Leseprobe

zu

Mensch-Roboter-Interaktion

von Christoph Bartneck, Tony Belpaeme, Friederike Eyssel, Takayuki Kanda, Merel Keijzers und Selma Šabanović

Print-ISBN: 978-3-446-47768-1
E-Book-ISBN: 978-3-446-47859-6
Epub-ISBN: 978-3-446-48132-9

Weitere Informationen und Bestellungen unter
https://www.hanser-kundencenter.de/fachbuch/artikel/9783446477681

sowie im Buchhandel

© Carl Hanser Verlag, München
Die Rolle von Robotern in der Gesellschaft erweitert und verändert sich ständig und bringt eine Reihe von Fragen zu der Beziehung zwischen Roboter und Mensch mit sich. Diese Einführung in die Mensch-Roboter-Interaktion (Human-Robot Interaction, HRI), die von führenden Forschern auf diesem sich entwickelnden Gebiet verfasst wurde, ist die erste, die einen breiten Überblick über die multidisziplinären Themen bietet, die für die moderne HRI-Forschung von zentraler Bedeutung sind. Studenten und Forscher aus den Bereichen Robotik, künstliche Intelligenz, Psychologie, Soziologie und Design finden darin einen prägnanten und zugänglichen Leitfaden zum aktuellen Stand des Fachgebiets.

Anmerkungen zur zweiten Auflage

Wie viele andere Bereiche mit Bezug zu neuen Technologien, verändert und entwickelt sich HRI weiter, während neue technologische Möglichkeiten für das Design und die Implementierung von Robotern und die Untersuchung von Menschen, die mit ihnen interagieren, verfügbar werden. Damit dieses Buch auch weiterhin relevant bleibt, haben wir es 2023 überarbeitet, um neue technische Möglichkeiten sowie neue theoretische und methodische Entwicklungen auf diesem Gebiet zu berücksichtigen. Zudem wollten wir mehr Diskussionen über Inklusion, gesellschaftliche Relevanz und Auswirkungen und ethische Überlegungen zu HRI in den ursprünglichen Text aufnehmen. Unsere erste Ausgabe konzentrierte sich weitgehend auf die soziale Robotik als Hauptbereich der HRI. Dabei vernachlässigten wir die Interaktionen zwischen Menschen und Robotern in Kontexten wie Fabri-

Christoph Bartneck
Tony Belpaeme
Friederike Eyssel
Takayuki Kanda
Merel Keijsers
Selma Šabanović
Inhalt

Vorwort .. V

1 Einleitung ... 1
 1.1 Über dieses Buch ... 1
 1.2 Die Autor:innen .. 4
 1.2.1 Christoph Bartneck ... 4
 1.2.2 Tony Belpaeme ... 4
 1.2.3 Friederike Eyssel ... 4
 1.2.4 Takayuki Kanda ... 5
 1.2.5 Merel Keijzers ... 5
 1.2.6 Selma Šabanović .. 5

2 Was ist Mensch-Roboter-Interaktion? 7
 2.1 Der Schwerpunkt dieses Buches 10
 2.2 HRI als interdisziplinäres Unterfangen 11
 2.3 Die Entwicklung von sozialen Robotern und HRI 14
 2.4 Übungen ... 24

