diesem Buch führen wir dazu mit modernen kommerziellen Simulationswerkzeugen durch, wie sie auch in der täglichen Ingenieurspraxis verwendet werden. Am Ende des Buches schauen wir noch auf einige komplexere Anwendungsbeispiele aus den Bereichen Medizintechnik, Kommunikationstechnik und elektromagnetische Verträglichkeit.

Dieses Buch enthält selbst keine Übungsaufgaben für Studierende. Zur Vertiefung der Lehrinhalte sind eigene praktische Erfahrungen aber sehr wichtig. An den Hochschulen geschieht dies vor allem in Form von Praktikumsversuchen und seminaristischen Veranstaltungen, die zu einem ersten Hands-On an Simulationswerkzeuge einladen. Der praktische Umgang wird dann vertieft in Projekt- und Abschlussarbeiten, wo umfangreichere Arbeiten auf der Höhe aktueller wissenschaftlicher Themen realisiert werden können. Hier werden dann die Möglichkeiten, aber auch die Beschränkungen, sichtbar. So gelingt schließlich der fachkundige und souveräne Umgang mit diesen modernen Softwarewerkzeugen.

Das vorliegende Buch basiert in großen Teilen auf dem im Jahr 2018 im Hanser-Verlag verlegten Werk *Angewandte Feldtheorie* mit dem Untertitel *Eine praxisnahe Einführung in die Theorie elektromagnetische Felder*. Mit diesem neuen Buch – erkennbar am Titel *Electromagnetic Design* – ist eine inhaltliche Neuausrichtung verbunden. Die 3D-EM-Simulation als Werkzeug zum praktischen Entwurf neuer technischer Komponenten und Systeme wird nun stärker in den Fokus gerückt. Entsprechend sind diese Themenbereiche im Buch erweitert und komplett neu gestaltet. Die grundlegende Theorie der elektromagnetischen Felder bleibt aber nach wie vor wichtiges Element, da sie zum einen das fundamentale Verständnis für das eigene Tun liefert und zum anderen uns Beispiele für die Verifikation von EM-Simulationsmodellen an die Hand gibt.

An dieser Stelle bedanke ich mich bei allen Kolleginnen, Kollegen und Studierenden, die durch ihre Anregungen – sei es durch ihre Fragen in Lehrveranstaltungen, sei es durch fachliche Diskussionen – zu diesem Buch beigetragen haben.

Dortmund, im Frühjahr 2023

Frank Gustrau

Inhalt

1	Ein	leitung 15		
	1.1	Netzv	verk- und Feldtheorie	15
	1.2	Anwe	ndungsfelder der EM-Simulation	18
	1.3	Aufba	u der nachfolgenden Kapitel	19
2	The	eorie	elektromagnetischer Felder	22
	2.1	Physi	kalische Grundlagen	22
		2.1.1	Elektrostatische Feldgrößen	22
			2.1.1.1 Ladung und Coulomb-Kraft	22
			2.1.1.2 Elektrische Feldstärke	23
			2.1.1.3 Spannung und elektrisches Potential	25
			2.1.1.4 Polarisation und relative Dielektrizitätszahl	29
			2.1.1.5 Verhalten bei Wechselstrom	31
			2.1.1.6 Dielektrische Verschiebungsdichte	32
			2.1.1.7 Elektrische Feldenergie und Kapazität	32
		2.1.2	Stationäre elektrische Strömungsfelder und magnetische Felder	33
			2.1.2.1 Stromdichte, Leistungsdichte und Widerstand	33
			2.1.2.2 Magnetische Feldstärke und magnetische Flussdichte	35
			2.1.2.3 Magnetische Feldenergie und Induktivität	36
			2.1.2.4 Lorentz-Kraft	37
		2.1.3	Vektoranalytische Operatoren	37
			2.1.3.1 Divergenz	38
			2.1.3.2 Rotation	38
			2.1.3.3 Quellen- und Wirbelfelder	39
			2.1.3.4 Laplace-Operator	39
	2.2	Maxw	zell'sche Gleichungen	42
		2.2.1	Differentialform für allgemeine Zeitabhängigkeit	42
		2.2.2	Differentialform für harmonische Zeitabhängigkeit	44
		2.2.3	Integralform	45
		2.2.4	Materialgleichungen	47

		2.2.5 Verha	lten an Materialgrenzen	48	
		2.2.6 Ladu	ngserhaltung	49	
	2.3	Einteilung e	lektromagnetischer Feldprobleme	51	
	2.4	Statische Fe	lder	52	
		2.4.1 Elekt	rostatische Felder	52	
		2.4.1.	1 Poisson-Gleichung	52	
		2.4.1.	2 Green'sche Funktion	53	
		2.4.2 Magn	etostatische Felder	55	
		2.4.2.	1 Magnetisches Vektorpotential	55	
		2.4.2.	2 Biot-Savart'sches Gesetz	56	
		2.4.3 Statis	ches Strömungsfeld	60	
	2.5	Quasistatisc	he Felder	60	
	2.6	Stromverdrä	ingung (Skineffekt)	63	
		2.6.1 Eindr	ingtiefe	64	
		2.6.2 Äquiv	alente Leitschichtdicke	66	
	2.7	Elektromag	netische Wellen	69	
		2.7.1 Welle	ngleichung	69	
		2.7.2 Home	ogene ebene Wellen	70	
		2.7.3 Polar	isationsrichtung	74	
		2.7.3.	1 Lineare Polarisation	75	
		2.7.3.	2 Zirkulare Polarisation	75	
		2.7.3.	3 Elliptische Polarisation	75	
		2.7.4 Reflex	xion und Brechung an ebenen Grenzflächen	76	
		2.7.4.	1 Senkrechter Einfall	76	
		2.7.4.	2 Schräger Einfall	79	
		2.7.5 Kugel	wellen	83	
		2.7.6 Welle	n in verlustbehafteten Medien	85	
	2.8	Energieerha	ltung	88	
	2.9	Elektromag	netische Potentiale	90	
		2.9.1 Poter	tiale und Feldgrößen	90	
		2.9.2 Loren	z-Eichung und Wellengleichungen	91	
		2.9.3 Harm	onische Zeitabhängigkeit und Green'sche Funktion	92	
	2.10	Leistungsur	nsatz und Temperaturfelder	94	
3	Nur	nerische	Berechnung elektromagnetischer Felder	97	
	3.1	Überblick 9			
	3.2	.2 Methode der Finiten Differenzen im Zeitbereich (FDTD)			

