HANSER

Leseprobe

zu

Nanoelektronik

von Alexander Klös

Print-ISBN: 978-3-446-47899-2 E-Book-ISBN: 978-3-446-47900-5

Weitere Informationen und Bestellungen unter https://www.hanser-kundencenter.de/fachbuch/artikel/9783446478992 sowie im Buchhandel

© Carl Hanser Verlag, München

Vorwort

Die Anforderungen an das Fachgebiet der Mikroelektronik in der Lehre haben sich in den letzten Jahrzehnten stark verändert. Bis in das Jahr 2000 reichte für eine Vermittlung von Inhalten, welche nicht nur die Systemebene, sondern auch die Funktionsweise der integrierten Bauelemente betrachten, häufig eine semiklassische Beschreibung aus. Die stetige Verkleinerung der Strukturgrößen bis in den Bereich weniger Nanometer macht inzwischen eine tiefer gehende Betrachtung notwendig, welche Quanteneffekte wie beispielsweise den Tunneleffekt mit einbeziehen muss. Das Fachgebiet der *Nanoelektronik* ist entstanden. Die Lehre auf diesem Gebiet steht vor der Herausforderung, sowohl die physikalischen Grundlagen zum Verständnis dieser Effekte als auch das Klemmenverhalten von Bauelementen für eine Betrachtung im Schaltungsverbund zu vermitteln. Für Bachelor- und Masterstudierende der Elektrotechnik bleibt im Studium wenig Zeit, sich in die Grundlagen der Halbleiterphysik einzuarbeiten. Studierende der Physik decken diesen Teil zwar mit großer Tiefe ab, erreichen aber oft nicht eine Sichtweise in Bezug auf das Bauelement in einem Netzwerk.

Hier soll das vorliegende Buch einen Beitrag liefern. Es ist auf Grundlage von Vorlesungen entstanden, welche ich seit vielen Jahren auf den Gebieten der *Nanoelektronik* und *Festkörperelektronik* für Studierende der Elektrotechnik in Bachelor- und Masterstudiengängen an der Technischen Hochschule Mittelhessen halte. Bei der Konzeption des Buchs stand im Vordergrund, dass es als alleinige Grundlage für eine Vorlesung auf dem Gebiet mikroelektronischer oder nanoelektronischer Bauelemente geeignet ist.

Die Erläuterungen einer Vielzahl physikalischer Effekte in Halbleitern verlangen keine Vorkenntnisse, welche über die Grundlagen der Elektrotechnik hinausgehen. Das Buch enthält eine Einführung in die Grundlagen der Halbleiterphysik und -technologie bis zu einer Tiefe, wie sie zum Verständnis für den Einfluss von Quanteneffekten auf das Klemmenverhalten der Bauelemente notwendig ist. Dies erlaubt auch Bachelorstudierenden, einen Einblick in die besondere Funktionsweise von Schaltelementen der Nanoelektronik zu erhalten. Für Studierende von Masterstudiengängen sind detaillierte Ableitungen quantenmechanischer Grundlagen und der Kennliniengleichungen von Bauelementen enthalten.

Zur Unterstützung des Lernerfolgs schließen die meisten Kapitel mit Wiederholungsfragen, welche die erläuterten Zusammenhänge ohne notwendige Berechnungen abfragen. Übungsaufgaben mit Musterlösungen dienen der weiteren Vertiefung des Lernstoffs.

In Ergänzung zu den Rechenbeispielen wird in einigen Kapiteln auf die Simulationsplattform *http://nanohub.org* der Purdue University (USA) verwiesen. Hier stehen (nach kostenloser Registrierung) eine Vielzahl von Online-Simulationstools für das Gebiet der Nanoelektronik zur Verfügung, welche das Verständnis der Inhalte zusätzlich unterstützen.

Das Buch umfasst mit den Kapiteln 2, 3, 4 und 5 eine für Elektrotechnikstudierende geeignete Einführung in die Grundlagen der Halbleiterphysik, welche die in Bauelementen der Nanoelektronik in Erscheinung tretenden besonderen Effekte enthält. Kapitel 6 gibt einen kurzen Überblick über die Grundlagen der Halbleitertechnologie, wie er zum Verständnis der im Buch vorgestellten Bauelementstrukturen notwendig ist. Studierende der Physik können von der Beschreibung der Funktionsweise einer Vielzahl klassischer Bauelemente der Mikroelektronik in Kapitel 7, ausgehend von den zugrunde liegenden physikalischen Effekten bis hin zu ihrem Klemmenverhalten, profitieren. Kapitel 8 gibt eine Einführung die wichtige CMOS-Schaltungstechnik und Speichertechnologien.

