HANSER

Leseprobe

zu

Baustatik 3

von Raimond Dallmann

Print-ISBN: 978-3-446-47714-8 E-Book-ISBN: 978-3-446-47749-0

Weitere Informationen und Bestellungen unter

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446477148

sowie im Buchhandel

© Carl Hanser Verlag, München

Vorwort

Der dritte Band dieser Lehrbuchreihe vermittelt die grundlegenden Kenntnisse der Theorie II. Ordnung und von computerorientierten Verfahren der Baustatik. Ein großer Teil des Inhalts entspricht den von mir an der Hochschule Wismar gehaltenen Lehrveranstaltungen.

Das Buch richtet sich an Studenten eines Masterstudiengangs Bauingenieurwesen. Vorausgesetzt werden Kenntnisse der Berechnung statisch bestimmter und unbestimmter Tragwerke, die in Band 1 und 2 behandelt wurden. Insbesondere sollte das Drehwinkelverfahren für die Berechnung von Stabtragwerken bekannt sein. Weiterhin sind Grundkenntnisse der höheren Mathematik notwendig.

Der qualifizierte Einsatz des Computers bei der Berechnung von Baukonstruktionen erfordert das Verständnis der den Berechnungsverfahren zugrunde liegenden Methoden. Es ist ein Ziel dieses Buches, das Verständnis der Theorie II. Ordnung zu vermitteln und einen ersten Zugang zu den abstrakteren Verfahren der Baustatik zu ermöglichen.

Es werden in Kapitel 1 zunächst die Grundlagen der Berechnung nach Theorie II. Ordnung dargestellt. Nach der Herleitung der Grundgleichungen erfolgt für einfache Systeme eine Berechnung durch Lösung der Differenzialgleichung, die einen Einblick in das Wesen der Lösung ermöglicht. Am Beispiel einfacher statisch bestimmter Tragwerke wird die Iteration über die Verformungen dargestellt, da diese Methode sehr anschaulich ist. Das Drehwinkelverfahren als klassische Methode der Baustatik wird auf die Anwendung der Theorie II. Ordnung erweitert. Abschließend erfolgt die Erweiterung der Differenzialgleichung des Balkens zur Berücksichtigung einer elastischen Bettung.

Das Allgemeine Weggrößenverfahren in matrizieller Darstellung wird in Kapitel 2 behandelt, wobei auf einen möglichst anschaulichen Zugang Wert gelegt wird. Das Verfahren wird auf Beispiele nach Theorie I. und II. Ordnung angewandt.

Kapitel 3 ist den Näherungsverfahren der Baustatik gewidmet. Auf Grundlage des Prinzips der virtuellen Arbeiten wird das grundlegende Konzept der Finite-Element-Methode für Probleme der Balkenbiegung in einer Weggrößen- und einer gemischten Formulierung dargestellt. Anhand einfacher Beispiele wird gezeigt, welchen Einfluss unterschiedliche Näherungsansätze auf die erzielten Ergebnisse haben.

Das 4. Kapitel behandelt das Reduktionsverfahren der Übertragungsmatrizen, das eine wertvolle Ergänzung zum Weggrößenverfahren darstellt.

In jedem Kapitel wird die Anwendung der theoretischen Grundlagen anhand zahlreicher vollständig durchgerechneter Beispiele erläutert.

Auch in diesem Buch sind Übungsaufgaben enthalten, um das eigenständige Üben des Lehrstoffes zu ermöglichen. Die Lösungen sind am Ende des Buches angegeben. Die vollständigen Lösungswege sind im Internet unter https://plus.hanser-fachbuch.de/ zu finden.

Ich hoffe, dass dieses Buch den Lesern Verständnis für die dargestellten Inhalte vermitteln kann und zu einer weitergehenden Auseinandersetzung mit dem Lehrstoff motiviert. Verbesserungsvorschläge zum Inhalt des Buches sind jederzeit willkommen.

Frau Christine Fritzsch und Frau Franziska Kaufmann vom Carl Hanser Verlag danke ich sehr herzlich für die sehr freundliche und angenehme Zusammenarbeit.

Mein ganz besonderer Dank gilt Frau Bianca Hennings für die vielen wichtigen Hinweise und Anregungen bei der Kontrolle des Manuskripts.

Während in der zweiten Auflage dieses Buches bekannt gewordene Fehler korrigiert wurden, ist die nunmehr vorliegende dritte Auflage unverändert. Frau Christina Kubiak und Herrn Frank Katzenmayer vom Carl Hanser Verlag danke ich für die gute Zusammenarbeit.

Inhaltsverzeichnis

	Berechnung von Stabtragwerken nach Theorie II. Ordnung	9
1.1	Einführung	9
1.2	Differenzialgleichung der Theorie II. Ordnung	10
1.3	Spannungs- und Stabilitätsproblem	14
1.4	Geometrische Imperfektionen	22
1.5	Iterative Annäherung der Biegelinie	26
1.6	Berechnung nach dem Drehwinkelverfahren	30
1.7	Balken auf elastischer Bettung	53
2	Allgemeines Weggrößenverfahren	59
2.1	Einführung	59
2.2	Matrizendarstellung	60
2.2.1	Steifigkeitsmatrix des Stabes	60
2.2.2	Aufbau des Gesamtgleichungssystems	65
2.2.3	Starre Rand- und Zwischenbedingungen	66
2.2.4	Elastische Lagerungen	67
2.2.5	Schnittgrößenermittlung	68
2.2.6	Struktur der Systemmatrix	68
2.2.7	Berücksichtigung von Theorie II. Ordnung und Bettung	69
2.2.7.1	Exakte Steifigkeitsmatrix nach Theorie II. Ordnung	69
2.2.7.2	Steifigkeitsmatrix nach Theorie II. Ordnung und Bettung aus Näherungsansatz	70
2.2.8	Berücksichtigung von Gelenken	70
2.3	Beispiele nach Theorie I. Ordnung	74
2.4	Beispiele nach Theorie II. Ordnung	82
3	Näherungsverfahren der Baustatik	88
3.1	Prinzip der virtuellen Verschiebungen	88
3.1.1	Arbeitsgleichung	88
3.1.2	Ansätze über das Gesamtgebiet	90
3.1.3	Ansätze über Teilbereiche	98
3.1.3.1	Ansatzfunktionen	98
3.1.3.2	Aufbau des Gleichungssystems	100
3.1.3.3	Ermittlung der Schnittgrößen	101
3.1.3.4	Schematischer Aufbau des Gleichungssystems	110