		3.2.1	Maxwell'sche Gleichungen	99
		3.2.2	Diskretisierung des Problems	100
		3.2.3	Stabilität und Dispersion	105
		3.2.4	Randbedingungen	106
		3.2.5	Tore und Netzwerkgrößen	106
		3.2.6	Zeitsignale	107
	3.3	Metho	ode der Finiten Elemente (FEM)	110
		3.3.1	Variationsrechnung	110
		3.3.2	Finite Elemente	110
		3.3.3	Formfunktionen	111
		3.3.4	Elementmatrix	113
		3.3.5	Gesamtmatrix	114
		3.3.6	Lösung des linearen Gleichungssystems	114
	3.4	Mom	entenmethode (MoM)	115
		3.4.1	Grundidee des Verfahrens	115
		3.4.2	Linienförmige Leiter	116
		3.4.3	Geschichtete Strukturen	118
	3.5	Weite	re Verfahren	120
4	Мо	dellb	ildung und Simulation	122
	4.1	Mode	llbildung	122
	4.2	EM-S	imulationstools und Workflow	124
	4.2	EM-S	imulationstools und Workflow Prä-Prozessor	124 124
	4.2	EM-Si 4.2.1 4.2.2	imulationstools und Workflow Prä-Prozessor Numerischer Problemlöser (Solver)	124 124 125
	4.2	EM-S 4.2.1 4.2.2 4.2.3	imulationstools und Workflow Prä-Prozessor Numerischer Problemlöser (Solver) Post-Prozessor	124 124 125 126
	4.2	EM-S 4.2.1 4.2.2 4.2.3 4.2.4	imulationstools und Workflow Prä-Prozessor Numerischer Problemlöser (Solver) Post-Prozessor EM-Softwaretools	124 124 125 126 127
	4.2	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	imulationstools und Workflow Prä-Prozessor Numerischer Problemlöser (Solver) Post-Prozessor EM-Softwaretools Parametervariation und Optimierung	124 125 126 127 127
	4.24.3	EM-Si 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba	imulationstools und Workflow Prä-Prozessor Numerischer Problemlöser (Solver) Post-Prozessor EM-Softwaretools Parametervariation und Optimierung u der Geometrie	124 125 126 127 127 128
	4.24.3	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1	imulationstools und Workflow Prä-Prozessor Numerischer Problemlöser (Solver) Post-Prozessor EM-Softwaretools Parametervariation und Optimierung u der Geometrie Interaktive Geometrieeingabe	124 125 126 127 127 128 128
	4.24.3	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1 4.3.2	imulationstools und Workflow Prä-Prozessor Numerischer Problemlöser (Solver) Post-Prozessor EM-Softwaretools Parametervariation und Optimierung u der Geometrie Interaktive Geometrieeingabe Import von CAD-Daten	124 125 126 127 127 128 128 130
	4.2	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1 4.3.2 4.3.3	imulationstools und Workflow	124 124 125 126 127 127 128 128 130 131
	4.24.34.4	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1 4.3.2 4.3.3 Mater	imulationstools und Workflow	124 125 126 127 127 128 128 130 131
	4.24.34.44.5	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1 4.3.2 4.3.3 Mater Anreg	imulationstools und Workflow Prä-Prozessor Numerischer Problemlöser (Solver) Post-Prozessor EM-Softwaretools Parametervariation und Optimierung u der Geometrie Interaktive Geometrieeingabe Interaktive Geometrieeingabe Import von CAD-Daten Overmodeling vermeiden rialeigenschaften	124 124 125 126 127 127 128 128 130 131 131
	4.24.34.44.5	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1 4.3.2 4.3.3 Mater Anreg 4.5.1	imulationstools und Workflow	124 124 125 126 127 127 128 128 130 131 131 132
	4.24.34.44.5	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1 4.3.2 4.3.3 Mater Anreg 4.5.1 4.5.2	imulationstools und Workflow	124 125 126 127 127 128 128 130 131 131 132 132 132
	4.24.34.44.5	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1 4.3.2 4.3.3 Mater Anreg 4.5.1 4.5.2 4.5.3	imulationstools und Workflow	124 125 126 127 128 128 130 131 131 132 132 133 134
	4.24.34.44.5	EM-S 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Aufba 4.3.1 4.3.2 4.3.3 Mater Anreg 4.5.1 4.5.2 4.5.3 4.5.4	imulationstools und Workflow	124 124 125 126 127 128 128 130 131 131 132 132 133 134 134

	4.7	Diskr	etisierung und Ressourcenbedarf 137
		4.7.1	Diskretisierung 137
		4.7.2	Ressourcenbedarf 139
		4.7.3	Konvergenzanalyse 142
	4.8	Ausw	ahl der numerischen Methode 145
		4.8.1	Momentenmethode 145
		4.8.2	Finite-Elemente-Methode 146
		4.8.3	Methode der Finiten Differenzen im Zeitbereich 147
	4.9	Nach	der Simulation
	4.10	Zusar	nmenfassung 148
_			
5	Sta	tisch	e magnetische Felder150
	5.1	Lang	gestreckter Linienleiter
		5.1.1	Berechnung mit dem Durchflutungsgesetz 151
		5.1.2	EM-Simulation
	5.2	Zweid	Irahtleitung 155
		5.2.1	Anwendung des Superpositionsprinzips 156
		5.2.2	EM-Simulation 158
	5.3	Rings	pule 161
		5.3.1	Berechnung mit dem Biot-Savart'schen Gesetz 161
		5.3.2	EM-Simulation 164
		5.3.3	Helmholtzspule 166
	5.4	Koaxi	ale Anordnung 170
		5.4.1	Berechnung mit dem Durchflutungsgesetz 170
		5.4.2	Rückrechnung auf die Ursachen des magnetischen Feldes 176
			5.4.2.1 Berechnung der Quellendichte 176
			5.4.2.2 Berechnung der Wirbeldichte 176
		5.4.3	Berechnung der Induktivität 178
		5.4.4	EM-Simulation
	5.5	Lang	gestreckte Zylinderspule 183
		5.5.1	Magnetisches Feld und Induktivität 183
		5.5.2	EM-Simulation
		5.5.3	Fazit
_			
6	Sta	tisch	e elektrische Felder190
	6.1	Platte	nkondensator
		6.1.1	Elektrisches Feld und Spannung 191
		6.1.2	Kapazität als Systemgröße 192

		6.1.3	Elektrische Feldenergie und Kapazität	193
		6.1.4	Berechnung des elektrischen Strömungsfeldes	193
		6.1.5	EM-Simulation mit der FDTD-Methode	194
			6.1.5.1 Berechnung der Feldstärke und der Kapazität	196
			6.1.5.2 Berechnung des Strömungsfeldes und des Widerstandes	198
			6.1.5.3 Blick über den Tellerrand	200
		6.1.6	EM-Simulation mit der Momentenmethode	202
		6.1.7	EM-Simulation mit der Finite-Elemente-Methode	203
	6.2	Koaxi	ale Anordnung	205
		6.2.1	Elektrisches Feld und Spannung	206
		6.2.2	Elektrische Feldenergie und Kapazität	208
		6.2.3	Berechnung des elektrischen Strömungsfeldes im Leitermaterial	209
		6.2.4	EM-Simulation	209
			6.2.4.1 Berechnung der Kapazität	210
			6.2.4.2 Berechnung des Ohm'schen Widerstandes	213
7	Ma	gneti	sche Induktion	214
	7.1	Induk	ctionsgesetz	214
	7.2	Offen	e Leiterschleife neben einer Zweidrahtleitung	215
		7.2.1	Berechnung der induzierten Spannung	216
		7.2.2	EM-Simulation	217
			7.2.2.1 Berechnung der magnetischen Feldstärke	217
			7.2.2.2 Berechnung der induzierten Spannung	217
	7.3	Wirbe	elströme in einem elektrisch leitfähigen Zylinder	220
		7.3.1	Berechnung der induzierten Stromdichte	220
		7.3.2	Umgesetzte Leistung und Erwärmung	221
		7.3.3	EM-Simulation	223
			7.3.3.1 Erzeugung eines homogenen magnetischen Feldes	223
			7.3.3.2 Berechnung der Verteilung der Stromdichte	226
8	Ski	neffe	kt und Wellenausbreitung	228
	8.1	Stron	ndichte im zylindrischen Leiter	228
		8.1.1	Stromverdrängung (Skineffekt) und Ohm'scher Widerstand	228
		8.1.2	EM-Simulation	230
	8.2	Proxi	mity-Effekt in parallelen Leitern	232
		8.2.1	Zwei parallele Leiter	233
			8.2.1.1 Gleichsinnige Stromflussrichtung	233
			8.2.1.2 Gegensinnige Stromflussrichtung	235

		8.2.2	Leiterbündel	
			8.2.2.1 Parallele Speisung der Leiter	236
			8.2.2.2 Einzelspeisung der Leiter	237
	8.3	Welle	nausbreitung im freien Raum	239
		8.3.1	Homogene ebene Wellen, Kugel- und Zylinderwellen	239
		8.3.2	Wellenausbreitungsphänomene	240
			8.3.2.1 Reflexion und Brechung	240
			8.3.2.2 Beugung	242
			8.3.2.3 Absorption	243
			8.3.2.4 Streuung	243
		8.3.3	Darstellung der Wellenausbreitung anhand von Simulationen	245
			8.3.3.1 Homogene ebene Welle (HEW)	245
			8.3.3.2 Kugelwelle	245
			8.3.3.3 Hindernis im Wellenfeld	248
9	An	wend	ungsbeispiele für EM-Simulationen2	250
	9.1	Oberf	lächenspule für die Magnet-Resonanz-Tomographie	250
		9.1.1	HF-Spulen in der Magnet-Resonanz-Tomographie	250
		9.1.2	Güten von Spulen	251
		9.1.3	Güten von Resonanzkreisen	252
		9.1.4	EM-Simulationen zur Güteberechnung	252
			9.1.4.1 Berechnung der Leerlauf-Güte der Spule	252
			9.1.4.2 Berechnung der Last-Güte der Spule	255
			9.1.4.3 Berechnung der Güte von Resonatoren	256
		9.1.5	Zusammenfassung	261
	9.2	Birdca	age-Resonator für die Magnet-Resonanz-Tomographie	262
		9.2.1	Grundlagen des Birdcage-Resonators	262
		9.2.2	EM-Simulationen eines Birdcage-Resonators	264
			9.2.2.1 FEM-Eigenmode-Analyse zur Berechnung	
			der Schwingungsmoden	264
			9.2.2.2 Anregung eines zirkular polarisierten Feldes (FEM)	266
			9.2.2.3 Berechnung der spezifischen Absorptionsrate (FDTD)	267
		9.2.3	Zusammenfassung	270
	9.3	Parasi	itäre Kopplung durch Resonanzen in einem metallischen Gehäuse	271
		9.3.1	Theorie des Hohlraumresonators	271
		9.3.2	EM-Simulationen der parasitären Kopplung zwischen Schaltungsteilen .	273