Kapitel 9 führt nach Darstellung der technologischen Entwicklung der klassischen CMOS-Technologie in die heutige Großintegration ein und erläutert ihre Grenzen. Dabei steht das elektrische Verhalten des MOS-Transistors als immer noch wichtigstes Schaltelement im Vordergrund. Kapitel 10 stellt schließlich Bauelementstrukturen vor, welche als Ergänzung oder Ersatz des klassischen MOS-Transistors angedacht sind. Zum heutigen Zeitpunkt werden sie zwar bereits experimentell gefertigt, haben aber noch keinen Einzug in die Serienfertigung erhalten.

An dieser Stelle möchte ich den Doktoranden und Studierenden der Arbeitsgruppe *Nanoelektronik/Bauelementmodellierung* an der TH Mittelhessen danken, welche mit ihren wissenschaftlichen Arbeiten im Rahmen öffentlich geförderter Projekte auf dem Gebiet der Simulation und Modellbildung neuartiger Transistorkonzepte einen wichtigen Beitrag zu deren Verständnis und Beschreibung geleistet haben. Besonderer Dank gilt Dr.-Ing. Mike Schwarz für das Korrekturlesen der Inhalte dieses Buchs.

Schließlich einen besonderen Dank an meine Familie für die vielfältige Unterstützung meiner Arbeit in all den Jahren.

Gießen, im Mai 2018

Alexander Klös

Vorwort zur 2. Auflage

Kaum ein Gebiet der Ingenieurwissenschaften entwickelt sich so rasant wie die Nanoelektronik. Seit der Drucklegung der ersten Auflage dieses Buchs wurden neue Bauelementkonzepte entwickelt, die für die weitere Entwicklung der Großintegration sehr vielverspechend sind. Heute bereiten die drei wirtschaftlich größten Halbleiterhersteller den Übergang zu sogenannten Nanosheet-Transistoren vor. Durch konsequente Weiterentwicklung dieses Konzepts haben 2D-Materialien in der Nanoelektronik inzwischen eine große Bedeutung erlangt und werden für neue Transistorstrukturen erforscht. Diese Entwicklungen sind jetzt in der neuen Auflage des Buchs enthalten.

Weiterhin wurden die Grundlagenkapitel zur Halbleiterphysik erweitert, um dem Anspruch des Buchs als umfassendes und alleiniges Begleitbuch für Vorlesungen auch in Masterstudiengängen gerecht zu werden. Hierbei wird insbesondere der Einführung der Bandstruktur von Halbleitern und der Berechnung von Tunnelströmen mehr Raum gewidmet. Eine Vielzahl von kleineren Änderungen und Aktualisierungen in allen sonstigen Kapiteln und eine Übersicht der empfohlenen Simulationstools auf der Plattform nanohub.org runden die neue Auflage ab.

An dieser Stelle sei darauf hingewiesen, dass aus Gründen einer einheitlichen Darstellung im Text und in den grafischen Darstellungen der Punkt als Dezimaltrennzeichen entsprechend dem englischen Sprachraum verwendet wird.

Inhalt

1	Ein	führung in die Nanoelektronik	15
	1.1	Bedeutung der Mikroelektronik	15
	1.2	Chancen der Nanoelektronik	16
2	Eig	enschaften von Halbleitern	19
	2.1	Struktur von Halbleitern	19
		2.1.1 Bandstruktur	19
		2.1.2 Atomarer Aufbau von Silizium	22
		2.1.3 Kristallgitter	23
		2.1.4 2D-Materialien	25
	2.2	Eigenleitung	26
	2.3	Fremdleitung	27
		2.3.1 n-dotiertes Silizium	28
		2.3.2 p-dotiertes Silizium	28
		2.3.3 Ladungsbilanz	29
	2.4	pn-Übergang	30
		2.4.1 Sperrwirkung der pn-Diode	30
		2.4.2 Lösung der Poisson-Gleichung am pn-Übergang	33
	2.5	Wiederholungsfragen	36
	2.6	Übungen	37
	2.7	Lösungen	38
3	Tei	Ichen und Wellen	39
	3.1	Dualismus von Welle und Teilchen	39
	3.2	Die Schrödinger-Gleichung	41
		3.2.1 Fourier-Transformation	42
		3.2.2 Materiewellen	43
		3.2.3 Eindimensionale, zeitunabhängige Schrödinger-Gleichung	45
	3.3	Der Potenzialtopf	46
	3.4	Quantenstrukturen	52
	3.5	Orbitale des Wasserstoffatoms	54
	3.6	Transmission, Reflexion und Tunneleffekt	56
		3.6.1 Rechteckbarriere	57