8 Inhaltsverzeichnis

3.2	Gemischtes Verfahren	112
3.2.1	Herleitung der Arbeitsgleichungen	112
3.2.2	Ansätze über das Gesamtgebiet	114
3.2.3	Ansätze über Teilbereiche des Systems	118
3.2.3.1	Lineare Ansätze	118
3.2.3.2	Quadratische Ansätze	124
3.3	Numerische Integration	135
4	Das Reduktionsverfahren der Übertragungsmatrizen	143
4.1	Einführung	143
4.2	Übertragungsmatrix des Balkens nach Theorie I. Ordnung	143
4.2.1	Mechanische Interpretation der Elemente der Übertragungsmatrix	144
4.2.2	Erweiterung der Übertragungsmatrix	145
4.3	Randbedingungen	146
4.4	Übertragungsverfahren	148
4.4.1	Elastische Zwischenbedingungen	
4.4.2	Starre Zwischenbedingungen	157
4.5	Theorie II. Ordnung	163
4.6	Ermittlung der Übertragungsmatrix aus dem Differenzialgleichungssystem 1. Ordnung	166
4.7	Ermittlung der Steifigkeitsmatrix aus der Übertragungsmatrix	169
Lösunge	en	172
Anhang:	: TafeIn	180
Literatur	rverzeichnis	184
Sachwo	ortverzeichnis	185

1.1 Einführung 9

1 Berechnung von Stabtragwerken nach Theorie II. Ordnung

1.1 Einführung

Jedes Tragwerk verformt sich infolge seiner Belastung. Wir sind in Baustatik 1 und Baustatik 2 davon ausgegangen, dass die Verformungen bei der Formulierung der Gleichgewichtsbedingungen vernachlässigt werden können. Man nennt dies eine Berechnung nach *Theorie I. Ordnung.*

Bei vielen Problemstellungen der Baustatik ist diese Annahme jedoch nicht gerechtfertigt. Selbst wenn die Verformungen des Tragwerks im Verhältnis zu seinen Abmessungen sehr klein sind, muss bei großen Druckoder Zugkräften der Einfluss der Verformungen auf das Gleichgewicht berücksichtigt werden.

Diese Berücksichtigung der Verformungen bei der Formulierung der Gleichgewichtsbedingungen wird als *Theorie II. Ordnung* bezeichnet. Zusammengefasst ergibt sich die folgende Unterscheidung:

- Theorie I. Ordnung: Formulierung der Gleichgewichtsbedingungen am unverformten System.
- Theorie II. Ordnung: Formulierung der Gleichgewichtsbedingungen am verformten System.

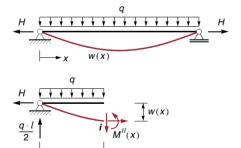


Bild 1.1 Balken mit Längskraft unter Querbelastung

Der Balken in *Bild 1.1* wird durch eine konstante Streckenlast sowie eine Horizontalkraft beansprucht. Für die Berechnung des Biegemomentes an einer beliebigen Stelle *x* bilden wir die Momentensumme bezüglich des

Punktes *i.* Aufgrund der Durchbiegung des Balkens hat die horizontale Auflagerkraft den Abstand w(x) zur Balkenachse und geht mit in die Momentensumme ein. Damit folgt:

$$M^{II}(x) = \frac{q \cdot l}{2} \cdot x - q \cdot \frac{x^2}{2} - H \cdot w(x)$$

$$M^{II}(x) = M_q^I - H \cdot w(x)$$
(1.1)

Der Anteil am Biegemoment ohne den Einfluss der Horizontalkraft ist in vorheriger Gleichung mit \boldsymbol{M}_q^I bezeichnet.

Die Theorie II. Ordnung berücksichtigt zwar die Verformungen bei der Formulierung der Gleichgewichtsbedingungen, ist aber eine geometrisch lineare Theorie, da wir weiterhin die Linearisierung der kinematischen (geometrischen) Beziehung beibehalten, also von kleinen Verformungen ausgehen.

Die exakte Beziehung zwischen Krümmung des Balkens und der 2. Ableitung der Biegelinie lautet:

$$\kappa = \frac{1}{\rho} = \frac{-w''}{(1+w'^2)^{3/2}}$$

Für kleine Verformungen ist $w'^2 \ll 1$ und kann gegenüber eins vernachlässigt werden. Es gilt also weiterhin die lineare Beziehung $\kappa = -w''$.

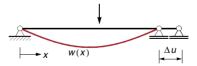


Bild 1.2 Berücksichtigung der horizontalen Auflagerverschiebung bei Theorie III. Ordnung

Bild 1.2 zeigt einen unter der Wirkung einer Kraft verformten Balken. Da die Balkenachse nicht gedehnt wird, also nicht länger wird, muss sich das rechte Auflager nach links verschieben. Dieser Effekt lässt sich nur durch eine geometrisch nichtlineare Theorie erfassen. Man spricht von einer Theorie III. Ordnung. Für kleine Verfor-

mungen ist die Verschiebung Δu gegenüber der Durchbiegung w vernachlässigbar klein.

Entsprechendes gilt für das Beispiel in *Bild 1.3.* Der Balken ist an beiden Enden horizontal gehalten, sodass infolge der Balkendurchbiegung eigentlich horizontale Auflagerkräfte entstehen, die nur durch Theorie III. Ordnung erfasst werden können.

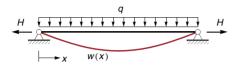


Bild 1.3 Berücksichtigung der Membranwirkung bei Theorie III.
Ordnung

1.2 Differenzialgleichung der Theorie II. Ordnung

Wir gehen zunächst von Gl. (1.1) aus und bilden die zweifache Ableitung nach x. Unter der Voraussetzung, dass H konstant ist, folgt:

$$M = M^{I}(q) - H \cdot w(x)$$

$$M'' = (M^{I})'' - H \cdot w''(x) \tag{1.2}$$

Auf den hochgestellten Index II wird verzichtet, unter M ist also das Moment nach Theorie II. Ordnung zu verstehen. Für den Zusammenhang zwischen Moment und Biegelinie gilt unverändert die Beziehung:

$$EIw'' = -M (1.3)$$

da der Einfluss der Theorie II. Ordnung nur in die Gleichgewichtsbedingungen eingeht. Durch zweimaliges Ableiten von Gl. (1.3) und Einsetzen von Gl. (1.2) folgt:

$$(EIw")" = -M" = -(M^I)" + H \cdot w"(x)$$

Mit der Beziehung

$$(M^I)^{"} = -a$$

folgt die Differenzialgleichung 4. Ordnung:

$$(EIw'')'' = q + H \cdot w'' \text{ bzw. } (EIw'')'' - H \cdot w'' = q$$

Herleitung am differenziellen Element

Zur Herleitung der Differenzialgleichungen am differenziellen Element betrachten wir das infinitesimale Balken-

element der Länge dx in *Bild 1.4.* Die Zerlegung der resultierenden Schnittkraft erfolgt dabei bezüglich der unverformten Balkenachse.