3 Wie ein Roboter funktioniert ... 27
 3.1 Die Entstehung eines Roboters 28
 3.2 Robotertypen .. 30
 3.3 Systemarchitektur ... 33
 3.3.1 Hardware-Ebenen .. 33
 3.3.2 Software-Ebenen .. 34
 3.4 Sensoren ... 34
 3.4.1 Vision ... 35
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2 Audio</td>
<td>38</td>
</tr>
<tr>
<td>3.4.3 Berührungssensoren</td>
<td>39</td>
</tr>
<tr>
<td>3.4.4 Andere Sensoren</td>
<td>40</td>
</tr>
<tr>
<td>3.5 Stellantriebe</td>
<td>41</td>
</tr>
<tr>
<td>3.5.1 Motoren</td>
<td>41</td>
</tr>
<tr>
<td>3.5.2 Pneumatische Antriebe</td>
<td>43</td>
</tr>
<tr>
<td>3.5.3 Lautsprecher</td>
<td>44</td>
</tr>
<tr>
<td>3.6 Middleware</td>
<td>44</td>
</tr>
<tr>
<td>3.6.1 Was ist eine Middleware?</td>
<td>44</td>
</tr>
<tr>
<td>3.6.2 Betriebssystem</td>
<td>46</td>
</tr>
<tr>
<td>3.7 Anwendungen</td>
<td>47</td>
</tr>
<tr>
<td>3.7.1 Verhaltensprogrammierung</td>
<td>50</td>
</tr>
<tr>
<td>3.7.2 Animationsshibitoren</td>
<td>53</td>
</tr>
<tr>
<td>3.8 Künstliche Intelligenz und maschinelles Lernen</td>
<td>54</td>
</tr>
<tr>
<td>3.8.1 Überwachtes Lernen</td>
<td>54</td>
</tr>
<tr>
<td>3.8.2 Computerbasiertes Sehen</td>
<td>61</td>
</tr>
<tr>
<td>3.8.3 Reinforcement Learning</td>
<td>62</td>
</tr>
<tr>
<td>3.8.4 Anpassung</td>
<td>63</td>
</tr>
<tr>
<td>3.9 Beschränkungen der Robotik für HRI</td>
<td>64</td>
</tr>
<tr>
<td>3.10 Schlussfolgerung</td>
<td>68</td>
</tr>
<tr>
<td>3.11 Übungen</td>
<td>69</td>
</tr>
<tr>
<td>4 Design</td>
<td>75</td>
</tr>
<tr>
<td>4.1 Gestaltung</td>
<td>78</td>
</tr>
<tr>
<td>4.1.1 Morphologie und Form des Roboters</td>
<td>78</td>
</tr>
<tr>
<td>4.1.2 Aktionspotenziale</td>
<td>80</td>
</tr>
<tr>
<td>4.1.3 Entwurfsmuster</td>
<td>81</td>
</tr>
<tr>
<td>4.1.4 Gestaltungsprinzipien für die Mensch-Roboter-Interaktion</td>
<td>82</td>
</tr>
<tr>
<td>4.2 Anthropomorphisierung</td>
<td>84</td>
</tr>
<tr>
<td>4.2.1 Zuschreibung menschenähnlicher Eigenschaften an Roboter</td>
<td>85</td>
</tr>
<tr>
<td>4.2.2 Design eines menschenähnlichen Erscheinungsbildes</td>
<td>89</td>
</tr>
<tr>
<td>4.3 Entwurfsmethoden</td>
<td>92</td>
</tr>
<tr>
<td>4.3.1 Technischer Designprozess</td>
<td>92</td>
</tr>
</tbody>
</table>
4.3.2 Nutzerzentrierter Entwurfsprozess .. 94
4.3.3 Partizipatives Design ... 96
4.4 Prototyping-Werkzeuge ... 98
4.5 Kultur im HRI-Design .. 99
4.6 Von Maschinen zu Menschen und dazwischen ... 101
4.7 Schlussfolgerung ... 104
4.8 Übungen .. 105

5 Interaktion im Raum ... 109
 5.1 Nutzung des Raums in der menschlichen Interaktion 111
 5.1.1 Proxemik ... 111
 5.1.2 Dynamik der räumlichen Interaktion in der Gruppe 113
 5.2 Räumliche Interaktion bei Robotern ... 115
 5.2.1 Soziale Navigation .. 115
 5.2.2 Sozialverträgliche Positionierung ... 117
 5.2.3 Räumliche Dynamik der initiierenden HRI .. 120
 5.2.4 Informieren der Nutzer über die Absicht eines Roboters 122
 5.3 Schlussfolgerung ... 123
 5.4 Übungen .. 124

6 Nonverbale Interaktion ... 127
 6.1 Funktionen von nonverbalen Hinweisen in der Interaktion 129
 6.2 Arten der nonverbalen Interaktion ... 131
 6.2.1 Blick und Augenbewegung ... 131
 6.2.2 Gestik .. 134
 6.2.3 Mimikry und Imitation ... 136
 6.2.4 Berührung ... 138
 6.2.5 Körperhaltung und Bewegung .. 141
 6.2.6 Rhythmus und Zeitplanung der Interaktion 142
 6.3 Nonverbale Interaktion bei Robotern ... 144
 6.3.1 Verarbeitung von nonverbalen Hinweisreizen 144
 6.3.2 Generieren von nonverbalen Hinweisen bei Robotern 145
 6.4 Schlussfolgerung ... 147
 6.5 Übungen .. 148
7 Verbale Interaktion ... 151
7.1 Verbale Interaktion von Mensch zu Mensch 152
7.1.1 Komponenten der Sprache 153
7.1.2 Geschriebener Text versus gesprochene Sprache 154
7.2 Spracherkennung .. 155
7.2.1 Grundlegende Prinzipien der Spracherkennung 156
7.2.2 Einschränkungen ... 158
7.2.3 Praktische Umsetzung .. 158
7.2.4 Erkennung der Sprechaktivität 160
7.3 Dialogmanagement ... 160
7.3.1 Den Sinn eines Textes herauslesen 160
7.3.2 Large Language Models 162
7.3.3 Dialogmanager .. 164
7.3.4 Chatbots .. 166
7.3.5 Praktische Umsetzung .. 168
7.4 Sprecherwechsel in der HRI 171
7.5 Sprachproduktion .. 172
7.5.1 Praktische Umsetzung .. 174
7.6 Schlussfolgerung .. 175
7.7 Übungen .. 176