		3.6.2	WKB-App	proximation	59
	3.7	Wiede	erholungsf	ragen	60
	3.8	Übun	gen		60
	3.9	Lösun	gen		61
4	Bar	ndstru	uktur un	d Bändermodell	65
	4.1	Weller	nfunktion	und Bandstruktur im Kristall	65
	4.2	Effekt	ive Masse		71
	4.3	Gener	ation und	Rekombination	73
		4.3.1	Generatio	onsprozesse	74
		4.3.2	Rekombi	nationsprozesse	74
	4.4	Bände	ermodell		76
		4.4.1	Intrinsisc	hes Silizium	76
		4.4.2	Dotiertes	Silizium	79
	4.5	Metal	lurgische Ü	Übergänge	81
		4.5.1	pn-Überş	gang	81
			4.5.1.1	Fhermisches Gleichgewicht	81
			4.5.1.2 I	Flussrichtung	84
			4.5.1.3	Sperrrichtung	86
		4.5.2	Schottky-	Übergang	87
			4.5.2.1	Fhermisches Gleichgewicht	87
			4.5.2.2 I	Flussrichtung	. 89
			4.5.2.3	Sperrrichtung	. 91
			4.5.2.4 I	Effektive Barrierenhöhe	. 91
		4.5.3	Heteroüb	pergänge	. 91
		4.5.4	Allgemein	ne Vorgehensweise zur Konstruktion eines Bändermodells	93
	4.6	Fermi	-Integral u	ınd Zustandsdichte	94
		4.6.1	Dreidime	ensionales System	. 95
		4.6.2	Zweidime	ensionales System	. 98
		4.6.3	Eindimer	nsionales System	. 98
	4.7	Wiede	erholungsf	ragen	. 99
	4.8	Übun	gen		. 100
	4.9	Lösun	gen		101
5	Lac	lungs	transpo	ort in Halbleitern	105
	5.1	Drifts	trom		105
	5.2	Diffus	ionsstrom	L	111
	5.3	Kontii	nuitätsglei	chungen	112

	5.4	Tunnel	strom			113
		5.4.1	Tunneln	durch Potenzialbarrier	ren	113
		5.4.2	Band-zu	Band-Tunneln		115
		5.4.3	Verände	ung von Zustandsgröß	Sen	116
		5.4.4	Tunnels	comberechnung		118
	5.5	Wieder	holungs	ragen		121
	5.6	Übung	en			122
	5.7	Lösung	gen			123
6	Gru	Indlag	en der	Halbleitertechno	logie	125
	6.1	Siliziun	n-Planaı	echnologie		125
	6.2	Herstel	lung ein	cristalliner Wafer		127
	6.3	Chemis	sche Dep	ositionsverfahren		128
		6.3.1	CVD-Pro	zesse		128
		6.3.2	Epitaxie			130
	6.4	Physika	alische D	epositionsverfahren		130
		6.4.1	Aufdamj	fen		130
		6.4.2	Sputtern	•••••		131
		6.4.3	Material	en zur Metallisierung		132
		(6.4.3.1	Aluminium		132
		(6.4.3.2	Kupfer-Metallisierung		132
	6.5	Lithogr	afie			132
		6.5.1	Fotolithe	grafie		133
		6.5.2	Elektron	enstrahllithografie		135
		6.5.3	Röntgen	ithografie		136
	6.6	Ätzproz	zesse			136
		6.6.1	Nassche	nisches Ätzen		137
		6.6.2	Trocken	tzen		137
		(6.6.2.1	Plasmaätzen		137
		(6.6.2.2	Reaktives Ionenätzen.		138
		(6.6.2.3	Sputter-Ätzen		138
	6.7	Thermi	ische Ox	dation		138
	6.8	Dotieru	ng	•••••		141
		6.8.1	Diffusio			141
		6.8.2	Ionenim	plantation		142
	6.9	CMOS-	Prozess			142
	6.10	Wiederholungsfragen 1				145