		9.3.2.1	Schaltungen ohne Gehäuse im freien Raum	273
		9.3.2.2	Schaltungen umgeben von einem metallischen Gehäuse	275
		9.3.2.3	Schaltungen umgeben von einem metallischen Gehäuse	
			mit Absorbermaterial	277
	9.3.3	Zusam	menfassung	279
9.4	Vierte	lwellen	-Monopol	279
	9.4.1	Antenn	en	279
		9.4.1.1	Antennenkenngrößen	279
		9.4.1.2	Fußpunktimpedanz und Anpassung	282
		9.4.1.3	Lineare Antennen	283
		9.4.1.4	Monopolantenne	285
	9.4.2	EM-Co	-Simulation einer Monopolantenne	286
		9.4.2.1	Feldverteilung und Impedanzverlauf der Monopolantenne	286
		9.4.2.2	Anpassschaltung	287
	9.4.3	Zusam	menfassung	291
9.5	Benu	zereinfl	uss bei der Funkkommunikation	291
	9.5.1	Elektro	magnetische Felder im biologischen Gewebe	291
		9.5.1.1	Biologische Wirkungen	291
		9.5.1.2	Elektrische Eigenschaften von biologischem Gewebe	292
		9.5.1.3	Personenschutz-Grenzwerte	292
	9.5.2	EM-Sin	nulation eines Dipols für 1800 MHz in der Nähe	
		eines n	nenschlichen Kopfes	293
		9.5.2.1	Simulationsmodell	294
		9.5.2.2	Feldverteilungen im Simulationsgebiet und normenkonforme	004
	0 5 0	7	Bewertung	294
0.0	9.5.3	Zusami	in the second seco	297
9.6	Grup	penante	nne mit Patchelementen	297
	9.6.1	Einzeln	e Patchantenne	298
		9.6.1.1	Geometrie der Patchantenne	298
		9.6.1.2	EM-Simulation	299
	9.6.2	Gruppe	enantenne mit Beamforming	301
		9.6.2.1	Phased-Array-Antennen	302
		9.6.2.2	EM-Simulation	303
	9.6.3	Zusam	menfassung	304

Α	Anhang				
	A.1	Math	ematische Grundlagen 30	17	
		A.1.1	Ableitungsregeln 30	17	
		A.1.2	Ableitungen elementarer Funktionen 30	8	
		A.1.3	Vektoralgebra 30	9	
		A.1.4	Zusammenhänge aus der Vektoranalysis 31	1	
	A.2	Koord	linatensysteme	2	
		A.2.1	Kartesisches Koordinatensystem 31	3	
		A.2.2	Zylinderkoordinatensystem 31	4	
		A.2.3	Kugelkoordinatensystem 31	5	
For	mel	zeich	en und Abkürzungen31	7	
Literatur					
Ind	ex			5	

Einleitung

Die Theorie elektromagnetischer Felder ist eine der Grundsäulen der Elektro- und Informationstechnik. Sie beschreibt mathematisch die physikalischen Zusammenhänge zwischen den elektrischen und magnetischen Feldgrößen und ist notwendig, wenn man die Wirkungsweise technischer Komponenten, wie zum Beispiel elementarer Bauelemente, komplexer miniaturisierter Schaltungen oder unterschiedlicher Antennentypen, verstehen will.

Die elektromagnetische Feldtheorie knüpft dabei an grundlegende Begriffe der Mechanik wie Kraft, Arbeit und Leistung an. Zur detaillierten mathematischen Beschreibung werden dann elektrische und magnetische *Vektorfelder* eingeführt, die sich sehr gut veranschaulichen und damit verstehen und begreifen lassen. Der strenge mathematische Formalismus und die visuelle Darstellung und *Greifbarkeit* geben dem Fach eine gewisse Eleganz, der man sich kaum entziehen kann, wenn man einmal die ersten Verständnisschwierigkeiten überwunden hat, die jede neue Materie mit sich bringt.

Im Arbeitsalltag sind Ingenieurinnen und Ingenieure in der Regel eher Problemlösende als Wahrheitssuchende. Sie interessieren sich in der industriellen Praxis weniger für elegante analytische Verfahren als vielmehr für effiziente Werkzeuge und Hilfsmittel beim Entwurf. Was kann die elektromagnetische Feldtheorie also hier für die Fachleute in der Praxis tun? Moderne anwenderfreundliche Simulationsprogramme für elektromagnetische Felder erlauben es, praxisrelevante Strukturen numerisch mit Rechnerunterstützung zu entwerfen und zu analysieren. Es entstehen so numerische Modelle, die aufwendigere messtechnische Untersuchungen reduzieren können und damit die Entwurfsphase technischer Komponenten und Schaltungen vereinfachen und beschleunigen.

Ingenieurinnen und Ingenieure sind *visuell orientiert*, sie erfassen Zusammenhänge besonders schnell durch unterstützende Veranschaulichungen. Die elektromagnetische Feldtheorie bietet genau diese Anschauung durch die grafische Darstellung von Feldgrößen in Form von Feldlinienbildern oder Vektorplots. Moderne EM-Simulationsprogramme liefern somit einen Einblick in die Wirkungsweise von Schaltungsteilen und Komponenten. Hierdurch lässt sich oft unmittelbar erkennen, wo Probleme zu erwarten sind und Verbesserungspotential beim Entwurf liegt.

1.1 Netzwerk- und Feldtheorie

Die *elektromagnetische Simulation* (EM-Simulation) ist sehr nah an der physikalischen Realität. Die dreidimensionale Struktur und die verwendeten Materialien werden im Detail berücksichtigt. Die meisten Ingenieurinnen und Ingenieure der Elektro- und Informationstechnik sind vor allem mit der *Schaltungssimulation* vertraut, z. B. mit dem Programm PSpice. In der Schaltungssimulation befinden wir uns auf einer höheren Abstraktionsstufe und beschreiben Bauteile und Schaltungen nicht durch elektromagnetische Feldgrößen, sondern durch *Netz-werkgrößen*. Der Schaltungssimulation übergeordnet gibt es noch die Ebene der *Systemsimulation*, die sich auf einem noch höheren Abstraktionsniveau befindet.

Bild 1.1a zeigt eine planare Spule. Eine Leiterbahn ist spiralförmig auf einem dielektrischen nichtleitenden Material geführt. Aus dem Innenbereich der kreisförmigen Anordnung wird der Leiter über eine Brücke zur Speisestelle zurückgeführt. Wird die Anordnung von einem Strom *I* durchflossen, so entstehen in der Umgebung des Leiters magnetische Felder $\vec{H}(\vec{r})$, die sich im Innenbereich konstruktiv überlagern. Bezüglich der beiden Anschlussklemmen ergibt sich in erster Näherung das Verhalten einer Induktivität. Schaut man genauer hin, so wird klar, dass der Leiter in der Praxis immer eine endliche Leitfähigkeit besitzt. Im Netzwerkmodell erscheint daher ein Ohm'scher Widerstand *R* in Reihe zur Induktivität *L*. Längs des spiralförmigen Leiters gibt es einen Spannungsabfall, infolgedessen stellt sich ein elektrisches Feld zwischen den Leitern ein. Vereinfachend kann der Einfluss des elektrischen Feldes durch eine parallel geschaltete Kapazität *C* im Netzwerkmodell berücksichtigt werden.

Bild 1.1 (a) 3D-EM-Modell und (b) Netzwerkmodell einer realen Spule

Bild 1.1b zeigt das resultierende Netzwerkmodell oder *Ersatzschaltbild* (ESB) der Anordnung, das für viele Anwendungsfälle ausreichend genau ist. In diesen Anwendungsfällen liefert das Ersatzmodell der Netzwerktheorie mit sehr wenigen Parametern einen sehr effizienten Ansatz, und es lassen sich Schaltungen mit sehr vielen solcher konzentrierter Bauelemente berechnen. Wir befinden uns dann im Bereich der *Schaltungssimulation*. Für die integralen Größen Strom und Spannung gelten dann die *Kirchhoff'schen Gesetze*, also Maschen- und Knotenregel. Bei linearem Verhalten kann mithilfe der komplexen Wechselstromrechnung ein Gleichungssystem für die Unbekannten aufgestellt und eine Lösung ermittelt werden. Dieser Ansatz ist innerhalb seines Gültigkeitsbereiches sehr effizient.