8 Wie Menschen Roboter wahrnehmen 179
8.1 Eindrucksbildung .. 180
8.2 Anthropomorphismus ... 182
8.3 Messen von Anthropomorphisierung 186
8.3.1 Explizite Messungen .. 186
8.3.2 Implizite Maße .. 188
8.4 Auswirkungen von Anthropomorphismus 189
8.4.1 Vertrauen in Technologie 190
8.4.2 Akzeptanz von Robotern 191
8.4.3 (Un-)Wohlesein gegenüber Robotern 192
8.5 Schlussfolgerung .. 193
8.6 Übungen .. 194
Inhalt

9 Emotionen

9.1 Was sind Emotion, Stimmung und Affekt? .. 198
- 9.1.1 Emotion und Interaktion .. 199
- 9.1.2 Konzeptualisierung menschlicher Emotionen 199

9.2 Probleme der emotionalen Reaktionsfähigkeit 201

9.3 Emotionen und Roboter ... 203
- 9.3.1 Interaktionsstrategien ... 203
- 9.3.2 Wahrnehmung von Emotionen ... 204
- 9.3.3 Ausdruck von Emotionen .. 205
- 9.3.4 Emotionsmodelle ... 207

9.4 Herausforderungen bei affektiver HRI ... 209

9.5 Schlussfolgerung ... 211

9.6 Übungen ... 212

10 Forschungsmethoden

10.1 Definieren einer Forschungsfrage und eines Forschungsansatzes 217
- 10.1.1 Ist Ihre Forschung explorativ oder bestätigend? 218
- 10.1.2 Stellen Sie eine Korrelation oder eine Kausalität her? 220

10.2 Auswahl zwischen qualitativen, quantitativen und gemischten Methoden ... 222
- 10.2.1 Anwenderstudien ... 223
- 10.2.2 Umfrage-Studien .. 225
- 10.2.3 Systemevaluation ... 226
- 10.2.4 Beobachtungsstudien .. 227
- 10.2.5 Ethnografische Studien ... 229
- 10.2.6 Konversationsanalyse ... 231
- 10.2.7 Nutzerstudien mittels Crowdsourcing 231
- 10.2.8 Fallstudien .. 234

10.3 Auswahl von Forschungsteilnehmern und Studiendesigns 235
- 10.3.1 Die Repräsentativität Ihrer Stichprobe 235
- 10.3.2 Größe der Stichprobe .. 236
10.4 Den Kontext der Interaktion definieren ... 238
 10.4.1 Setting der Studie .. 238
 10.4.2 Zeitlicher Kontext der HRI .. 239
 10.4.3 Soziale Ebenen der Interaktion in der HRI 239
10.5 Auswahl eines Roboters für Ihre Studie .. 242
10.6 Einrichten des Interaktionsmodus .. 243
 10.6.1 Wizard-of-Oz-Technik ... 243
 10.6.2 Reale versus simulierte Interaktion ... 244
10.7 Auswahl geeigneter Messinstrumente .. 245
10.8 Standards der statistischen Analyse ... 247
 10.8.1 Statistiken sinnvoll nutzen ... 249
 10.8.2 Bewährte Verfahrensweisen zur Problembewältigung bei klassischen statistischen Tests .. 252
10.9 Ethische Überlegungen bei HRI-Studien ... 254
10.10 Schlussfolgerung ... 256
10.11 Übungen .. 258

11 Anwendungen ... 263
11.1 Roboter im Kundenservice .. 266
 11.1.1 Roboter als Ausstellungsführer ... 267
 11.1.2 Roboter als Rezeptionisten ... 268
 11.1.3 Roboter für Werbeaktionen ... 269
11.2 Roboter zum Lernen .. 270
11.3 Roboter zur Unterhaltung .. 271
 11.3.1 Haustier- und Spielzeugroboter ... 271
 11.3.2 Roboter für Ausstellungen ... 273
 11.3.3 Roboter in der darstellenden Kunst ... 273
 11.3.4 Sexroboter .. 274
11.4 Roboter im Gesundheitswesen und in der Therapie 275
 11.4.1 Roboter für Senioren ... 276
 11.4.2 Roboter für Menschen mit Autismus-Spektrum-Störungen 277
 11.4.3 Roboter für die Rehabilitation ... 278
 11.4.4 Roboter zur Unterstützung der psychischen Gesundheit 279
11.5 Roboter als persönliche Assistenten .. 280
11.6 Serviceroboter .. 281
 11.6.1 Reinigungsroboter ... 281
 11.6.2 Lieferroboter ... 282
11.7 Sicherheitsroboter ... 283
11.8 Kollaborative Roboter .. 285
11.9 Selbstfahrende Autos .. 286
11.10 Ferngesteuerte Roboter .. 291
 11.10.1 Anwendungen von ferngesteuerten Robotern 291
 11.10.2 Mensch-Roboter-Teams ... 293
 11.10.3 Telepräsenzroboter und Avatar-Roboter 294
11.11 Zukünftige Anwendungen ... 295
11.12 Probleme der Roboteranwendung ... 296
 11.12.1 Öffentlichkeitsarbeit .. 296
 11.12.2 Berücksichtigung der Nutzererwartungen 297
 11.12.3 Abhängigkeit .. 298
 11.12.4 Stehlen der Aufmerksamkeit .. 298
 11.12.5 Verlust des Interesses durch den Nutzer 299
 11.12.6 Ausnutzung und Missbrauch von Robotern 299
11.13 Schlussfolgerung ... 301
11.14 Übungen ... 302