7	Kla	ssisc	he Bau	uelemente der Mikroelektronik 1	147
	7.1	Diode	enstruktu	ren	147
		7.1.1	pn-Dio	de	148
			7.1.1.1	Schwache Injektion	148
			7.1.1.2	Hohe Injektion	152
			7.1.1.3	Sperrverhalten	153
			7.1.1.4	Sperrschichtkapazität	154
			7.1.1.5	Diffusionskapazität	155
			7.1.1.6	Kleinsignalersatzschaltbild	156
		7.1.2	Esaki-Ti	unneldiode	157
		7.1.3	Resonat	nte Tunneldiode	159
		7.1.4	Schottk	y-Diode	160
			7.1.4.1	Thermischer Emissionsstrom	161
			7.1.4.2	Tunnelstrom	163
	7.2	Bipola	artransist	tor	165
		7.2.1	Funktio	nsweise in eindimensionaler Näherung	165
		7.2.2	Early-Ef	ffekt	168
		7.2.3	Stromgl	eichungen und Kennlinien	169
		7.2.4	Ebers-N	Ioll-Modell	171
		7.2.5	Kleinsig	nalersatzschaltbild	173
		7.2.6	Struktu	rbezogenes Ersatzschaltbild im SBC-Prozess	174
	7.3	MOS-	Feldeffek	cttransistor	176
		7.3.1	Prinzipi	elle Funktionsweise	177
		7.3.2	Schwell	spannung	180
			7.3.2.1	Flachbandzustand	180
			7.3.2.2	Starke Inversion	182
			7.3.2.3	Schwellspannungsimplantation	183
			7.3.2.4	Substrateffekt	184
			7.3.2.5	Transistortypen	184
		7.3.3	MOS-Ka	apazität	186
		7.3.4	Vereinfa	achtes Strommodell	188
			7.3.4.1	Gradual-Channel-Approximation	188
			7.3.4.2	Kanallängenmodulation	189
			7.3.4.3	Kennlinien	190
			7.3.4.4	Extraktion der Schwellspannung	192
		7.3.5	Kleinsig	malverhalten	192
			7.3.5.1	Kleinsignalleitwerte	192
			7.3.5.2	Kapazitive Effekte	194

		7.3.5.3 Meyer-Modell 19				
		7.3.5.4 Kleinsignalersatzschaltbild 19				
		7.3.6 Grenzen Bulk-MOSFET 19				
	7.4	Optoelektronische Bauelemente 20				
		7.4.1 Strahlungsbauelemente 20				
		7.4.1.1 Lumineszenzdiode 20				
		7.4.1.2 Halbleiterlaser 20				
		7.4.2 Absorptionsbauelemente 20				
		7.4.2.1 Fotodiode				
		7.4.2.2 Solarzelle				
	7.5	Wiederholungsfragen				
	7.6	Übungen 21				
	7.7	Lösungen 21				
8	Dig	tale CMOS-Schaltungstechnik 223				
	8.1	Logikgatter 22				
		3.1.1 Inverter 22				
		3.1.2 NAND und NOR 22				
	8.2	ungsaufnahme				
	8.3	Speicherbausteine				
		3.3.1 DRAM				
		3.3.2 6T-SRAM-Zelle 23				
		B.3.3 Flash-Speicher 23				
	8.4	iederholungsfragen 2				
	8.5	Übungen 24				
	8.6	Lösungen 24				
	Mar	o structure Foldoffoldteren sisteren				
9	Nar	ostruktur-Feidemekttransistoren				
	9.1	Skalierung der CMOS-Technologie				
		9.1.1 Moore'sches Gesetz				
		9.1.2 Selbstjustiertes Polysilizium-Gate 24				
		9.1.3 Kupferverdrahtung und Low-k-Dielektrikum 24				
		9.1.4 Verspanntes Silizium				
		9.1.5 High-k-Metal-Gate-Technologie 24				
		9.1.6 Multi-Gate-Transistoren 25				
	9.2	Kleingeometrie-Bulk-MOSFET 25				
		9.2.1 Bändermodell Source-Kanal-Drain				
		9.2.2 Ableitung verbesserter Stromgleichungen 25				