In einer *EM-Simulation* der in Bild 1.1a gezeigten Spulenanordnung können die für die Schaltungssimulation notwendigen Größen (Impedanzverhalten) bezüglich der Anschlussklemmen ermittelt werden. Darüber hinaus kann aber zusätzlich die Wechselwirkung mit der Umgebung (Nahfeld, Abstrahlung) bestimmt werden. Dies ist bei ansteigender Packungsdichte in integrierten Schaltungen in zunehmendem Maße notwendig. Die EM-Simulation basiert auf den *Maxwell'schen Gleichungen* und ist deutlich aufwendiger in der Durchführung als eine Schaltungssimulation. Der Vorteil der EM-Simulation liegt darin, dass der feldtheoretische Ansatz *universellere Gültigkeit* besitzt, denn er berücksichtigt deutlich mehr reale Aspekte.

Bild 1.2 (a) Beispiel für eine elektromagnetische Co-Simulation: Berechnung der Anpassschaltung aus konzentrierten Elementen im Schaltungssimulator und Berechnung der Dipolantenne im EM-Simulator. (b) 3D-Struktur der Dipolantenne. (c) Darstellung der räumlichen Verteilung des magnetischen Nahfeldes in der Umgebung des Dipols

In der Praxis nun besteht der Königsweg in der intelligenten Verknüpfung beider Ansätze, also der Kopplung netzwerktechnischer und feldtheoretischer Modelle. Kritische Komponenten und Geometrien werden mit dem EM-Simulator behandelt, weniger kritische Strukturen im Schaltungssimulator. So lassen sich effiziente Modelle mit einer der übergeordneten Problemstellung angepassten Genauigkeit erstellen. Bild 1.2a zeigt ein einfaches Beispiel für eine elektromagnetische Co-Simulation: Eine Antenne wird im EM-Simulator berechnet und die Anpassschaltung aus konzentrierten und als ideal angenommenen Elementen im Schaltungssimulator.

	Netzwerktheorie	EM-Feldtheorie
Zustandsgrößen	Strom, Spannung	elektrisches u. magnetisches Feld
	skalar	vektoriell
	zeitabhängig	orts- und zeitabhängig
Gleichungen	Kirchhoff'sche Gleichungen	Maxwell'sche Gleichungen
Gültigkeitsbereich	eingeschränkter (-)	universeller (+)
Berechnungsaufwand	geringer Aufwand (+)	hoher Aufwand (-)

Tabelle 1.1 Vergleich von Netzwerktheorie und elektromagnetischer Feldtheorie

Während in einer Schaltungssimulation Strom und Spannung ermittelt werden, liegen nach einer EM-Simulation umfangreiche Informationen über die räumlichen Verteilungen der elektrischen und magnetischen Feldgrößen vor. Bild 1.2c zeigt in einer vertikalen Darstellungsebene den Betrag der magnetisches Feldstärke in der Umgebung einer Dipolantenne. Tabelle 1.1 stellt abschließend noch einmal wesentliche Aspekte der Schaltungssimulation und der elektromagnetischen Feldsimulation gegenüber.

1.2 Anwendungsfelder der EM-Simulation

Die elektromagnetische Simulation ist mittlerweile ein in der Praxis etabliertes Verfahren und wird in sehr unterschiedlichen Anwendungsfeldern eingesetzt. In der folgenden Aufzählung nennen wir einige Anwendungsbereiche, die zeigen, wie breit das Einsatzgebiet für die elektromagnetische Feldtheorie und ihre Simulationswerkzeuge mittlerweile ist.

- Hochfrequenztechnik: In der Hochfrequenztechnik (HF-Technik) haben wir es mit geometrischen Strukturen zu tun, deren Abmessungen im Bereich der Wellenlänge liegen oder kleiner sind. Es kommt somit zu Wellenausbreitungseffekten und elektromagnetischer Abstrahlung. Feldsimulationsprogramme wurden daher in der Antennenentwicklung historisch bereits sehr früh eingesetzt. Mit der Steigerung der Computer-Rechenleistung hat sich die elektromagnetische Feldsimulation auf alle Bereiche der Hochfrequenztechnik ausgedehnt, wie zum Beispiel auf Filter, Koppler, Leitungsübergänge, Hohlleiter, dielektrische Wellenleiter, Gehäuse für integrierte Schaltungen, Leitungsübergänge, Wellenausbreitung in Gebäuden und Spulen für RFID-Tags.
- **Elektromagnetische Verträglichkeit:** Ziel der elektromagnetischen Verträglichkeit (EMV) ist es, den störungsfreien Betrieb zwischen elektrischen Geräten und Systemen sicherzustellen. Zu Funktionsstörungen kann es kommen, wenn sich Signale auf *parasitären Kopplungspfaden* ausbreiten. Diese unerwünschten Kopplungspfade sind im Schaltplan nicht direkt ersichtlich. Mit EM-Simulationen können diese parasitären Kopplungspfade jedoch untersucht und durch Gegenmaßnahmen vermindert werden. Die Möglichkeit der Pro-

gramme elektromagnetische Feld- und Stromdichteverteilungen grafisch darzustellen ist äußerst hilfreich bei der Suche nach technischen Lösungen im Bereich der EMV.

- Schaltungsentwurf: Immer höhere Takt- und Datenraten in modernen Digitalschaltungen (High speed digital) stellen neue Herausforderungen an das Design von Schaltungslayouts. Reflexionen, Überkopplungen und Laufzeitdifferenzen vermindern die Signalqualität und müssen hinreichend klein gehalten werden. Die Untersuchung und Optimierung der Signalintegrität (*Signal Integrity*) gelingt mit Schaltungs- und EM-Simulationen. Ein anschauliches Werkzeug zur Darstellung ist hierbei das Augendiagramm. Neben dem Trend zu höheren Taktraten finden wir auch zunehmend reduzierte Versorgungsspannungen. Ziel der Simulationen ist es somit, auch die Qualität des Versorgungsnetzes sicherzustellen (*Power Integrity*).
- **Medizintechnik:** Die Anwendung von EM-Simulationen in der Medizintechnik ist mittlerweile etabliert. Die in der *Magnet-Resonanz-Tomographie* (MRT) verwendeten Spulensysteme erzeugen magnetische Felder im Körper. Mithilfe elektromagnetischer Simulationen können Bauformen ermittelt werden, die die erforderliche Homogenität der Felder gewährleistet. Weiterhin können Stromdichten und Leistungsdichteverteilungen im menschlichen Körper berechnet werden, um die Einhaltung gesetzlicher Grenzwerte für die Patientensicherheit zu gewährleisten. In der *Transkraniellen Magnetstimulation* (TMS) können durch induzierte elektrische Felder ausgewählte Bereiche im Gehirn stimuliert oder gehemmt werden. EM-Simulationen erlauben es die Anregungssysteme geeignet auszulegen. Ein weiteres Beispiel ist die *Hyperthermieplanung*. Über eine Berechnung der Leistungsdichteverteilung im menschichen Gewebe kann durch Kopplung mit einem thermischen Berechnungsprogramm die erforderliche Sendeleitung für einen optimalen Therapieerfolg ermittelt werden.
- **Elektrische Maschinen:** Im Bereich der Antriebstechnik werden numerische EM-Simulationen eingesetzt, um wichtige mechanische und elektrische Kenngrößen wie zum Beispiel Drehmomentenverlauf und Verluste zu optimieren. Bei Elektromotoren – wie auch bei anderen Systemen der Energietechnik, zum Beispiel Transformatoren – ist das Verhalten der magnetischen Materialien (Permanentmagnete) von großer Bedeutung. Wichtig ist die Ankopplung der elektromagnetischen Simulationssoftware an benachbarte physikalische Bereiche (Multiphysics): zum Beispiel eine Ankopplung an die Mechanik für Untersuchungen mechanischer Schwingungen und Festigkeit und eine Ankopplung an die Thermik für Fragen der Erwärmung der Systeme.