12 Roboter in der Gesellschaft ... 305
12.1 Roboter in populären Medien .. 306
 12.1.1 Roboter wollen Menschen sein ... 308
 12.1.2 Roboter als Bedrohung für die Menschheit 309
 12.1.3 Überlegene Roboter sind gut .. 311
 12.1.4 Ähnlichkeit zwischen Menschen und Roboter 311
 12.1.5 Narrative der Roboterwissenschaft 313
12.2 Ethik in der HRI ... 315
 12.2.1 Roboter in der Forschung ... 316
 12.2.2 Roboter zur Erfüllung emotionaler Bedürfnisse 317
 12.2.3 Roboter am Arbeitsplatz .. 322
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.4</td>
<td>Ambivalente Einstellungen gegenüber Robotern</td>
<td>323</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Eine vielfältigere und integrativere HRI</td>
<td>323</td>
</tr>
<tr>
<td>12.3</td>
<td>Schlussfolgerung</td>
<td>327</td>
</tr>
<tr>
<td>12.4</td>
<td>Übungen</td>
<td>329</td>
</tr>
<tr>
<td>13</td>
<td>Die Zukunft</td>
<td>333</td>
</tr>
<tr>
<td>13.1</td>
<td>Das Wesen der Mensch-Roboter-Beziehungen</td>
<td>336</td>
</tr>
<tr>
<td>13.2</td>
<td>Fortschritt in der HRI</td>
<td>338</td>
</tr>
<tr>
<td>13.3</td>
<td>Ausblick</td>
<td>339</td>
</tr>
<tr>
<td>13.4</td>
<td>Übungen</td>
<td>342</td>
</tr>
<tr>
<td>14</td>
<td>Antworten</td>
<td>345</td>
</tr>
<tr>
<td>15</td>
<td>Literaturverzeichnis</td>
<td>353</td>
</tr>
<tr>
<td>Stichwortverzeichnis</td>
<td></td>
<td>397</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Über dieses Buch

Falls Sie einen technischen Hintergrund haben, glauben Sie, einen Roboter bauen zu können, der mit Menschen interagieren kann, indem Sie dafür nur mit anderen Ingenieuren zusammenarbeiten? Wir sind leider der Meinung, dass Sie dazu nicht in der Lage sein werden. Um Roboter zu entwerfen, mit denen Menschen interagieren wollen, benötigt man ein gutes Verständnis menschlicher sozialer Interaktionen. Um dieses Verständnis zu erlangen, braucht man Einblicke von Menschen, die in den Sozial- und Geisteswissenschaften ausgebildet wurden.

Sind Sie Designer? Denken Sie, dass Sie einen sozial interaktiven Roboter entwerfen können, ohne mit Ingenieuren und Psychologen zusammenzuarbeiten? Die Erwartungen der Menschen an Roboter und ihre Rolle im Alltag sind nicht nur hoch, sondern auch von Mensch zu Mensch sehr unterschiedlich. Manche Menschen wünschen sich einen Roboter, der für sie kocht, andere wünschen sich einen Roboter, der ihre Hausaufgaben macht und im Anschluss eine intellektuelle Unterhaltung über den neuesten Star Wars-Film führt. Die Fähigkeiten von Robotern als Assistenten sind jedoch immer noch recht begrenzt. Moravecs Paradoxon gilt auch Jahrzehnte nach seiner ersten Äußerung noch: Alles, was Menschen schwerfällt, ist für Maschinen relativ einfach, und alles, was ein kleines Kind kann, ist für eine Maschine fast unmöglich. Als Designer braucht man also ein gutes Verständnis der technischen Möglichkeiten, von der menschlichen Psychologie und von Soziologie, um einen Entwurf eines Roboters auszuarbeiten, der praktisch umsetzbar ist.

Und nicht zuletzt, diejenigen von Ihnen, die in Psychologie und Soziologie geschult sind, wollen Sie einfach nur darauf warten, dass eben beschriebene Arten von Robotern in unserer Gesellschaft auftauchen? Wäre es nicht bereits zu spät, sich erst dann mit Robotertechnologien zu befassen, wenn diese schon Teil unseres Alltags sind? Wollen Sie nicht Einfluss darauf nehmen, wie die Roboter aussehen und interagieren? Was Sie schon jetzt tun können, ist mit befreundeten Ingenieuren und Informatikern zu sprechen oder mit einem Designer Mittagessen zu gehen. Dadurch können Ihre sozialwissenschaftlichen Ideen auf dem, was technisch möglich ist, aufgebaut werden und Ihnen dabei helfen, die Bereiche zu finden, in denen Ihr Wissen den größten Einfluss haben kann.