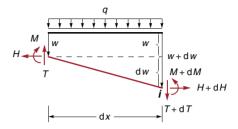


Bild 1.4 Differenzielles Element mit Verformung

$$\sum V = 0: -T(x) + T(x) + dT + q(x)dx = 0$$
$$\Rightarrow \frac{dT}{dx} = T' = -q(x)$$

$$\sum M_{(i)} = 0: -M(x) + M(x) + dM - T(x)dx$$
$$+ H(x)dw - q(x)dx \frac{dx}{2} = 0$$

Unter Vernachlässigung der Produkte differenzieller Größen als von "höherer Ordnung klein" folgt:

$$dM - T(x)dx + H(x)dw = 0$$

$$\frac{dM}{dx} - T(x) + H(x)\frac{dw}{dx} = 0$$

$$M' = T - Hw' \tag{1.4}$$

$$M'' = T' - (Hw')' (1.5)$$

mit EIw'' = -M bzw. (EIw'')'' = -M'' folgt:

$$(EIw'')'' = -T' + (Hw')'$$

mit T' = -q ergibt sich die Differenzialgleichung 4. Ordnung:

$$(EIw'')'' - (Hw')' = q$$
 (1.6)

Aus Gl. (1.4) folgt:

$$T = M' + Hw' = -EIw''' + Hw'$$
 (1.7)

Der Zusammenhang zwischen den Schnittkräften N und V bezüglich der verformten Achse und den Schnittkräften H und T bezüglich der unverformten Achse ist in $Bild\ 1.5$ abzulesen.

$$V = T \cdot \cos \varphi + H \cdot \sin \varphi$$

$$N = -T \cdot \sin \varphi + H \cdot \cos \varphi$$

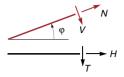


Bild 1.5 Zerlegung der Schnittkräfte

Für kleine Verformungen gilt: $cos \phi \approx 1$, $sin \phi \approx \phi$. Damit ergibt sich in linearisierter Form:

$$V = T + H \cdot \varphi$$

$$N = -T \cdot \varphi + H$$

Mit der Beziehung $\varphi = -w'$ folgt:

$$V = T - H \cdot w'$$

$$N = T \cdot w' + H$$
(1.8)

Da wir kleine Verformungen voraussetzen, ist die Verdrehung $w'=-\phi$ sehr klein und das Produkt $T\cdot w'$ ist vernachlässigbar, wenn die Horizontalkraft H viel größer ist als die Transversalkraft. Dann gilt näherungsweise:

$$N \approx H$$
 (1.9)

Aus Gl. (1.4) folgt:

$$M' = T - Hw' = V = -FIw'''$$

Die Differenzialgleichungen des Balkens nach Theorie II. Ordnung sind in *Tabelle 1.1* zusammengestellt.

Tabelle 1.1 Differenzialgleichungen des Balkens nach Theorie II. Ordnung

Differenzial- gleichung	Gleichgewicht	Stoffgesetz	Kinematik	
1. Ordnung	T' = -q $M' = T - Hw'$	$\varphi' = \frac{M}{EI} + \alpha_T \frac{\Delta T}{h}$	$w' = \gamma - \varphi$	
2. Ordnung	M" = -q - (Hw')'	$\kappa = \frac{M}{EI} + \alpha_T \frac{\Delta T}{h}$	$\kappa = -w$ "	
		$w'' = -\frac{M}{EI} - \alpha_T \frac{\Delta T}{h}$		
4. Ordnung	(EIw")" - (Hw')' = q			

Die Änderung gegenüber Theorie I. Ordnung betrifft nur die Spalte des Gleichgewichts.

Lösung der Differenzialgleichung

Wir gehen davon aus, dass die Biegesteifigkeit *EI* und die Horizontalkraft *H* bereichsweise konstant sind. Damit folgt die Differenzialgleichung:

$$EIw'''' - Hw'' = q$$

Dies ist eine lineare Differenzialgleichung mit konstanten Koeffizienten. Allgemein ergibt sich die Lösung aus der Summe von homogener Lösung w_h und Partikularlösung w_p :

$$W = W_h + W_p$$

· Homogene Lösung

Die homogene Differenzialgleichung lautet:

$$EIw'''' - Hw'' = 0 (1.10)$$

Mit dem Ansatz:

$$W = c \cdot e^{\lambda x}$$

$$W'' = \lambda^2 \cdot c \cdot e^{\lambda x}$$

$$W'''' = \lambda^4 \cdot c \cdot e^{\lambda x}$$

folgt durch Einsetzen in Gl. (1.10):

$$EI \cdot \lambda^4 \cdot c \cdot e^{\lambda x} - H \cdot \lambda^2 \cdot c \cdot e^{\lambda x} = 0$$

$$(EI \cdot \lambda^4 - H \cdot \lambda^2) \cdot c \cdot e^{\lambda x} = 0$$

Da $c \cdot e^{\lambda x}$ ungleich null ist, folgt nach Division der Gleichung durch EI die charakteristische Gleichung:

$$\lambda^4 - \mu^2 \lambda^2 = 0$$
 mit $\mu^2 = \frac{H}{EI}$

Die Nullstellen der charakteristischen Gleichung sind:

$$\lambda_{1,2} = 0$$

$$\lambda_{3,4} = \pm \sqrt{\mu^2}$$

Es sind nun zwei Fälle zu unterscheiden:

1.
$$H > 0$$
 (Zug)

$$\lambda_{1,2} = 0$$
, $\lambda_{3,4} = \pm \mu$ mit $\mu = \sqrt{\frac{H}{EI}}$

$$W_b = C_1 + C_2 X + \tilde{C}_3 e^{\mu X} + \tilde{C}_4 e^{-\mu X}$$

Die Terme c_1 und c_2x folgen aus der doppelten Nullstelle $\lambda_{1,2}=0$.