1.3

.3 Aufbau der nachfolgenden Kapitel

Nach dieser kurzen Einleitung steigen wir im *zweiten Kapitel* in die physikalischen Grundlagen ein. Wir erläutern zunächst für den statischen, d. h. zeitunabhängigen Fall die elektrischen und magnetischen Feldgrößen und Feldenergien und zeigen den Zusammenhang mit den Netzwerkgrößen Strom, Spannung, Kapazität, Widerstand und Induktivität auf. Über die Maxwell'schen Gleichungen in Differential- und Integralform stellen wir dann mithilfe mathematischer Grundlagen einen allgemeinen Zusammenhang zwischen allen elektromagnetischen Feldgrößen her. Um die Maxwell'schen Gleichungen und ihre Aussagen und Lösungen besser zu verstehen, betrachten wir danach einige praxisrelevante Spezialfälle. Wir schließen das Kapitel ab über die elektromagnetischen Potentiale und die Green'schen Funktionen, die beim Auffinden von Lösungen in der Praxis hilfreich sein können und in wichtigen Anwendungsbereichen, z. B. in der Antennentechnik, fest verankert sind.

Die Maxwell'schen Gleichungen sind nur für sehr einfache Szenarien analytisch lösbar. Zur Lösung praktischer Probleme müssen mithilfe von mathematischen Verfahren, die sich mit Computerunterstützung umsetzen lassen, Näherungslösungen gefunden werden. Das *dritte Kapitel* gibt daher einen Überblick über die zugrunde liegenden numerischen Verfahren. Etwas genauer schauen wir auf die Methode der Finiten Differenzen im Zeitbereich (FDTD), da diese direkt von den Maxwell'schen Gleichungen ausgeht. Zwei weitere Verfahren, die eine tiefergehende Beschäftigung mit der Mathematik notwendig machen würden, wollen wir nur kurz behandeln: die Finite-Elemente-Methode (FEM) und die Momentenmethode (MoM).

Im *vierten Kapitel* lernen wir dann die wesentlichen Schritte bei der Umsetzung eines realen Problems in ein Simulationsmodell kennen. Wir werden dabei sehen, dass die Umsetzung viele technische Überlegungen erfordert und es fachkundige Anwenderinnen und Anwender braucht, die die zugrunde liegenden feldtheoretischen und technischen Aspekte verstanden haben und so durch sinnvolle Vereinfachungen zu einem effizienten und aussagekräftigen Simulationsmodell kommen. In den nachfolgenden vier Kapiteln (Kapitel 5 bis Kapital 8) werden wir dann Simulationen in kanonischen Kontexten anwenden und schauen hier gleichermaßen auf feldtheoretische und simulatorische Aspekte. Dies dient zur Verifizierung unserer aufgebauten Modelle und soll zum fachkundigen Umgang mit den Simulationswerkzeugen anleiten. Wir schauen nun im einzelnen auf diese Kapitel.

Im *fünften Kapitel* beschäftigen wir uns zunächst ausschließlich mit statischen magnetischen Feldern. Bei einfachen Geometrien nutzen wir das Durchflutungsgesetz und das Biot-Savart'sche Gesetz, um, ausgehend von einer vorgegebenen Stromverteilung, die magnetische Feldstärke im Raum zu berechnen. Aus der Verteilung des magnetischen Feldes können wir dann über die Energiedichte Netzwerkgrößen wie die Induktivität ermitteln. Den analytischen Ergebnissen stellen wir jeweils numerische Berechnungen gegenüber. Die idealisierten Gedankenmodelle hinter den analytischen Berechnungen lassen sich dabei selten eins zu eins in ein Simulationsmodell überführen. Wir müssen also jeweils überlegen, welche Anpassungen und Veränderungen für die Überführung in ein vergleichbares Simulationsmodell notwendig und angemessen sind.

Thema des *sechsten Kapitels* sind die statischen elektrischen Felder sowie die elektrischen Strömungsfelder in leitfähigen Medien. Mithilfe des Gauß'schen Gesetzes des elektrischen Feldes berechnen wir die Verteilung der elektrischen Feldstärke für einfache Geometrien. Über die Energie sowie Strom und Spannung können wir schließlich Netzwerkgrößen wie die Kapazität und den Ohm'schen Widerstand ermitteln. Wie im vorangegangenen Kapitel stellen wir auch hier den analytischen Ergebnissen numerische Modelle gegenüber. Wir nutzen beim Plattenkondensator auch die Möglichkeiten der EM-Simulation, um einfach einmal die Frequenz zu erhöhen und somit einen Blick über den Tellerrand zu werfen. Hierbei erkennen wir eine Verkopplung der elektrischen und magnetischen Feldgrößen und die Phänomene der Resonanz und Abstrahlung, welche uns später im Anwendungskapitel (Kapitel 9) noch einmal begegnen werden.

Induktionsvorgänge, die in der Technik eine große Bedeutung besitzen, werden im *siebten Kapitel* näher betrachtet. Mithilfe des Induktionsgesetzes berechnen wir ausgehend von magnetischen Wechselfeldern induzierte Wirbelströme und Spannungen. Wie im Kapitel über statische elektrische und magnetische Felder werden in den Abschnitten dieses Kapitels analytische Berechnungen und numerische Lösungen diskutiert.

Das *achte Kapitel* widmet sich dann zunächst der Stromverdrängung (Skineffekt) in guten Leitern. Mit zunehmender Frequenz verdrängt sich der Strom aufgrund der Verkopplung elektrischer und magnetischer Felder an den Rand des Leiters. Wir untersuchen die Auswirkungen auf den Widerstand und die Induktivität bei einem zylindrischen Leiter. Zusätzlich zum Einzelleiter untersuchen wir die Auswirkungen mehrerer paralleler Leiter und lernen dabei den Proximity-Effekt kennen. Im weiteren Verlauf des Kapitels betrachten wir dann elektromagnetische Wellen im freien Raum. Wir wollen dabei zunächst die wesentlichen Wellenausbreitungsphänomene beschreiben und anschaulich die physikalischen Zusammenhänge verdeutlichen. Danach beschäftigen wir uns mit numerischen Modellen zur Veranschaulichung der Abstrahlung und Ausbreitung von Wellen im freien Raum und der Interaktion der Wellenfelder mit Objekten.

Das *neunte Kapitel* zeigt abschließend exemplarisch komplexere Simulationsmodelle aus aktuellen Anwendungsgebieten. Wir beginnen mit einem Beispiel aus der Medizintechnik und betrachten Oberflächenspulen für die Magnet-Resonanz-Tomographie. Auch im folgenden Anwendungsbeispiel bleiben wir im Bereich der Magnet-Resonanz-Tomographie und erweitern die Betrachtung auf Birdcage-Resonatoren. Das nächste Beispiel entstammt dem Bereich der elektromagnetischen Verträglichkeit (EMV), bei dem durch Gehäuseresonanzen parasitäre Verkopplungen zwischen getrennten Schaltungsteilen auftreten. Weiterhin betrachten wir im vierten Beispiel eine Monopolantenne mit einer Anpassschaltung aus konzentrierten Elementen, um das Konzept der elektromagnetischen Co-Simulation, eine Verbindung aus Schaltungs- und EM-Simulation, deutlich zu machen. Anschließend kommen wir auf die technisch wichtigen Patchantennen zu sprechen und geben einen Ausblick auf das Gebiet der Hochfrequenztechnik, indem wir uns mit den Möglichkeiten der Strahlschwenkung und des Beamformings beschäftigen. Abschließend beschäftigen wir uns noch mit dem Benutzereinfluss bei körpernah eingesetzten Funksystemen.

Theorie elektromagnetischer Felder

In diesem Kapitel werden zunächst die elektromagnetischen Feldgrößen vorgestellt, wie sie für den statischen – also zeitunabhängigen – Fall definiert sind. Es wird der Zusammenhang zwischen den Feldgrößen und den Netzwerkgrößen wie Strom und Spannung verdeutlicht. Die Maxwell'schen Gleichungen in Verbindung mit den Stetigkeitsbedingungen dienen dann der vollständigen Beschreibung des elektromagnetischen Verhaltens für zeit- und ortsvariante Feldgrößen.

Bei der mathematischen Behandlung und dem Auffindung von Lösungen der Maxwell'schen Gleichungen hat es sich als vorteilhaft herausgestellt, bestimmte Problemklassen, wie Elektrostatik, Magnetostatik, quasistatische Felder und schnell veränderliche Felder, zu unterscheiden. Die Betrachtung gewinnt dabei an Komplexität, und das Verständnis für die feldtheoretischen Zusammenhänge wächst Schritt für Schritt.