Das Autorenteam besteht aus einer Gruppe von weltweit führenden Experten aus dem breiten Spektrum der Disziplinen, die zur HRI beitragen. Unser aller Herzschlägt für die Verbesserung der Interaktion zwischen Menschen und Robotern. Darüber hinaus wollen wir sicherstellen, dass Roboter auf eine der Gesellschaft und den Menschen, die sie nutzen und durch sie beeinflusst werden, dienliche Art eingesetzt werden.

1.2 Die Autor:innen

1.2.1 Christoph Bartneck

1.2.2 Tony Belpaeme

Tony Belpaeme ist Professor an der Universität Gent, Belgien, und war zuvor Professor für Robotik und kognitive Systeme an der Universität Plymouth, Großbritannien. Er promovierte in künstlicher Intelligenz an der Vrije Universiteit Brussel (VUB). Ausgehend von der Prämisse, dass Intelligenz in sozialer Interaktion verwurzelt ist, versuchen Tony und sein Forschungsteam, die künstliche Intelligenz sozialer Roboter zu fördern. Dieser Ansatz führt zu einer Reihe an Ergebnissen, die von theoretischen Erkenntnissen bis zu praktischen Anwendungen reichen. Er ist an groß angelegten Projekten beteiligt, in denen untersucht wird, wie Roboter zur Unterstützung von Kindern in der Bildung eingesetzt werden können. Er untersucht, wie kurze Interaktionen mit Robotern zu langfristigen werden können und wie Roboter in der Therapie eingesetzt werden können.

1.2.3 Friederike Eyssel

1.2.4 Takayuki Kanda

1.2.5 Merel Keijsers

1.2.6 Selma Šabanović

Was ist Mensch-Roboter-Interaktion?

Die Interaktion zwischen Mensch und Roboter (Human-Robot Interaction, HRI) wird allgemein als ein neues und aufstrebendes Gebiet bezeichnet, die Idee der menschlichen Interaktion mit Robotern ist aber schon so alt wie die Idee der Roboter selbst. Isaac Asimov, der in den 1940er-Jahren den Begriff der „Robotik“ prägte, schrieb seine Geschichten um Fragen, welche die Beziehung zwischen Menschen und Robotern als Hauptteil der Analyse betrachten: „Wie sehr werden die Menschen Robotern vertrauen?“; „Welche Art von Beziehung kann ein Mensch zu einem Roboter haben?“; „Wie verändern sich unsere Vorstellungen davon, was menschlich ist, wenn wir Maschinen haben, die menschenähnliche Dinge in unserer Mitte tun?“ (siehe S. 315 für mehr über Asimov). Vor Jahrzehnten waren diese Ideen noch Science-Fiction, aber heute sind viele dieser Fragen real, in der heutigen Gesellschaft präsent und zu zentralen Forschungsfragen im Bereich der HRI geworden.

Dieses Kapitel soll den Rahmen für das vorliegende Buch abstecken. Da die HRI ein überaus vielfältiges Gebiet ist, werden in Abschnitt 2.1 die Haupthemen dieses Buches hervorgehoben und erläutert. Abschnitt 2.2 befasst sich mit dem interdisziplinären Charakter dieses Fachgebiets und dessen Konsequenzen für die Forschung und das Roboterdesign. Schließlich bietet Abschnitt 2.3 einen zeitlichen Ablauf der Entwicklung von (sozialen) Robotern und liefert einen Überblick über die in der HRI am häufigsten eingesetzten Robotern.
Was ist Mensch-Roboter-Interaktion?

Unterscheidung zwischen physischer und sozialer Interaktion

2.1 Der Schwerpunkt dieses Buches

HRI ist ein großes, multidisziplinäres Gebiet, und dieses Buch liefert einen ersten Einstieg in die damit verbundenen Probleme, Prozesse und Lösungen. Dieses Buch ermöglicht es dem Leser, sich einen Überblick über das Gebiet zu verschaffen, ohne von der Komplexität all der Herausforderungen, mit denen wir konfrontiert sind, überwältigt zu werden, auch wenn wir Hinweise auf einschlägige Literatur geben, die der interessierte Leser in Ruhe recherchieren kann. Dieses Buch bietet eine dringend benötigte Einführung in das Gebiet, mit dem Ziel, dass sich Studenten, Wissenschaftler, Praktiker und politische Entscheidungsträger mit der Zukunft der Interaktion zwischen Mensch und Technik vertraut machen können. Als
Stichwortverzeichnis