Mit den Beziehungen:

$$e^{\mu x} = \cosh \mu x + \sinh \mu x$$

$$e^{-\mu x} = \cosh \mu x - \sinh \mu x$$

ergibt sich:

$$w_h = c_1 + c_2 x + \tilde{c}_3(\cosh \mu x + \sinh \mu x)$$
$$+ \tilde{c}_4(\cosh \mu x - \sinh \mu x)$$

$$W_h = c_1 + c_2 x + (\tilde{c}_3 + \tilde{c}_4) \cosh \mu x + (\tilde{c}_3 - \tilde{c}_4) \sinh \mu x$$

Die Integrationskonstanten werden umbenannt:

$$C_2 = \tilde{C}_3 + \tilde{C}_4$$

$$c_4 = \tilde{c}_3 - \tilde{c}_4$$

Damit folgt:

$$W_h = c_1 + c_2 x + c_3 \cosh \mu x + c_4 \sinh \mu x$$

2. H < 0 (Druck)

$$\lambda_{1,2} = 0$$
, $\lambda_{3,4} = \pm i\mu$ mit $\mu = \sqrt{\frac{|H|}{EI}}$

$$W_h = C_1 + C_2 X + \tilde{C}_3 e^{i\mu X} + \tilde{C}_4 e^{-i\mu X}$$

Nach Euler/Moivre gilt:

$$e^{i\mu x} = \cos \mu x + i \sin \mu x$$

$$e^{-i\mu x} = \cos u x - i \sin u x$$

Durch Einsetzen und Umbenennen der Integrationskonstanten folgt:

$$W_h = c_1 + c_2 x + c_3 \cos \mu x + c_4 \sin \mu x \tag{1.11}$$

Partikularlösung

Für eine konstante Streckenlast folgt die Partikularlösung aus dem Ansatz:

$$w_p = c_5 x^2$$

Einsetzen in die Differenzialgleichung (1.6) ergibt:

$$-H \cdot c_5 \cdot 2 = q \Rightarrow c_5 = -\frac{q}{2H}$$

Damit lautet die Partikularlösung:

$$W_p = -\frac{q}{2H}X^2$$

Für weitere Belastungen kann die Partikularlösung durch Variation der Konstanten ermittelt werden.

Für den Fall einer Druckkraft (H < 0) ergibt sich die Gesamtlösung $w = w_h + w_p$ zu:

$$w = c_1 + c_2 x + c_3 \cos \mu x + c_4 \sin \mu x - \frac{q}{2H} x^2$$
 (1.12)

Für eine Zugkraft gilt entsprechend:

$$w = c_1 + c_2 x + c_3 \cosh \mu x + c_4 \sinh \mu x - \frac{q}{2H} x^2$$
 (1.13)

Die Integrationskonstanten werden durch Anpassen der Gesamtlösung an die Randbedingungen der jeweiligen Problemstellung ermittelt, wie in den nachfolgenden Beispielen gezeigt wird.

Beispiel 1.1

Für den in *Bild 1.6* dargestellten Balken sind die Zustandsgrößen nach Theorie II. Ordnung durch Lösung der Differenzialgleichung zu ermitteln.

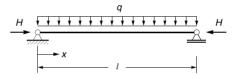


Bild 1.6 System mit Randbedingungen

Aufgrund der beidseitig gelenkigen Lagerung des Balkens sind am Anfangs- und Endpunkt des Balkens die Durchbiegung und das Moment gleich null. Die vier Integrationskonstanten in Gl. (1.12) sind so zu bestimmen, dass diese Randbedingungen erfüllt sind. Die vier Randbedingungen für das vorliegende Problem lauten:

- 1. w(0) = 0
- **2.** M(0) = 0
- 3. w(l) = 0
- **4.** M(l) = 0

Es ergeben sich vier Gleichungen für vier Unbekannte. Die Randbedingungen für das Moment werden mit der Beziehung EIw'' = -M durch die 2. Ableitung der Biegelinie ausgedrückt. Sie ergibt sich zu:

$$w' = c_2 - c_3 \mu \sin \mu x + c_4 \mu \cos \mu x - \frac{q}{H} x$$

$$w'' = -c_3 \mu^2 \cos \mu x - c_4 \mu^2 \sin \mu x - \frac{q}{\mu}$$

Damit lauten die vier Randbedingungen:

$$\begin{split} &w(0) = c_1 + c_3 = 0 \\ &w''(0) = -c_3 \mu^2 - \frac{q}{H} = 0 \\ &w(l) = c_1 + c_2 l + c_3 \cos \mu l + c_4 \sin \mu l - \frac{q}{2H} l^2 = 0 \\ &w''(l) = -c_3 \mu^2 \cos \mu l - c_4 \mu^2 \sin \mu l - \frac{q}{H} = 0 \end{split}$$

In Matrizendarstellung lautet das Gleichungssystem zur Bestimmung der Integrationskonstanten:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & | & c_1 \\ 0 & 0 & -\mu^2 & 0 & | & c_2 \\ 1 & l & \cos\mu l & \sin\mu l & | & c_3 \\ 0 & 0 & -\mu^2 \cos\mu l & -\mu^2 \sin\mu l & | & c_4 \end{bmatrix} = \frac{q}{2H} \begin{bmatrix} 0 \\ 2 \\ l^2 \\ 2 \end{bmatrix}$$
(1.14)

Mit der Lösung:

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \frac{q}{\mu^2 H} \begin{bmatrix} 1 \\ \frac{l}{2}\mu^2 \\ -1 \\ \frac{\cos \mu l - 1}{\sin \mu l} \end{bmatrix}$$

Mit der Beziehung:

$$\frac{\cos\mu l - 1}{\sin\mu l} = -\tan\mu \frac{l}{2}$$

folgt:

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \frac{q}{\mu^2 H} \begin{bmatrix} 1 \\ \frac{l}{2}\mu^2 \\ -1 \\ -\tan \mu \frac{l}{2} \end{bmatrix}$$

Damit ergibt sich für die Biegelinie und ihre Ableitungen:

$$\begin{split} w(x) &= \frac{q}{\mu^2 H} \bigg(1 + \frac{l}{2} \mu^2 x - \cos \mu x - \tan \mu \frac{l}{2} \sin \mu x - \frac{\mu^2}{2} x^2 \bigg) \\ w'(x) &= \frac{q}{\mu^2 H} \bigg(\frac{l}{2} \mu^2 + \mu \sin \mu x - \mu \tan \mu \frac{l}{2} \cos \mu x - \mu^2 x \bigg) \\ w''(x) &= \frac{q}{H} \bigg(\cos \mu x + \tan \mu \frac{l}{2} \sin \mu x - 1 \bigg) \end{split}$$

$$W'''(x) = \frac{q}{H} \left(-\mu \sin\mu x + \mu \tan\mu \frac{l}{2} \cos\mu x \right)$$

$$M(x) = -EIw'' = -EI\frac{q}{H} \left(\cos\mu x + \tan\mu \frac{l}{2} \sin\mu x - 1 \right)$$

$$M_{\text{max}} = M \left(\frac{l}{2} \right) = -EI\frac{q}{H} \left(\cos\mu \frac{l}{2} + \tan\mu \frac{l}{2} \sin\mu \frac{l}{2} - 1 \right)$$

$$= -EI\frac{q}{H} \left(\frac{\cos^2\mu \frac{l}{2} + \sin^2\mu \frac{l}{2}}{\cos\mu \frac{l}{2}} - 1 \right)$$

$$M_{\text{max}} = EI\frac{q}{H} \left(1 - \frac{1}{\cos\mu \frac{l}{2}} \right)$$

$$(1.15)$$

Aus Gl. (1.15) ist zu erkennen, dass der Betrag des maximalen Momentes unendlich groß wird, wenn der Nenner des Bruchs in der Klammer gleich null ist. Damit folgt:

$$\begin{split} \cos\mu\frac{l}{2} &= 0 \Rightarrow \mu\frac{l}{2} = \frac{\pi}{2} \\ \Rightarrow \mu &= \sqrt{\frac{H}{EI}} = \frac{\pi}{l} \Rightarrow H = \frac{\pi^2 EI}{l^2} \end{split}$$