2.1 Physikalische Grundlagen

Zunächst stellen wir in den folgenden Abschnitten grundlegende feldtheoretische und mathematische Zusammenhänge dar, um eine erste anschauliche Vorstellung des elektrischen und magnetischen Feldes zu gewinnen.

2.1.1 Elektrostatische Feldgrößen

Wir beginnen mit den *elektrischen* Feldgrößen für den zeitunabhängigen (statischen) Fall und erklären die Bedeutung der Netzwerkgrößen Spannung und Kapazität.

2.1.1.1 Ladung und Coulomb-Kraft

Historisch hat man schon früh die Bedeutung von elektrischen *Ladungen Q* erkannt und festgestellt, dass sich Ladungen durch ihre Kraftwirkungen aufeinander auszeichnen. Man unterscheidet *positive* und *negative* Ladungen, wobei sich gleichnamige Ladungen abstoßen (Bild 2.1a) und ungleichnamige Ladungen anziehen (Bild 2.1b). Ladungsmengen werden in der Einheit Coulomb angegeben ([Q] = C).

Die *Coulomb*-Kraft \vec{F}_{C} beschreibt die Kraftwirkung zwischen zwei Ladungen Q_1 und Q_2 , die sich im Abstand *r* zueinander befinden. Die Ladungen werden als punktförmig angenommen

(Punktladung). Der Betrag der Kraft in der Einheit Newton ([F] = N) kann mit nachfolgender Gleichung (2.1) berechnet werden.

$$F_{\rm C} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 Q_2}{r^2} \qquad \text{(Coulomb-Kraft)}$$
(2.1)

Die Dielektrizitätskonstante ε_0 besitzt den Wert 8,854 · 10⁻¹² As/(Vm). Die Richtung der Kraft ergibt sich auf einer gedachten Verbindungsgeraden zwischen den Punktladungen, wobei die Kräfte bei ungleichnamigen Ladungen zueinander zeigen und bei gleichnamigen Ladungen voneinander weg zeigen (Bild 2.1a und 2.1b). Falls mehr als zwei Landungen vorhanden sind, so können paarweise die Kräfte ermittelt und nach dem *Superpositionsprinzip* vektoriell überlagert werden. Bild 2.1c zeigt die paarweise Wechselwirkung und die vektorielle Addition der Teilkräfte zu den Gesamtkräften.

Ladungen sind naturgemäß gequantelt und kommen nur in ganzzahligen Vielfachen der *Elementarladung* $e = 1,602 \cdot 10^{-19}$ C vor. Diese Quantelung spielt aber makroskopisch – also bei Vorhandensein einer ausreichend großen Anzahl von Ladungsträgern – keine Rolle, sodass wir im Folgenden von einer kontinuierlichen Ladungsmenge ausgehen wollen.

(a) Zwei gleichnamige Ladungen (c) Superposition der Kräfte bei drei Ladungen

Bild 2.1 Coulomb-Kräfte zwischen (a) zwei gleichnamigen Ladungen, (b) zwei ungleichnamigen Ladungen und (c) drei Ladungen

Bei den bislang betrachteten Ladungen handelte es sich um Punktladungen, bei denen die Ladungsmenge in einem singulären Raumpunkt angenommen wird. Bei kontinuierlich im Raum verteilten Ladungen verwendet man zur Beschreibung die *Raumladungsdichte* ρ (Einheit [ρ] = C/m³). Die Gesamtladung Q erhalten wir dann durch die Integration über das ladungserfüllte Volumen V.

$$Q = \iiint_{V} \rho \,\mathrm{d}v \tag{2.2}$$

2.1.1.2 Elektrische Feldstärke

Im Folgenden wollen wir uns vom Begriff der Kraft lösen, indem wir eine neue physikalische Größe einführen. Hierzu beziehen wir die auf die Ladung Q_2 wirkende Kraft \vec{F}_2 auf die La-

dung Q_2 selbst. Wir erhalten damit die *elektrische Feldstärke* \vec{E}_1 der Ladung Q_1 am Ort der Ladung Q_2 .

$$\vec{E}_1 = \frac{\vec{F}_2}{Q_2}$$
 (2.3)

Die elektrische Feldstärke (in der Einheit [E] = V/m) gibt also die Richtung der Kraftwirkung auf eine Probeladung Q_2 an, die sich in der Nähe einer Ladung Q_1 befindet. Das elektrische Feld \vec{E}_1 einer Punktladung Q_1 im Ursprung ist damit in Kugelkoordinaten durch die nachfolgende Gleichung gegeben.

$$\vec{E}_1(r) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1}{r^2} \vec{e}_r$$
 (Elektrische Feldstärke einer Punktladung im Ursprung) (2.4)

Obgleich in Gleichung (2.3) rechentechnisch nur eine Quotientenbildung vorgenommen und damit eine von Q_2 unabhängige Größe geschaffen wird, bedeutet die neue Größe doch mehr als die Normierung einer Kraft. Bei der anfänglichen Beschreibung über die Coulomb-Kräfte existieren im Raum verteilte Ladungen, die direkt – über eine Distanz hinweg – Kräfte aufeinander ausüben (*Fernwirkungsprinzip*).

Nun mit der Einführung des Begriffs des elektrischen Feldes wird zunächst von der Ladung Q_1 ein elektrisches Feld \vec{E}_1 erzeugt. Mathematisch stellt die elektrische Feldstärke \vec{E} nun ein *Vektorfeld* dar, welches jedem Raumpunkt einen Vektor zuweist. Das elektrische Feld \vec{E}_1 der Ladung Q_1 existiert dabei auch ohne die Anwesenheit der Ladung Q_2 . Wird nun eine Ladung Q_2 in des Feld \vec{E}_1 der Ladung Q_1 gebracht, so interagiert die Ladung Q_2 mit dem *lokalen* elektrischen Feld der Ladung Q_1 am Ort der Ladung Q_2 (*Nahwirkungsprinzip*). Die Ladung Q_2 erzeugt nun aber auch ihrerseits ein elektrisches Feld \vec{E}_2 , und so ergibt sich schließlich auch eine Kraftwirkung auf die Ladung Q_1 .

Ein ortsabhängiges elektrisches Vektorfeld $\vec{E}(\vec{r})$ kann durch sogenannte *Feldlinienbilder* anschaulich dargestellt werden. Bild 2.2a zeigt das Feldlinienbild einer positiven Punktladung. Dem Feldlinienbild kann anschaulich die Richtung und der Betrag entnommen werden: Die vektorielle Größe \vec{E} ist dabei immer tangential zu den Feldlinien gerichtet, und die Liniendichte deutet die Amplitude der Feldstärke an. Wie in Gleichung (2.4) mathematisch formuliert erkennt man im Feldlinienbild, dass das elektrische Feld radial von der Ladung fortgerichtet ist und der Betrag mit steigendem Abstand sinkt.

In Bild 2.2b und Bild 2.2c finden wir die Feldlinienbilder von zwei gleichnamigen bzw. ungleichnamigen Ladungen. Bild 2.2d zeigt die Feldverteilung in einem Plattenkondensator, bei dem sich zwei parallele Flächen mit entgegengesetzter Ladung gegenüberstehen. Zwischen den Platten ist das elektrische Feld in guter Näherung *homogen*. An den Rändern entsteht ein Streufeld, und das Feld im Außenraum ist in erster Näherung zu vernachlässigen.

Wenn man sich den Verlauf der Feldlinien und damit die Richtung der Kraftwirkung auf eine positive Ladung in den Bildern ansieht, so fällt auf, dass diese immer von den positiven Ladungen weg- und zu den negativen Ladungen hinführen. Man könnte auch sagen, dass die positiven Ladungen die *Quellen* des elektrostatischen Feldes darstellen (hier entspringen die Feldlinien) und dass die negativen Ladungen die *Senken* sind (hier enden die elektrischen Feldlinien).