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängigkeit</td>
<td>Augenbewegung</td>
<td>Care-o-bot</td>
</tr>
<tr>
<td>298</td>
<td>131</td>
<td>267</td>
</tr>
<tr>
<td>Absichtserkennung</td>
<td>Ausstellungsführer-Roboter</td>
<td>Chamäleon-Effekt</td>
</tr>
<tr>
<td>161f.</td>
<td>267</td>
<td>137</td>
</tr>
<tr>
<td>Adaption</td>
<td>Automatic Speech Recognition</td>
<td>Chatbot</td>
</tr>
<tr>
<td>63</td>
<td>155</td>
<td>166</td>
</tr>
<tr>
<td>Affekt</td>
<td>automatische Spracherkennung</td>
<td>ChatGPT</td>
</tr>
<tr>
<td>198</td>
<td>58, 155</td>
<td>59, 167</td>
</tr>
<tr>
<td>Affekterkennung</td>
<td>autonome Fahrzeuge</td>
<td>Chinese-Room-Experiment</td>
</tr>
<tr>
<td>204</td>
<td>286</td>
<td>66</td>
</tr>
<tr>
<td>Agent, virtuell</td>
<td>Avatar-Roboter</td>
<td>Choregraphe</td>
</tr>
<tr>
<td>32</td>
<td>294</td>
<td>50, 146</td>
</tr>
<tr>
<td>Aibo</td>
<td>Arduino</td>
<td>Cimon</td>
</tr>
<tr>
<td>21, 51, 263</td>
<td>99</td>
<td>335</td>
</tr>
<tr>
<td>Aktionspotenziale</td>
<td>Batteriekapazität</td>
<td>66</td>
</tr>
<tr>
<td>80</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Stichwörter</td>
<td>Seite</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Co-Bot</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>computerbasiertes Sehen</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Computersehen</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Computer Vision</td>
<td>36, 61</td>
<td></td>
</tr>
<tr>
<td>Confidence Interval</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>Convolutional Neural Network</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Co-Speech-Geste</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Cozmo</td>
<td>20, 206</td>
<td></td>
</tr>
<tr>
<td>Crowdsourcing</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Customization</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datensatz</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Debriefing</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Deep Learning</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Deep Neural Network</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Dehumanisierung</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>- partizipatives</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Designentscheidung</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Designprozess</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Dialogmanagement</td>
<td>160, 164</td>
<td></td>
</tr>
<tr>
<td>Dialogmanager</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Distanz</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Disziplin</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Drohnen</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Druckschalter</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethnografische Studie</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>Eindrucksbildung</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Einsamkeit</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>Einschränkungen</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>elicited agent knowledge</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>EliQ</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Elvis</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>Emotion</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Emotionsmodelle</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>Empfangsroboter</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>endliche Automaten</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Entwurfsmethoden</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Entwurfsmuster</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Entwurfsprozess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- nutzerzentriert</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Erscheinungsbild</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Erwartungsmanagement</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Ethik</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Eye-Tracking-Technologie</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial Action Coding System</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Fahrerassistenztechnologie</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>Fallstudie</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Feldstudie</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>ferngesteuerte Roboter</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>Ferninfrarotsensor</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Forschung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- bestätigend</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>- explorativ</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Forschungsansatz</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>Forschungsfrage</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>Forschungsinstrumente</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Forschungsmethoden</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Forschungsteilnehmer</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Frankenstein-Ansatz</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Frankenstein-Komplex</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>Freiheitsgrad</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Funktionsweise</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Furby</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Furhat</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gazebo</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Geminoid</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Generierung von Gesten</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Gesellschaft</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Gesichtserkennung</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Gestaltungsprinzipien</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Gestik</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Gleichstromservomotor</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Godspeed-Fragebogen</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Gruppendynamik</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Gruppeninteraktion</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Stichwort</td>
<td>Seite</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Haltungsmerkmal</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Handgesten</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Haptic Creature</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Haru</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Haushaltsassistent</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Haustierroboter</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>Hawking, Stephen</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>Humanoiden</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>iCub</td>
<td>30, 39, 134, 188</td>
<td></td>
</tr>
<tr>
<td>Imitation</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Inertial Measurement Unit</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Infrahumanisierung</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>InMoov</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>integrative HRI</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>Interaction Composer</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Interaktion</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>- mit Robotern</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>- nonverbal</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>- physische</td>
<td>8, 138</td>
<td></td>
</tr>
<tr>
<td>- reale</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>- simulierter</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>- soziale</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>- verbal</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Interaktionsabstand</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Interaktions-Dyade</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Interaktionsmodus</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>intuitive Erwartung</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jibo</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>Joggobot</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamera</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Kaspar</td>
<td>202, 278</td>
<td></td>
</tr>
<tr>
<td>Kausalität</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Keepon</td>
<td>18, 30, 79, 86</td>
<td>Kindchenschema 16</td>
</tr>
<tr>
<td>Kismet</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Kiwi</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>Klassifizierung</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Knightscope K5</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>Kokoro</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>kollaborative Roboter</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Kommunikation</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Kompetenzmotivation</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Konfidenzintervalle</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>konstruierte Sprachen</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Kontingenz</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Konversationsanalyse</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Konzeptualisierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- menschlicher Emotionen</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Körpermitigkeit</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Korrelation</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>kultureller Einfluss</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>künstliche Intelleitzen</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>künstliche Kognition</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Kuri</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laborstudie</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Lächelerkennung</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Large Language Models</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Laserentfernungsmesser</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Lautsprecher</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>LEGO Mindstorms</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>lernfähiger Agent</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Lichtsensor</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Lieferroboter</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>Light Detection and Ranging (LiDAR)</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Likability</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Little Bits</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Lively</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Lokalisierung</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maschinelles Lernen</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>mediale Darstellung</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Mensch-Computer-Interaktion</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>menschenähnliches Erscheinungsbild</td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>
Mensch-Roboter-Beziehung 336
Mensch-Roboter-Interaktion 7
Mensch-Roboter-Team 293
Merkmal 56
Microsoft Kinect One 37
Midas-Effekt 138
Middleware 44
Mikrobewegung 142
Mikrofon 38
Mimik-Feedback-Hypothese 200
Mimikry 136
minimalistische Roboter 79
Missbrauch 299
Morphologie 32, 78
Motor 41
Mustererkennungstechnik 144
Muu 79