		9.2.2.1	Starke Inversion	252		
		9.2.2.2	Schwache Inversion	255		
	9.2.3	Kurzkar	aleffekte			
		9.2.3.1	Schwellspannungsverschiebung	260		
		9.2.3.2	Leckstrom	262		
		9.2.3.3	Verschlechterung des Subthreshold-Swing	262		
		9.2.3.4	Bahnwiderstände	264		
		9.2.3.5	LDD-Strukturen	265		
		9.2.3.6	Ladungsträgerinjektion	266		
		9.2.3.7	Weitere Kurzkanaleffekte	267		
	9.2.4	Schmal	kanaleffekte	267		
		9.2.4.1	Standard-LOCOS-Isolation	267		
		9.2.4.2	Trench-Isolation	268		
9.3	UTB-	Fechnolo	gie	270		
	9.3.1	SOI-Sub	ostrat	270		
	9.3.2	UTB-M	OSFETs	272		
		9.3.2.1	Partially Depleted SOI	273		
		9.3.2.2	Fully Depleted SOI	274		
9.4	Multi	ple-Gate-	-MOSFET	275		
	9.4.1	Double	-Gate-MOSFET	275		
		9.4.1.1	Bändermodell	276		
		9.4.1.2	Stromgleichung	279		
		9.4.1.3	Diskrete Dotierstoffverteilung	282		
		9.4.1.4	Ultra-Kurzkanal-FET	284		
	9.4.2	Dreidin	nensionale Effekte in Multiple-Gate-MOSFETs	289		
		9.4.2.1	Bauelementstrukturen	289		
		9.4.2.2	Strompfad	291		
		9.4.2.3	Skalierung im Schaltungsdesign	296		
	9.4.3	Nanosh	eet-MOSFET	297		
		9.4.3.1	Grundstruktur	297		
		9.4.3.2	CMOS-Technologie	298		
9.5	Wiede	erholung	sfragen	299		
9.6	Übun	gen		301		
9.7	Lösun	ungen 301				

10	Alte	ernative Nanostruktur-MOSFETs	303
	10.1	Ziele für alternative Transistorstrukturen	303
	10.2	High-Mobility-Channel-FET	306
	10.3	Junctionless-MOSFET	307
		10.3.1 Funktionsweise	308
		10.3.2 Kennlinie	310
		10.3.3 Vorteile	311
		10.3.4 Nachteile	312
	10.4	Schottky-Barrier-MOSFET	312
		10.4.1 Funktionsweise	313
		10.4.2 Kennlinie	316
		10.4.3 Vorteile	317
		10.4.4 Nachteile	317
	10.5	Reconfigurable-FET	318
	10.6	Tunnel-FET	320
		10.6.1 Funktionsweise	320
		10.6.2 Optimierung der Kennlinie	322
		10.6.2.1 Einschaltstrom	322
		10.6.2.2 Ambipolarer Strom	324
		10.6.2.3 Subthreshold-Swing	326
		10.6.3 Vorteile	327
		10.6.4 Nachteile	327
	10.7	Weitere Steep-Slope-Switches	329
		10.7.1 Impact-Ionization-FET	329
		10.7.2 Negative-Capacitance-MOSFET	330
	10.8	2D-MOSFET	331
	10.9	Wiederholungsfragen	333
Kor	ista	nten und Materialparameter	335
Sim	ula	tionstools	337
For	mel	zeichen	345
Lite	ratu	ır	351
Inde	ех		355

Einführung in die Nanoelektronik

In diesem Kapitel wird zunächst die Bedeutung der Mikroelektronik für technologischen Fortschritt erläutert. Anschließend wird das Gebiet der *Nanoelektronik* davon abgegrenzt. Die hierbei wichtigen grundlegenden physikalische Effekte der Mikrophysik werden benannt.

Lernziele

Die Lernenden ...

- kennen die technologische Entwicklung der Mikroelektronik,
- kennen die Abgrenzung von Mikro- zur Nanoelektronik,
- können die in der Nanoelektronik gegenüber der Mikroelektronik zusätzlich in Erscheinung tretenden physikalischen Effekte benennen.

1.1 Bedeutung der Mikroelektronik

Die in den vergangenen Jahrzehnten erreichte enorme Steigerung der Leistungsfähigkeit elektronischer Systeme beruht in hohem Maße auf dem Fortschritt der Mikroelektronik. Maßgeblich hierbei ist die Silizium-Technologie, welche durch kontinuierliche Verkleinerung der hergestellten Strukturgrößen einen stetigen Anstieg der Komplexität integrierter Schaltkreise bei immer geringerer Leistungsaufnahme ermöglichte (vgl. Bild 1.1). Damit wurden moderne mobile Anwendungen mit langer Akkulaufzeit bei hoher Rechenleistung wie beispielsweise das Smartphone geschaffen. Aber auch die Steigerung der Leistungsfähigkeit in Multi-Core-Prozessorsystemen wäre ohne die Vergrößerung der Integrationsdichte nicht möglich.