Dies ist die aus der Festigkeitslehre bekannte *Eulersche Knicklast* für den beidseitig gelenkig gelagerten Balken. Im Falle einer Zugkraft erhält man analog:

$$M_{\text{max}} = M\left(\frac{l}{2}\right) = EI\frac{q}{H}\left(1 - \frac{1}{\cosh\mu\frac{l}{2}}\right)$$

In diesem Fall ist M_{max} immer endlich, da gilt:

$$\frac{1}{\cosh \mu \frac{l}{2}} \le 1$$

Wie aus GI. (1.15) deutlich wird, ist bei einer konstanten Horizontalkraft das Moment proportional zur Streckenlast q, es besteht also ein linearer Zusammenhang.

Bei einer *gleichzeitigen* Steigerung von q und H ergibt sich jedoch ein nichtlinearer Zusammenhang, da H durch den Parameter μ als Argument in die Kosinusfunktion eingeht.

1.3 Spannungs- und Stabilitätsproblem

Ist bei einem Tragwerk eine Einwirkung vorhanden, die schon bei geringer Intensität eine Verformung erzeugt, so wird diese Verformung durch den Einfluss einer vorhandenen Druckkraft vergrößert. Dieser Fall wird als *Spannungsproblem* bezeichnet. Fehlt eine solche Einwirkung, so liegt ein *Stabilitätsproblem* vor. Die beiden Fälle sind in *Bild 1.7* am Beispiel eines Einfeldbalkens dargestellt.

Links im Bild ist der Balken durch eine Einzelkraft quer zur Balkenachse beansprucht. Diese Einzelkraft erzeugt von Anfang an eine Durchbiegung, die infolge der Druckkraft H vergrößert wird. Es liegt ein Spannungsproblem vor.

Rechts im Bild ist zunächst eine reine Normalkraftbeanspruchung vorhanden, der Balken wird bei idealer Geometrie nicht gebogen. Wird nun die Druckkraft H gesteigert, so erfolgt ein plötzliches seitliches Ausweichen des Balkens, wenn die Kraft eine bestimmte Größe erreicht. Dieses Phänomen wird als Knicken bezeichnet, es liegt ein Stabilitätsproblem vor.

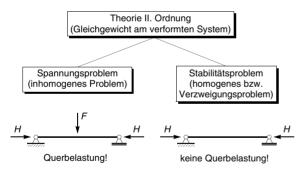


Bild 1.7 Spannungs- und Stabilitätsproblem

Mathematisch ist das Stabilitätsproblem dadurch charakterisiert, dass die Differenzialgleichung homogen ist.

Bild~1.8 zeigt den grundsätzlichen Verlauf des Last-Verformungsdiagramms für Druck- und Zugbeanspruchung. Dargestellt ist die Durchbiegung w der Kragarmspitze in Abhängigkeit des Faktors λ , mit dem sowohl die Horizontalkraft H, als auch die Vertikalkraft F gesteigert werden. Ist die Vertikalkraft F ungleich null, liegt ein

Spannungsproblem vor, und es ergeben sich die beiden gekrümmten Verläufe. Im Falle einer Druckraft nehmen die Verformungen überproportional zu, im Fall einer Zugkraft ist die Verformungszunahme unterproportional.

Im Fall des Stabilitätsproblems ist keine Vertikalkraft vorhanden, und es entsteht zunächst keine Verformung w. Bei einer Steigerung der Horizontalkraft bis zur Größe der Knicklast versagt der Kragarm schlagartig, und es ist kein Gleichgewichtszustand möglich. Wie in *Bild 1.8* eingetragen ist, wird dieser Punkt als *Verzweigungspunkt* bezeichnet, da eine Verzweigung von einem stabilen zu einem instabilen Gleichgewichtzustand erfolgt. Die Last-Verformungskurve für das Spannungsproblem bei einer Druckkraft nähert sich asymptotisch der Knicklast, während bei einer Zugkraft keine Grenzlast existiert. Beide Kurven haben im Ursprung die Steigung der Geraden nach Theorie I. Ordnung.

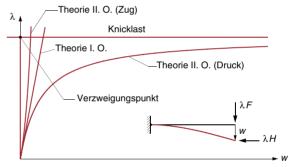


Bild 1.8 Last- Verformungsdiagramm für Theorie I. und II. Ordnung

Die mechanische Bedeutung der Steigung ist die einer Steifigkeit. Eine Steifigkeit ist die Kraftgröße, die sich infolge einer Verformung der Größe eins ergibt. Da der auf der Ordinate aufgetragene Wert γ die Größe der Kraft darstellt, hat demnach die Ableitung d γ/dw die Bedeutung einer Steifigkeit. Daraus folgt, dass eine Druckkraft das System weicher macht, eine Zugkraft hingegen versteifend wirkt.

Wie wir bereits in *Beispiel 1.1* gesehen haben, besteht bei einer *gleichzeitigen* Steigerung von Querlast und Horizontalkraft ein nichtlinearer Zusammenhang, sodass das Superpositionsprinzip nicht mehr gilt. Dies hat zur Folge, dass eine Berechnung nach Theorie II. Ordnung für jede Lastkombination durchzuführen ist!

In *Beispiel 1.1* hatten wir aus der Lösung für M_{max} in Gl. (1.15) gesehen, dass das Moment unendlich groß wird, wenn der Wert μ eine bestimmte Größe hat. Wir betrachten nun dieses Beispiel nochmals unter dem Aspekt des Stabilitätsproblems.

In diesem Fall ist keine Streckenlast vorhanden, die Differenzialgleichung ist also homogen. Das Gleichungssystem (1.14) zur Bestimmung der Integrationskonstanten lautet daher:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & -\mu^2 & 0 \\ 1 & l & \cos\mu l & \sin\mu l \\ 0 & 0 & -\mu^2 \cos\mu l & -\mu^2 \sin\mu l \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Da wir voraussetzen, dass die Druckkraft ungleich null ist, kann die zweite und vierte Zeile des homogenen Gleichungssystems durch $-\mu^2$ dividiert werden.