N
Nabaztag 281
Nachahmung 136, 203
Nao 17, 86, 139, 142, 278
Natural Language Processing 58
Navigation 116
Neuheitseffekt 239, 299
nonverbale Hinweise 129
nonverbale Interaktion 127
Nullhypothesen-Signifikanztest 248
Nutzererwartung 297
Nutzerstudie 231
nutzerzentriertes Design 94

O
OCC-Modell 207
Öffentlichkeitsarbeit 296
Ommie 279
OriHime 295

P
Packbot 292
PAD-Emotionsmodell 209
Papero 277
Paradigma 12
Pareidolie 84
Paro 18, 30, 39, 77, 83, 18
Pepper 17, 135, 139, 153
Perspektivenübernahme 122
p-Hacking 251
Phonem 153
Pirsig, Robert M. 103
Pleo 272
pneumatischer Antrieb 43
Polizeiroboter 285
PR2-Roboter 38
Projektionsroboter 32
Prototyping 98
Proxemik 111
p-Wert 248

Q
Q-Lernen 63
Qrio 263

R
Raspberry Pi 99
räumliche Dynamik 113, 120
räumliche Interaktion 109
– bei Robotern 115
Recurrent Neural Network 58
Reinforcement Learning 62
Reinigungsroboter 281
RGB 35
Robojet 79
Roboter 9, 14
Robotercafé 266
Roboter-PR 297
Robotertypen 30
RoboThespian 44
Robotik 8
Robot Operating System (ROS) 46
Robovie 240
Robovie-MR2 76
Roomba 21, 42, 91, 281
<table>
<thead>
<tr>
<th>S</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisficing</td>
<td>94</td>
</tr>
<tr>
<td>Scratch</td>
<td>50</td>
</tr>
<tr>
<td>selbstfahrende Autos</td>
<td>286</td>
</tr>
<tr>
<td>Semantik</td>
<td>65</td>
</tr>
<tr>
<td>Sense-Plan-Act-Modell</td>
<td>48</td>
</tr>
<tr>
<td>Sensoren</td>
<td>34</td>
</tr>
<tr>
<td>Serviceroboter</td>
<td>266, 281</td>
</tr>
<tr>
<td>Sexroboter</td>
<td>274</td>
</tr>
<tr>
<td>Sicherheitsroboter</td>
<td>283</td>
</tr>
<tr>
<td>Smart-Home-Assistent</td>
<td>280</td>
</tr>
<tr>
<td>Snackbot</td>
<td>96</td>
</tr>
<tr>
<td>Software</td>
<td>34, 44</td>
</tr>
<tr>
<td>Softwarearchitektur</td>
<td>48</td>
</tr>
<tr>
<td>soziale Analyseeinheit</td>
<td>239</td>
</tr>
<tr>
<td>soziale Navigation</td>
<td>115</td>
</tr>
<tr>
<td>sozialer Roboten</td>
<td>15, 30</td>
</tr>
<tr>
<td>Sozialitätsmotivation</td>
<td>183</td>
</tr>
<tr>
<td>sozialverträgliche Positionierung</td>
<td>117</td>
</tr>
<tr>
<td>Speech-to-Text</td>
<td>155</td>
</tr>
<tr>
<td>Spielzeugroboter</td>
<td>271</td>
</tr>
<tr>
<td>Sprache</td>
<td>151</td>
</tr>
<tr>
<td>– Komponenten</td>
<td>153</td>
</tr>
<tr>
<td>Sprachkennung</td>
<td>155</td>
</tr>
<tr>
<td>Sprach-versteuerter Assistent</td>
<td>280</td>
</tr>
<tr>
<td>Sprachmodell</td>
<td>58, 162</td>
</tr>
<tr>
<td>Sprachproduktion</td>
<td>172</td>
</tr>
<tr>
<td>Sprachsynthese</td>
<td>172</td>
</tr>
<tr>
<td>Sprechaktivität</td>
<td>160</td>
</tr>
<tr>
<td>Sprechaktivitätserkennung</td>
<td>160</td>
</tr>
<tr>
<td>Sprecherwechsel</td>
<td>171</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>248</td>
</tr>
<tr>
<td>statistische Analyse</td>
<td>247</td>
</tr>
<tr>
<td>Stellantrieb</td>
<td>41</td>
</tr>
<tr>
<td>Stichprobe</td>