Als wichtigstes Schaltelement einer digitalen Schaltung auf einem VLSI-Chip (VLSI: engl. für *very large scale integration*) gilt seit vielen Jahrzehnten der MOS-Feldeffekttransistor (MOS-FET), da mit ihm die geringste Leistungsaufnahme und höchste Integrationsdichte für ein komplexes System zu erzielen ist.

Die Silizium-Planartechnologie basiert auf der schrittweisen Abscheidung dünner Schichten auf einem *Silizium-Wafer* (einkristalline dünne Siliziumscheibe) und deren laterale Strukturierung. Daraus werden ausschließlich auf der Oberfläche des Wafers die funktionalen Bauelemente geschaffen. Die Dicke der abgeschiedenen Schichten ist schon seit Jahrzehnten im Bereich weniger Nanometer bis Mikrometer. Die lateralen Strukturen sind ebenfalls schon seit den neunziger Jahren im Submikrometerbereich. Dennoch spricht man erst seit ca. 15 Jahren im Bereich höchstintegrierter Schaltkreise von "Nanoelektronik".

Bild 1.1 Historische Entwicklung der Anzahl integrierter Schaltelemente je Chip am Beispiel von Prozessorgenerationen

Die möglichst defektfreie technologische Realisierung von Strukturen im Bereich weniger Nanometer über die gesamte Obefläche eines Wafer hinweg, der heute einen Durchmesser von bis zu 450 mm hat, verlangt hochtechnologische Herstellungsprozesse im Reinraum. Der Bau einer Halbleiterfabrik kostet daher mehrere Milliarden US\$, sodass weltweit nur noch wenige Unternehmen in der Lage sind, dieses finanzielle Risiko zu tragen.

Die Entwicklungskosten eines Mikrochips und die Auftragsfertigung in einer Halbleiterfabrik können bis zu mehreren Millionen US\$ betragen. Nur mit genügend großer Stückzahl eines Integrierten Schaltkreises können die Entwicklungskosten so auf die einzelnen Chips umgelegt werden, dass ein Verkaufspreis von wenigen US\$ erreicht wird.

1.2 Chancen der Nanoelektronik

Was unterscheidet *Nanoelektronik* von *Mikroelektronik*? In der Fachwelt spricht man von Nanoelektronik, wenn in Halbleiterbauelementen physikalische Effekte in Erscheinung treten, die in älteren Technologien überhaupt nicht erkennbar oder zumindest vernachlässigbar waren. Diese Effekte sind quantenmechanischer Natur und verlangen zu deren Beschreibung ein tiefgehendes Verständnis für die Betrachtung von Elektronen als Wellen oder Teilchen. Zwar basiert die gesamte Festkörperphysik im Kern auf dem Dualismus zwischen Welle und Teilchen, jedoch erlaubt die Einführung des sogenannten Bändermodells für kristalline Halbleiter in den meisten Fällen eine Beschreibung der elektrischen Effekte in mikroelektronischen Bauelementen auf Grundlage der klassischen Physik. Für die Nanoelektronik ist diese Vereinfachung nicht mehr möglich; die Wellennatur des Elektrons hat einen wesentlichen Einfluss. Bei Abmessungen im Nanometerbereich hat man die Größenordnung der Wellenlänge von Elektronen im Bauelement erreicht. Dadurch wird insbesondere das *Tunneln* von Ladungsträgern durch Barrieren ermöglicht.

In Bauelementen der Nanoelektronik tritt der Tunneleffekt in zwei Arten in Erscheinung:

- Der Tunneleffekt kann als unerwünschter, parasitärer Effekt das elektrische Verhalten des Schaltkreises verschlechtern und verhindert damit auch die weitere Miniaturisierung der Bauelemente. Beispielsweise steigen Leckströme an, sodass ein energieeffizienter Betrieb bei Steigerung der Integrationsdichte nicht mehr erreicht werden kann.
- Der Tunneleffekt kann aber auch zur Steigerung der elektrischen Leistungsfähigkeit in neuartigen Bauelementen gezielt genutzt werden. Hierzu ist es notwendig, in einer Technologie Strukturabmessungen im Bereich weniger Nanometer kontrolliert herstellen zu können. Die heutige Technologie ist hierzu in der Lage.