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & l & \cos\mu l & \sin\mu l \\ 0 & 0 & \cos\mu l & \sin\mu l \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(1.16)

$$Ac = 0$$

Dies ist ein lineares, homogenes Gleichungssystem. Nichttriviale Lösungen existieren nur dann, wenn die Determinante der Koeffizientenmatrix gleich null ist.

Aus der Bedingung det $\textbf{\textit{A}}=0$ erhält man eine Gleichung für den Parameter μ . Die Lösungen dieser Gleichung sind die Eigenwerte des Problems.

Die Determinante ergibt sich z.B. durch Entwicklung nach der zweiten Zeile:

$$\det \mathbf{A} = \begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & l & \cos\mu l & \sin\mu l \\ 0 & 0 & \cos\mu l & \sin\mu l \end{vmatrix} = -1 \cdot \begin{vmatrix} 1 & 0 & 0 \\ 1 & l & \sin\mu l \\ 0 & 0 & \sin\mu l \end{vmatrix}$$
$$= -1 \cdot \begin{vmatrix} l & \sin\mu l \\ 0 & \sin\mu l \end{vmatrix} = -l\sin\mu l$$

$$\sin \mu l = 0 \rightarrow \mu l = n\pi$$
 $n = 1, 2, ...$

Es gibt also unendlich viele Eigenwerte, von denen allerdings nur der kleinste Eigenwert (n = 1) von Interesse ist, da daraus die kleinste kritische Knicklast folgt. Für n = 1 ergibt sich:

$$\mu l = \pi$$

$$\sqrt{\frac{|H|}{EI}}l = \pi \rightarrow H_{krit} = \frac{\pi^2 EI}{l^2}$$

Wir setzen nun die Lösung $\mu = n\frac{\pi}{l}$ in das Gleichungssystem (1.16) ein und erhalten:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & l & \cos n \frac{\pi}{l} l \sin n \frac{\pi}{l} l \\ 0 & 0 & \cos n \frac{\pi}{l} l \sin n \frac{\pi}{l} l \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & l & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Da die vierte Spalte nur aus Nullen besteht, ist die Lösung unabhängig von der Unbekannten c_4 . Das Gleichungssystem ist für beliebige Werte c_4 erfüllt. Aus der zweiten bzw. vierten Zeile folgt sofort $c_3=0$. Damit verbleibt das folgende Gleichungssystem für die Unbekannten c_1 und c_2 :

$$\begin{bmatrix} 1 & 0 \\ 1 & l \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Da die Determinante der Koeffizientenmatrix ungleich null ist, ist auch $c_1 = c_2 = 0$. Damit folgt für die homogene Lösung Gl. (1.11):

$$w = c_4 \sin \frac{n\pi}{l} x$$

Diese Funktionen sind die Eigenformen oder mechanisch formuliert, die Knickfiguren des Systems. Die ersten vier dieser unendlich vielen Eigenformen sind in $Bild\ 1.9$ dargestellt. Da die Konstante c_4 beliebig ist, ist die Knickfigur nur qualitativ bestimmt.

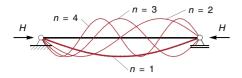


Bild 1.9 Eigenformen des beidseitig gelenkigen Balkens

Zur weiteren Verdeutlichung der Zusammenhänge betrachten wir nun den starren Stab in Bild 1.10, der im Punkt a drehelastisch gelagert ist. Dieser Stab hat einen Freiheitsgrad, nämlich den Drehwinkel ϕ . Die am rechten Rand angreifenden Kräfte enthalten den Faktor λ , mit dem beide Kräfte gleichzeitig gesteigert werden. Im verformten Zustand ergeben sich die angegebenen Abmessungen, wenn wir von beliebig großen Verformungen ausgehen.

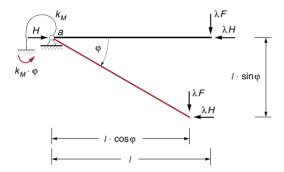


Bild 1.10 Drehelastisch gelagerter starrer Stab

Die Gleichgewichtsbedingung $\sum M_{(a)} = 0$ ergibt unter Berücksichtigung der Verformungen:

$$k_M \cdot \varphi - \lambda F \cdot l \cdot \cos \varphi - \lambda H \cdot l \cdot \sin \varphi = 0$$
 (1.17)

$$\lambda = \frac{k_M \cdot \varphi}{F \cdot l \cdot \cos \varphi + H \cdot l \cdot \sin \varphi}$$

Durch Einführen der Parameter:

$$\alpha = \frac{F}{H}$$
 und $\beta = \frac{k_M}{H \cdot l}$ folgt:

$$\lambda(\varphi) = \frac{\beta \cdot H \cdot l \cdot \varphi}{\alpha \cdot H \cdot l \cdot \cos \varphi + H \cdot l \cdot \sin \varphi}$$
$$= \frac{\beta \cdot \varphi}{\alpha \cdot \cos \varphi + \sin \varphi}$$
(1.18)

Werden kleine Verformungen vorausgesetzt, gilt:

 $\sin \varphi \approx \varphi$ und $\cos \varphi \approx 1$

und Gl. (1.17) vereinfacht sich zu:

$$k_{M} \cdot \varphi - \lambda F \cdot l - \lambda H \cdot l \cdot \varphi = 0 \tag{1.19}$$

Entsprechend folgt aus Gl. (1.18)

$$\lambda(\phi) = \frac{\beta \cdot \phi}{\alpha + \phi} \text{ bzw. } \phi(\lambda) = \frac{\lambda \alpha}{\beta - \lambda}$$
 (1.20)

Die Gleichungen (1.17) und (1.18) stellen Beziehungen nach Theorie III. Ordnung dar, da keine geometrische Linearisierung durchgeführt wurde. Die linearisierten Gleichungen (1.19) und (1.20) entsprechen der Theorie II. Ordnung.

Betrachten wir nun das Stabilitätsproblem. In diesem Fall ist die Kraft F bzw. α gleich null und aus Gl. (1.18) folgt:

$$\lambda = \frac{\beta \cdot \phi}{\sin \phi} \tag{1.21}$$

Aus Gl. (1.20) folgt für $\alpha = 0$:

$$\lambda(\varphi) = \frac{\beta \cdot \varphi}{\varphi} = \beta \tag{1.22}$$

Die Last-Verformungskurven für die vorherigen Beziehungen sind in *Bild 1.11* dargestellt. Die Drehfedersteifigkeit ist durch den Parameter $\beta=20$ festgelegt. Für das Spannungsproblem sind zwei Kurven mit $\alpha=0,1$ und $\alpha=0,2$ eingetragen.