Index

 $\lambda/2$ -Resonanz, 201 3 dB-Bandbreite, 258 Ableitungsregeln, 307 Absorbermaterial, 277 Absorbierende Randbedingungen, 106, 137 Absorption, 243 Abstrahlung, 89 Adaptive Netzverfeinerung, 139, 142, 203 ADS - Hohlraumresonator, 273 - Monopolantenne, 286 - Patchgruppenantenne, 298 - Plattenkondensator, 202 Advanced Design System, 202 Äquipotentialfläche, 27 Äquivalente Leitschichtdicke, 66 Äußeres Produkt, 310 Aluminium, 35 Ampere'sches Gesetz, 45 Anfangs-Randwert-Problem, 42 Anisotrope Materialien, 31 Anpassschaltung, 289 Anpassung, 294, 298 Anregungssignale, 134 Antenne, 279 Arbeit, 25 Aufpunktvektor, 57, 161 Ausbreitungsgeschwindigkeit, 52, 71 Ausbreitungskonstante, 86 Ausbreitungsmode, 133 Ausfallswinkel, 240

Γ-Transformator, 289

Bandbreite, 108, 258, 294 Basisgrenzwerte, 292 Beamforming, 303 BEM, 120 Beugung, 242 Binomiale Belegung, 303 Biot-Savart'sches Gesetz, 56, 161 Birdcage-Resonator, 262 Boundary-Element-Method, 120 Brechung, 80, 240 Brechungsindex, 80 Brewster-Winkel, 80

CAD, 128 Co-Simulation, 18, 279 Coulomb-Eichung, 55 Coulomb-Kraft, 22 Courant-Kriterium, 105, 142

Dämpfungskonstante, 87, 243 dBi. 282 Debye-Beziehung, 31 Delta-Operator, 39 DFT. 108 Dichte, 94 Dielektrikum, 29 Dielektrische Verschiebungsdichte, 32 Dielektrischer Wellenleiter, 134 Dielektrizitätskonstante, 23 Dielektrizitätszahl, 31, 131 - Komplexwertige, 44 Differentialgleichung, 53, 65, 70, 86 Differential operator, 313 Differenzenquotient, 101 Diffusionsgleichung, 65, 95 Digitale Signale, 135 Dipol, 18, 246, 293 - Halbwellendipol, 283 Dirac'sche Delta-Funktion, 54 Diskrete Fouriertransformation, 108 Diskretisierung, 98, 100, 137 - zeitlich, 100, 102 Dispersion, 48, 105 Divergenz, 38, 313 Drahtantenne, 283 Duales Gitter, 100

Dummy-Objekt, 205 Durchflutungsgesetz, 45, 150, 170, 183 DXF-Format, 130 Effektive Fläche, 68 Eigenmode-Analyse, 261, 264 Eindringtiefe, 66 Einfallsebene, 79 Einfallswinkel, 240 Eingangsimpedanz - Antenne, 282 Einheitsvektor, 313-315 Eisenkern, 223 Elektrisch klein, 107 Elektrische Energiedichte, 32, 193, 208 Elektrische Feldstärke, 24 Elektrische Flussdichte, 32 Elektrische Leitfähigkeit, 34, 131 Elektrische Stromdichte, 33 Elektrische Wand, 135, 137, 153, 285 Elektrische Wirbelfelder, 214 Elektrischer Fluss, 32 Elektrisches Potential, 90 Elektrisches Strömungsfeld, 51 Elektromagnetische Potentiale, 90 Elektromagnetische Verträglichkeit, 18, 250 Elektromagnetische Wellen, 52, 69 Elektrostatik, 52 Elementarladung, 23 Elementarstrahler, 302 Elementmatrix, 113 Elliptische Polarisation, 75 EM Co-Simulation, 279 EM-Simulation, 97 Empfangsantenne, 279 **EMPIRE** - Koaxiale Anordnung, elektrisches Feld, 209 - Koaxiale Anordnung, Magnetfeld, 164 - Leiterschleife, Induktion, 217 - Linienleiter, Magnetfeld, 152 Paralleldrahtleitung, Magnetfeld, 158 Plattenkondensator, elektrisches Feld, 194 - Wellenausbreitung, 245 - Zylinder, Wirbelstrom, 223 EMPro - Benutzereinfluss, SAR, 293 - Birdcage-Resonator, 264

- MR Oberflächenspule, 252 Skineffekt im Leiter, 230 - Zylinderspule, 185 EMV, 166, 250 Endliche Ausbreitungsgeschwindigkeit, 52 Energie, 32, 36, 88, 193, 208 Energiedichte, 178, 185 - Elektrische, 32, 193, 208 - Magnetische, 36 Energieerhaltung, 88, 240 Erhaltungsgröße, 88 Erhaltungssatz der Ladung, 50 Ersatzschaltbild, 16 Erwärmung, 221 ESB, 16 Evaneszente Welle, 82 Externe Güte, 252 Faktorregel, 307 Faraday'sches Gesetz, 46 FDTD, 99, 147, 153, 194, 294 - Conformal Mesh, 138 Feldenergie, 32 Feldlinienbild, 24 Feldstärke - Elektrische, 24 - Magnetische, 36 Feldtheorie, 15 Feldwellenwiderstand, 73, 77, 88 FEM, 110, 146, 266, 286 - Konvergenzanalyse, 142 Fernfeld, 83, 279, 280, 296 Fernwirkungsprinzip, 24 Finite Differenzen im Zeitbereich, 99, 147 Finite Elemente, 111 Finite Integrationstechnik, 120 Finite-Elemente-Methode, 110, 146, 286 FIT, 120 Flächenwiderstand, 68 Fluss - Elektrischer, 32 Magnetischer, 36, 214 Flussdichte - Elektrische, 32 - Magnetische, 36 Formfunktion, 112 Frequenz, 63, 71

Frequenzbereich, 98 Fußpunktimpedanz, 279, 282

Gültigkeitsbereich, 17 Gauß'sches Gesetz des elektrischen Feldes, 46, 206 des magnetischen Feldes, 47 Gaußförmiger Impuls, 108 Gegenfeld, 30 Gehäuseresonanz, 271 Geometrie, 128 Geometrischer Schattenbereich, 242 Geschichtete Strukturen, 118 Gleichstrom, 51 Gleichungssystem, 118 Gold. 35 Gradient, 26, 313 Graphical User Interface (GUI), 124 Green'sche Funktion, 53, 93, 116, 240 Grenzwerte, 291 Grenzwinkel der Totalreflexion, 81 Groundplane, 136 Grundschwingung, 272 Gruppenantenne, 301 Güte, 253 - Schwingkreis, 252, 256 - Spule, 251 GUI, 124 Gyromagnetisches Verhältnis, 250

Halbwellendipol, 283, 291 Harmonische Zeitabhängigkeit, 92 Helmholtz-Gleichung, 70, 86 Helmholtzspule, 166, 223 HEW, 134, 223, 239 Hilfsgröße, 94 Hochfrequenztechnik, 18 Hohlleiter, 134 Hohlraumresonator, 271 Homogene ebene Welle, 70, 134, 223, 239 Lokale, 84 Homogene Raumladungskugel, 40 Homogenität, 48 Horizontale Polarisation, 75 Huygens'sches Prinzip, 243, 303 Hybride Verfahren, 120

ICNIRP, 291 Idealer elektrischer Leiter, 35 IGES-Format, 130 Impedanz, 16 Induktionsgesetz, 46, 214, 216 Induktivität, 37 – Koaxiale Anordnung, 178 – Lange Zylinderspule, 185 Induzierte Spannung, 214 Innenwiderstand, 195, 273 Innere Induktivität, 178 Inneres Produkt, 309 Intersektion, 128 Isotroper Kugelstrahler, 245, 280, 302 Isotropie, 48

Kapazität, 32 Plattenkondensator, 192 Zylinderkondensator, 209 Kapazitiver Endeffekt, 286 Kartesisches Koordinatensystem, 313 Kettenregel, 307 Kirchhoff'sche Gesetze, 16, 44 Koaxiale Anordnung, 170, 205 Koaxialleitung, 133 Komplexe Wechselstromrechnung, 44 Konvektion, 95 Konvergenzanalyse, 142 Konzentriertes Tor, 106, 132 Koordinatensysteme, 312 Kraft - Coulomb, 22 Lorentz, 37 Kreisfrequenz, 71 Kreisspule, 161 Kreuzprodukt, 310 Kugelkoordinatensystem, 315 Kugelwelle, 83, 239, 302 Kupfer, 35

L-Netzwerk, 289 Ladung, 22 Ladungserhaltung, 49 Langgestreckte Zylinderspule, 183 Langsam veränderliche Felder, 63 Laplace-Gleichung, 53 Laplace-Operator, 313