Aber nicht nur das gezielte Nutzen quantenmechanischer Effekte macht neuartige Bauelemente der Nanoelektronik aus. Die Fähigkeit, in einer Technologie Strukturen von wenigen Nanometern Abmessung mit ausreichender Genauigkeit und Ausbeute herzustellen, erlaubt die Realisierung ganz neuartiger Transistorgeometrien. Als Beispiel sei die im Jahr 2011 eingeführte *FinFET-Technologie* genannt, welche einen grundlegenden Wandel der jahrzehntelang vergleichsweise ähnlich gebliebenen Herstellung des MOS-Transistors bedeutete. Führende Hersteller setzten mit dieser Technologie auf eine weitere Verkleinerung des einzelnen Schaltelements. Heute werden Konzepte für neue Transistorstrukturen mit funktionalen Schichten entwickelt, welche nur noch eine Dicke von wenigen Nanometern aufweisen, sogenannte *Nanosheets.* All diese weltweiten Forschungsanstrengungen in Industrie und Hochschulen zielen darauf ab, den Bedarf der Industriegesellschaft nach immer höherer Leistungsfähigkeit integrierter Schaltkreise zu decken.

Auch unter Verwendung dieser neuartigen Transistorstrukturen ist das Ende der Miniaturisierung beinahe erreicht. Die Funktionsweise des MOS-Transistors verschlechtert sich bezüglich seines Schaltverhaltens so immens, dass intensiv nach alternativen Konzepten für einen elektronischen Schalter geforscht wird. Die in Nanostrukturen in den Vordergrund tretenden Effekte können hierbei vielleicht als Grundlage für neuartige Transistorprinzipien genutzt werden.

2

Eigenschaften von Halbleitern

Nanoelektronische Bauelemente bestehen zum größten Teil aus Halbleitermaterialien. Daher sind für das Verständnis ihrer Funktionsweise Kenntnisse über die elektrische Leitfähigkeit dieser Materialien und der darin auftretenden Ladungen essenziell.

Lernziele

Die Lernenden ...

- können Metalle Halbleiter Isolatoren anhand ihrer Bandstruktur unterscheiden,
- kennen die Ursachen elektrischer Leitfähigkeit in Halbleitern,
- kennen die Ursache der Sperrwirkung einer Diode,
- verstehen die Grundlagen der Elektrostatik an einem pn-Übergang.

I 2.1 Struktur von Halbleitern

Die Leitfähigkeit eines Festkörpers wird durch die Konzentration an freien, beweglichen Ladungsträgern bestimmt, welche für einen Stromfluss zur Verfügung stehen. Im nächsten Abschnitt wird zunächst der grundsätzliche Unterschied in der Bandstruktur verschiedener Festkörper erläutert. Aufgrund der Bedeutung von Silizium für die Mikroelektronik und auch die Nanoelektronik werden in den nachfolgenden Abschnitten elektrische Eigenschaften von Halbleitern am Beispiel dieses Elements erläutert. Darauf aufbauend wird dann in späteren Kapiteln auf die Besonderheiten anderer Halbleiter hingewiesen.

2.1.1 Bandstruktur

Die Unterschiede in der sogenannten *Bandstruktur* von Isolatoren, Halbleitern und Metallen verdeutlicht Bild 2.1. Aufgrund der Ausbildung und Interferenz von Wellenfunktionen der Elektronen im Festkörper befinden sich nur in den sogenannten Energiebändern erlaubte Energieniveaus der Elektronen. In den dazwischenliegenden Bandlücken findet sich kein erlaubtes Energieniveau.

Nur Ladungsträger mit einer Energie entsprechend dem *Leitungsband* können sich im Festkörper frei bewegen. Wirkt nun ein elektrisches Feld auf diese Ladungsträger ein, dann entsteht eine gerichtete Bewegung und es fließt ein Strom.

Bild 2.1 Schematische Darstellung der Bandstruktur von Isolatoren, Halbleitern und Metallen

Ladungsträger im *Valenzband* eines Atoms (wie auch Elektronen in Bändern mit geringerer Energie) sind an dieses gebunden und können daher nicht zum Stromfluss beitragen. Gelangen Elektronen aus dem Valenzband jedoch durch Aufnahme von Energie in Höhe der Bandlücke E_G in das Leitungsband, dann können diese die Leitfähigkeit des Materials erhöhen. Ein Übergang vom Valenz- in das Leitungsband ist beispielsweise durch Aufnahme thermischer Energie oder Absorption von Photonen möglich.