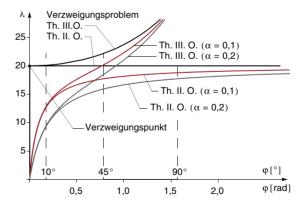


Bild 1.11 Theorie II. und III. Ordnung

Die gewählten Parameter entsprechen z. B. folgenden konkreten Zahlenwerten:

$$k_M = 10000 \text{ kNm}$$
 $H = 100 \text{ kN}$
 $l = 5 \text{ m}$ $F = 10 \text{ kN} (\alpha = 0,1)$
 $F = 20 \text{ kN} (\alpha = 0,2)$

Wie in *Bild 1.11* erkennbar ist, sind die Unterschiede zwischen Theorie II. und III. Ordnung für kleine Werte von ϕ gering. Für einen Winkel von 10° folgt nach Theorie III. Ordnung aus GI. (1.18) mit $\phi = \frac{\pi}{180} 10 = 0,1745$:

$$\lambda = \frac{\beta \cdot \phi}{\alpha \cdot \cos \phi + \sin \phi} = \frac{20 \cdot 0,1745}{0.1 \cdot \cos 0,1745 + \sin 0,1745} = 12,827$$

Nach Theorie II. Ordnung aus Gl. (1.20):

$$\lambda = \frac{\beta \cdot \varphi}{\alpha + \varphi} = \frac{20 \cdot 0,1745}{0.1 + 0.1745} = 12,715$$

Dies entspricht einer Differenz von

$$\frac{12,827 - 12,715}{12.827}100 = 0,876 \%$$

Obwohl bei einem Winkel von 10° die Auslenkung am rechten Stabende 0,87 m beträgt, beträgt der Unterschied zwischen Theorie II. und III. Ordnung weniger als ein Prozent.

Erst bei größeren Verformungen sind signifikante Unterschiede sichtbar. Während sich die Kurven nach Theorie II. Ordnung asymptotisch der horizontalen Grenzlinie der Knicklast nähern, kann die Belastung bei Berücksichtigung der Theorie III. Ordnung noch erheblich gesteigert werden.

Ein grundsätzlicher Unterschied zwischen beiden Theorien ist auch beim Stabilitätsproblem erkennbar. Zwar ist in beiden Fällen derselbe Verzweigungspunkt vorhanden, jedoch existiert nach Theorie III. Ordnung bei Überschreiten dieses Punktes eine stabile Gleichgewichtslage mit einem definierten Verformungszustand.

Weiterhin wird in *Bild 1.11* der Einfluss des Parameters α sichtbar, der das Verhältnis von Querlast zu Horizontalkraft angibt. Je größer die Querlast ist, desto größer ist die anfängliche Verformung.

Beispiel 1.2

Für den in *Bild 1.12* dargestellten Kragträger sind die Zustandsgrößen nach Theorie II. Ordnung durch Lösung der Differenzialgleichung zu ermitteln.

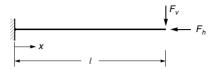


Bild 1.12 Kragträger mit Belastung

Da die angreifende Vertikalkraft am Ende des Balkens wirkt, ergibt sich die Lösung nur aus dem homogenen Anteil. Grundsätzlich gehen Einzelkräfte nur durch die Rand- oder Übergangsbedingungen in die Lösung ein. Die homogene Lösung Gl. (1.11) sowie die Ableitungen sind gegeben durch:

$$w = c_1 + c_2 x + c_3 \cos \mu x + c_4 \sin \mu x$$

$$w' = c_2 - c_3 \mu \sin \mu x + c_4 \mu \cos \mu x$$

$$w''' = -c_3 \mu^2 \cos \mu x - c_4 \mu^2 \sin \mu x$$

$$w'''' = c_2 \mu^3 \sin \mu x - c_4 \mu^3 \cos \mu x$$
(1.23)

Die Bestimmung der Integrationskonstanten erfolgt durch Anpassung der Lösung an die Randbedingungen. Die Randbedingungen zur Bestimmung der Integrationskonstanten lauten für das vorliegende Problem:

1.
$$w(0) = 0$$

 $c_1 + c_2 0 + c_3 \cos \mu 0 + c_4 \sin \mu 0 = c_1 + c_3 = 0$

2.
$$w'(0) = 0$$

$$c_2 - c_3 \mu \sin \mu 0 + c_4 \mu \cos \mu 0 = c_2 + c_4 \mu = 0$$

3.
$$M(l) = 0$$
. bzw. $w''(l) = 0$

$$-c_2\mu^2\cos\mu l - c_4\mu^2\sin\mu l = 0$$

Da μ^2 ungleich null ist, kann die Gleichung durch $-\mu^2$ dividiert werden.

$$c_3 \cos \mu l + c_4 \sin \mu l = 0$$

4.
$$T(l) = F_{v}$$

Diese Randbedingung ergibt sich nach *Bild 1.13* aus der Gleichgewichtsbedingung $\sum V = 0$ am Kragarmende.

$$T(l)$$
 F_v
 F_h

Bild 1.13 Freigeschnittenes Kragarmende

Mit Gl. (1.7) kann die Transversalkraft durch Ableitungen der Biegelinie ausgedrückt werden:

$$T(l) = -EIw'''(l) + Hw'(l)$$

Mit $H = -F_h$ und $T(l) = F_v$ ergibt sich:

$$-EIw'''(l) - F_h w'(l) = F_v$$

$$w'''(l) + \frac{F_h}{EI}w'(l) = -\frac{F_v}{EI}$$

$$w'''(l) + \mu^2 w'(l) = -\frac{F_v}{FI}$$

Durch Einsetzen des Ansatzes für w" und w' folgt:

$$c_3\mu^3\sin\mu l - c_4\mu^3\cos\mu l$$

$$+ \mu^{2}(c_{2} - c_{3}\mu \sin\mu l + c_{4}\mu \cos\mu l) = -\frac{F_{v}}{F_{l}}$$

und es verbleibt:

$$c_2\mu^2 = -\frac{F_v}{FI}$$

Aus dieser Randbedingung ergibt sich durch die Transversalkraft ein Term ungleich null auf der rechten Seite der Gleichung, wodurch das Gleichungssystem nicht homogen ist.