<td>235</td>
</tr>
<tr>
<td>Stichprobengröße</td>
<td>247</td>
</tr>
<tr>
<td>Stimmung</td>
<td>198</td>
</tr>
<tr>
<td>Stimmungsanalyse</td>
<td>160</td>
</tr>
<tr>
<td>Subsumptionsarchitektur</td>
<td>48</td>
</tr>
<tr>
<td>Sympathie</td>
<td>192</td>
</tr>
<tr>
<td>Synchronität</td>
<td>143</td>
</tr>
<tr>
<td>Systemarchitektur</td>
<td>33</td>
</tr>
<tr>
<td>Systemevaluation</td>
<td>226</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>taktiler Sensor</td>
<td>39</td>
</tr>
<tr>
<td>Tay</td>
<td>167</td>
</tr>
<tr>
<td>Technologieakzeptanzmodell</td>
<td>191</td>
</tr>
<tr>
<td>Technologievertrauen</td>
<td>190</td>
</tr>
<tr>
<td>technologischer Fortschritt</td>
<td>338</td>
</tr>
<tr>
<td>Telenoid</td>
<td>139</td>
</tr>
<tr>
<td>Telepräsenzroboter</td>
<td>32, 266, 294</td>
</tr>
<tr>
<td>Tendenz</td>
<td>247</td>
</tr>
<tr>
<td>Tesla</td>
<td>288</td>
</tr>
<tr>
<td>Text-to-Speech</td>
<td>172, 174</td>
</tr>
<tr>
<td>therapeutische Roboter</td>
<td>277</td>
</tr>
<tr>
<td>T-HR3</td>
<td>293</td>
</tr>
<tr>
<td>Tiago</td>
<td>47</td>
</tr>
<tr>
<td>Tiefensensor</td>
<td>36</td>
</tr>
<tr>
<td>Trainingsdaten</td>
<td>55</td>
</tr>
<tr>
<td>Transfer Learning</td>
<td>60</td>
</tr>
<tr>
<td>Transferlernen</td>
<td>162</td>
</tr>
<tr>
<td>Transformer</td>
<td>58</td>
</tr>
<tr>
<td>Turing-Test</td>
<td>167</td>
</tr>
<tr>
<td>Turn-Taking</td>
<td>142</td>
</tr>
<tr>
<td>TurtleBot2</td>
<td>76</td>
</tr>
<tr>
<td>Tutor-Roboter</td>
<td>270</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>überwachtes Lernen</td>
<td>54</td>
</tr>
<tr>
<td>Umfrage</td>
<td>225</td>
</tr>
<tr>
<td>Uncanny Valley</td>
<td>88</td>
</tr>
<tr>
<td>User-centered Design</td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Sensitive Design</td>
<td>102</td>
</tr>
<tr>
<td>Variabilität</td>
<td>248</td>
</tr>
<tr>
<td>Vector</td>
<td>20</td>
</tr>
<tr>
<td>verbale Interaktion</td>
<td>151</td>
</tr>
<tr>
<td>Verbraucherdrohnen</td>
<td>110</td>
</tr>
<tr>
<td>Verhaltenskodizes</td>
<td>255</td>
</tr>
<tr>
<td>Verhaltensprogrammierung</td>
<td>50</td>
</tr>
<tr>
<td>Vermenschlichung</td>
<td>85</td>
</tr>
<tr>
<td>verstärkendes Lernen</td>
<td>62</td>
</tr>
<tr>
<td>Vex Robotics Design System</td>
<td>98</td>
</tr>
<tr>
<td>virtueller Agent</td>
<td>32</td>
</tr>
<tr>
<td>Voice-Activity Detection</td>
<td>160</td>
</tr>
<tr>
<td>Stichwortverzeichnis</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Wakamaru 86</td>
<td></td>
</tr>
<tr>
<td>Walt 91, 286</td>
<td></td>
</tr>
<tr>
<td>wertorientiertes Design 102</td>
<td></td>
</tr>
<tr>
<td>Within-Subjects-Design 237</td>
<td></td>
</tr>
<tr>
<td>Wizard-of-Oz-Technik 243</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zeno 278</td>
<td></td>
</tr>
<tr>
<td>zoomorphe Roboter 31</td>
<td></td>
</tr>
</tbody>
</table>