Larmorfrequenz, 250 Lastgüte, 251 Lastwiderstand, 273 Laufzeit, 62 Laufzeiteffekte, 51 Leap-Frog-Algorithmus, 104 Leistung, 89, 221, 222 Leistungsdichte, 33, 34 Leistungsflussdichte, 89 Leiterschleife, 214 Leitfähigkeit, 34, 131 Leitungsstromdichte, 42 Leitungswellenwiderstand, 273, 299 Lenz'sche Regel, 215, 221 Lichtgeschwindigkeit, 62, 71 Lineare Antennen, 283 Lineare Polarisation, 75 Linearität, 47 Linienleiter, 150 Loaded Q, 251 Logarithmische Darstellung, 278 Lokale homogene ebene Welle, 84 Lorentz-Kraft, 37 Lorenz-Eichung Allgemeine Zeitabhängigkeit, 92 - Harmonische Zeitabhängigkeit, 93

Magnet-Resonanz-Tomographie, 250, 262 Magnetische Energiedichte, 36 Magnetische Feldstärke, 36 Magnetische Flussdichte, 36 Magnetische Induktion, 36, 214 Magnetische Wand, 135, 137 Magnetischer Fluss, 36, 214 Magnetisches Vektorpotential, 55, 90 Magnetostatik, 55 Massefläche, 106, 135, 274 Massendichte, 94, 131, 293 Matching, 267 Materialgleichungen, 47 Mathematische Grundlagen, 307 Matrix, 114 Maxwell'sche Gleichungen, 42, 99 - Differentialform, 42 - Integralform, 45 Methode der Finiten Differenzen im Zeitbereich, 99, 147

Methode der Finiten Elemente, 110 Mikrostreifenleitung, 135, 273, 299 Milli-Inch (mil), 124 Mittenfrequenz, 108 Modellbildung, 152 MoM, 115, 145 MoM-2,5D, 120, 146 Momentenmethode, 115, 145, 202 Monitoring des Simulationslaufs, 126 Monopolantenne, 279, 285

Näherungslösung, 63 Nabla-Operator, 38, 313 Nahfeld, 17, 279, 280 Nahwirkungsprinzip, 24 Netzwerkanalysator, 260 Netzwerkgrößen, 106 Netzwerktheorie, 15 Numerische Dispersion, 105 Numerische Verfahren, 97

Oberflächenladungsdichte, 49 Oberflächenladungsverteilung, 29 Oberflächenstromdichte, 49 Offene Leiterschleife, 215 Offenes Lösungsgebiet, 106 Ohm'scher Widerstand, 35, 194, 228 Ohm'sches Gesetz, 34 Optimierung, 127 Overmodeling, 131

Paralleldrahtleitung, 155 Parallelschwingkreis, 257 Parametervariation, 127 Parasitäre Kopplung, 272, 277 Pascal'sches Dreieck, 303 Patchantenne, 297 Inset-Speisung, 299 PEC, 35 Periodendauer, 71 Permeabilitätskonstante, 36 Permeabilitätszahl, 36, 131 Phased-Array Antenna, 303 Phasenfläche, 74 Phasengesteuerte Antenne, 303 Phasenkonstante, 87 Phasor, 44, 87, 92

Pick-Up Coil, 260 Planare Schaltungen, 118 Planare Spule, 142 Plattenkondensator, 24, 190 PML, 106 Poisson-Gleichung, 53 Polarisation, 30 - Elliptische, 75 - Lineare, 74 - Zirkulare, 75 Polarisationsrichtung, 70, 74, 239 Post-Prozessor, 124, 126 Potential, 26, 90 Poynting-Vektor, 73, 84, 89, 223 Prä-Prozessor, 124 Präzession, 250 Produktregel, 307 Proximity-Effekt, 234 Punktladung, 23, 54 Quantelung, 23 Quasistatische Felder, 51, 63 Ouelle, 24 Quellendichte, 38, 176 Ouellenfeld, 25, 39 Ouellpunktvektor, 57, 161 **Ouotientenregel**, 307 Radiation pattern, 281 Randbedingungen, 106, 135 Raumladungsdichte, 23 Reaktive Nahfelder, 136 Rechtssystem, 313 Referenzwert, 292 Reflexion, 240 Reflexionsfaktor, 267, 294 - Antenne, 282 - Ebene Welle, 77 - Schräger Einfall, 80 Reflexionsgesetz, 79 Rekursive Berechnung, 104 Relative Dielektrizitätszahl, 31, 131 - Komplexwertige, 44 Relative Permeabilitätszahl, 36, 131 Resonanz, 134, 271 Ressourcenbedarf, 139 Reziprozität, 280

Richtcharakteristik, 281 Richtfaktor, 281 Richtfunktion, 281 Ringspule, 161, 252 Rotation, 38, 313 S-Parameter, 274 SAM-Phantom, 291 SAR, 267, 292 SAT-Format, 130 Schaltungssimulation, 15, 289 Schnell veränderliche Felder, 52 Schräger Einfall, 79 Sendeantenne, 279 Senke, 24 Senkrechter Einfall, 76 Serienresonanz, 200 Signal-Rausch-Verhältnis, 251 Silber, 35 Simulationsverfahren, 97 Skalarfeld, 26 Skalarprodukt, 27, 309 Skineffekt, 52, 63, 66, 228, 253 Skintiefe, 65 Snellius'sches Brechungsgesetz, 80 SNR, 251 Solver, 124 Spannung, 25, 107, 192 - Induzierte, 214 Spezifische Absorptionsrate, 267, 292 Spezifische Wärmekapazität, 94 Spezifischer Widerstand, 194 Spule, 37 Stabilität, 105 Staircase-Effekt, 138, 226 Staircasing, 232 Statische Felder, 52 Stehende Welle, 223 STEP-Format, 130 Stetigkeitsbedingungen, 48 STL-Format, 130 Strömungsfeld, 51 Strahlungsdiagramm, 281 Strahlungsleistungsdichte, 280 Streifenleitung, 133 Streufeld, 27 Streuparameter, 204, 260, 274

Streuung, 245 Strom, 107 Stromdichte, 33, 42, 220 Stromstärke, 33 Stromteilerregel, 200 Stromverdrängung, 52, 66 Substrat, 118, 273, 298 Summenregel, 307 Superpositionsprinzip, 23, 156 Symmetriefläche, 135

TEM-Welle, 74, 239 Temperaturerhöhung, 222 Temperaturfelder, 94 Tetraeder, 110, 138 Thermische Leitfähigkeit, 94 Tor, 106, 132 Torbedingung, 132 Totalreflexion, 81 Trafoblech, 223 Transmissionsfaktor, 261 – Ebene Welle, 77 – Schräger Einfall, 80 Transmissionswinkel, 240 Tuning, 267 Tutorial, 148

Unloaded Q, 251

Vakuum, 31 Vakuumlichtgeschwindigkeit, 72 Variationsrechnung, 110 Vektor Netzwerkanalysator, 260 Vektoralgebra, 309 Vektoranalysis, 311 Vektoranalytische Operatoren, 38 Vektorfeld, 24, 34 Vektorpotential, 55, 90 Verlustbehaftete Medien, 77 Verlustfaktor, 31, 45 Verlustleistung, 34, 89, 222 Verlustwinkel, 45, 131 Verschiebungsstromdichte, 43 Verteilte Quelle, 106 Vertikale Polarisation, 75 VNA, 260

Wärme, 89, 94, 222 Wärmeleitfähigkeit, 94 Wärmeleitungsgleichung, 94 Wärmestrahlung, 95 Wärmeübergangskoeffizient, 95 Wahre Stromdichte, 43 Wechselstromrechnung, 44 Wellenausbreitung, 52, 89, 228 Wellenausbreitungseffekte, 240 Wellengleichung, 70, 86 Wellenlänge, 71 Wellenleitertore, 133 Wellenzahl, 70 Wellenzahlvektor, 71 Widerstand, 34, 194 - Gleichstrom, 35, 194 - Stromverdrängung, 68 Wirbeldichte, 39, 176 Wirbelfeld, 35, 39 - Elektrisches, 214 Wirbelstrom, 220, 267 Wirkleistungstransport, 73 Workflow, 124

Yee-Gitter, 101

Zeitbereich, 98 Zeitinvarianz, 48 Zeitschritt, 102 Zeitsignale, 107 Zentraler Differenzenquotient, 101 Zirkular polarisiertes Feld, 266 Zirkulare Polarisation, 75, 263 Zweidrahtleitung, 155 Zweitorparameter, 106 Zylinder, 220 Zylinderkondensator, 205 Zylinderkondensator, 205 Zylinderkoordinatensystem, 314 Zylinderspule, 183 Zylinderwelle, 240 Zylindrischer Leiter, 228