Aus den vier Gleichungen folgt das Gleichungssystem zur Ermittlung der Integrationskonstanten:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \mu \\ 0 & 0 & \cos\mu l & \sin\mu l \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = -\frac{F_v}{\mu^2 E l} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Mit der Lösung:

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \frac{F_v}{\mu^3 E I} \begin{bmatrix} \tan \mu I \\ -\mu \\ -\tan \mu I \end{bmatrix}$$

Damit sind die Integrationskonstanten bekannt und die Funktion der Biegelinie und ihre Ableitungen ergeben sich zu:

$$w = \frac{F_{\nu}}{\mu^{3}EI}(\tan\mu l - \mu x - \tan\mu l \cos\mu x + \sin\mu x)$$

$$w' = \frac{F_{\nu}}{\mu^{2}EI}(-1 + \tan\mu l \sin\mu x + \cos\mu x)$$

$$w'' = \frac{F_{\nu}}{\mu EI}(\tan\mu l \cos\mu x - \sin\mu x) = -\frac{M}{EI}$$

$$w''' = \frac{F_{\nu}}{FI}(-\tan\mu l \sin\mu x - \cos\mu x) = -\frac{V}{FI}$$

Die Durchbiegung ist am freien Rand des Kragträgers maximal, sie folgt aus:

$$w_{\text{max}} = w(l) = \frac{F_{\nu}}{\alpha^{3} E l} (\tan \mu l - \mu l - \tan \mu l \cos \mu l + \sin \mu l)$$
$$= \frac{F_{\nu}}{\mu^{3} E l} (\tan \mu l - \mu l)$$

Das Moment an der Einspannung ergibt sich aus:

$$\begin{split} M_{\text{max}} &= M(0) = -E I w"(0) \\ &= -E I \frac{F_{\nu}}{\mu E I} (\tan \mu l \cos \mu 0 - \sin \mu 0) = -\frac{F_{\nu}}{\mu} (\tan \mu l) \end{split}$$

· Ermittlung der Knicklast

Die Knicklast folgt wiederum aus der Bedingung, dass die Determinante der Koeffizientenmatrix zur Bestimmung der Integrationskonstanten gleich null sein muss.

$$\det \mathbf{A} = \begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \mu \\ 0 & 0 & \cos\mu l & \sin\mu l \\ 0 & 1 & 0 & 0 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 0 & \alpha \\ 0 & \cos\mu l & \sin\mu l \\ 1 & 0 & 0 \end{vmatrix}$$
$$= 1 \cdot \begin{vmatrix} \cos\mu l & \sin\mu l \\ 0 & 0 \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & \mu \\ \cos\mu l & \sin\mu l \end{vmatrix}$$
$$= \mu \cos\mu l$$

$$\cos \mu l = 0 \rightarrow \mu l = n \frac{\pi}{2}$$
 $n = 1, 3, 5, ...$

Die kritische Knicklast folgt aus:

$$\mu l = \frac{\pi}{2}$$

Sachwortverzeichnis

Α

Ablösen der Unbekannten 157 Anfangswertproblem 146 Ansatzfunktion 90 Äquivalentes Kräftepaar 25 Auflagerknoten 73

В

Bettung 69 Bettungszahl 54 Bettungsziffer 54, 70 Biegeformkoeffizienten 31 Bisektionsverfahren 35

C

Charakteristische Gleichung 11

D

Deformationsmethode 59
Dehnstarrheit 59
Determinante 15
Differenzialgleichungssystem 1.
Ordnung 166
Diskretisierung 90
Drehwinkelverfahren 30

Е

Eigenform 15, 23
Eigenwert 15
Elastisch gebetteter Balken 133
Elastische Bettung 53
Elastische Lagerung 67
Elastischer Halbraum 54
Elementmatrizen 68
Elimination des Mittelknotens 128
Ersatzimperfektion 23
Ersatzkräftepaar 32, 33
Eulersche Knicklast 13
Exponentialfunktion 167

F

Federkraft 68
Federmoment 68
Federsteifigkeit 67, 68
Feldmatrix 144
Formänderungsmethode 59
Formfunktion 99

G

Gauß-Integration 139 Gauß-Quadratur 135, 137, 138, 139 Gelenke 70 Geometrische Imperfektion 22 Geometrische Reihe 28 Gesamtsteifigkeitsmatrix 66, 68 Gleichgewichtsbedingungen 65, 66 Gleichgewichtsbeziehungen 145 Große Verformungen 16 Grundelement 61

Н

Hermite-Polynom 99 Homogene Lösung 11

ı

Instabiler Gleichgewichtzustand 14
Integrationsintervall 136
Integrationskonstante 12, 15
Intervallhalbierung 35
Inzidenzmatrix 65
Iterative Annäherung der
Biegelinie 26

Κ

Kinematische Beziehungen 144 Kleine Verformungen 16 Knicken 14 Knickfigur 15, 23 Knicklast 14, 15, 130 Knotenlasten 66 Knotenlastvektor 65 Kondensation 129 Krümmung 9

L

Lagrange-Polynom 124 Lastvektor 66, 67 Last-Verformungsdiagramm 14 Last-Verformungskurve 14 Leitmatrix 151 Linearisierung 9

M

Methode der Finiten Elemente 88 Mitführen der Unbekannten 157 Modifikation der Elementsteifigkeitsmatrix 71

Ν

Nachgiebigkeiten 144 Näherungsansatz 70 Numerische Integration 135, 139 Numerische Quadratur 135

Р

Partikularlösung 12 Partitionierung 128 Prinzip der virtuellen Kräfte 138 Punktmatrix 150

R

Randbedingung 66, 146 Randmatrix 146 Randwertproblem 146 Reduktion des Gleichungssystems 66 Reduktionsverfahren 143 Reihenentwicklung 167

S

Schiefstellung 23, 25 Schnittgrößenermittlung 68 Setzungsmulde 54 Spannungsproblem 14 Stabendschnittgrößen 60, 61, 62, 64, 65, 66 Stabendverformungen 61, 62, 64 Stabiler Gleichgewichtszustand 14 Stabilitätsnachweis 23 Stabilitätsproblem 14 Stablasten 66 Steifezifferverfahren 54 Steifigkeit 14, 62, 145 Steifigkeitsmatrix 60, 62, 64, 68, 70, 71 Steifigkeitsmatrix nach Theorie II. Ordnung 69, 70 Stützstelle 136 Superpositionsprinzip 14 Systemmatrix 68

Т

Theorie II. Ordnung 9, 69, 128, 163 Theorie III. Ordnung 9 Transformation 63, 64 Transformationsmatrix 64 Transversalkraft 11, 33

U

Übertragungsmatrix 143 Übertragungsverfahren 143, 148

V

Veränderliche Biegesteifigkeit 139 Verformungsbedingungen 65 Verzweigungslast 34 Verzweigungspunkt 14 188 Sachwortverzeichnis

Virtuelle Funktion 90 Vorkrümmung 23, 24 Vorverformungen 23

Weggrößenverfahren 59 Wichtungsfaktor 136 Zeilen- und Spaltenmodifizierung 67 Zustandsgrößen 144 Zwischenbedingung 66, 157