Bei Isolatoren besteht zwischen Valenz- und Leitungsband eine Bandlücke von mehr als 5 eV. Das Valenzband ist von Elektronen besetzt, wogegen das Leitungsband unbesetzt ist. Daher kann im Isolator kein Stromfluss stattfinden.

Die Einheit eV (*Elektronenvolt*) steht für die Energie $1.602 \cdot 10^{-19}$ VAs. Ein Elektronenvolt ist damit die Menge an potenzieller Energie, welche ein Elektron bei Bewegung in einem elektrostatischen Feld mit der Potenzialdifferenz von 1 V aufnimmt oder abgibt.

In Metallen befinden sich bereits ohne Zufuhr thermischer Energie, das heißt bei einer Temperatur von T = 0 K, Elektronen im Leitungsband. Damit ist eine grundsätzliche Leitfähigkeit von Metallen gegeben.

Halbleiter liegen mit ihren Eigenschaften zwischen Isolatoren und Metallen. Wir betrachten hier zunächst den *intrinsischen*, das heißt reinen Halbleiter, ohne Verunreinigungen durch Fremdatome. Beim absoluten Nullpunkt der Temperatur befinden sich alle Elektronen im Valenzband und in darunterliegenden Bändern. Das Leitungsband ist unbesetzt. Der Halbleiter verhält sich also als Isolator. Wird die Temperatur erhöht, dann können Elektronen zusätzliche thermische Energie aufnehmen und den Übergang in das Leitungsband schaffen. Hierzu ist die Aufnahme von Energie in mindestens der Größe der Bandlücke $E_{\rm G}$ notwendig. Damit steigt die elektrische Leitfähigkeit der Halbleiter bei Erwärmung und sie verhalten sich zunehmend entsprechend den Metallen.

Der Unterschied zwischen Isolatoren und Halbleitern ist also im Wesentlichen in der Größe der Bandlücke E_G begründet. Bei Isolatoren ist diese so groß ($E_G > 5$ eV), dass die Aufnahme thermischer Energie nicht genügt, eine für einen Stromfluss ausreichende Anzahl von Elektronen in das Leitungsband zu bringen. Dagegen gelingt dies bei Halbleitern aufgrund ihrer geringeren Bandlücke.

Gruppe Periode	II	III	IV	V	VI
2	Ве	В	С	N	0
3	Mg	AI	Si ₁₄	Р	S
4	Zn	Ga	Ge	As	Se
5	Cd	In	Sn	Sb	Те
6	Hg	Ti	Pb	Bi	Ро

Bild 2.2 Ausschnitt aus dem Periodensystem mit den wichtigsten Elementen der Halbleitertechnologie

Aus der mit einer Erwärmung ansteigenden Anzahl von Elektronen, welche vom Valenz- in das Leitungsband gelangen, folgt für die elektrische Leitfähigkeit im intrinsischen Halbleiter direkt eine *exponentielle Abhängigkeit von der Temperatur*.

Wichtige chemische Elemente der Halbleitertechnologie sind in Bild 2.2 dargestellt. Man unterscheidet zwischen sogenannten *Elementhalbleitern* aus der IV. Hauptgruppe wie Silizium und Germanium und *Verbindungshalbleitern* wie beispielsweise Legierungen aus Elementen der III. und V. Hauptgruppe.

Der wichtigste Halbleiter ist hierbei Silizium aufgrund seiner Verwendung in der historisch langjährigen und ausgereiften Technologie. Silizium weist mit einer Bandlücke von $E_{\rm G} = 1.12$ eV bereits bei Raumtemperatur eine geringe elektrische Leitfähigkeit auf. Die exponentielle Zunahme von Ladungsträgern im Leitungsband verbietet allerdings einen Betrieb siliziumbasierter Schaltkreise bei Umgebungstemperaturen von mehr als 150 °C.

Bei Verbindungshalbleitern ist insbesondere Galliumarsenid (GaAs) mit weiteren Anteilen von Aluminium (Al), Indium (In), Phosphor (P), Stickstoff (N) oder Antimon (Sb) für optoelektronische Bauelemente von Bedeutung. Galliumnitrid (GaN) findet aufgrund der in speziellen Strukturen erreichbaren hohen Schaltgeschwindigkeit Anwendung als Material in der Hochfrequenztechnik. Aber auch in der Leistungselektronik hat GaN in den letzten Jahren eine große Bedeutung erlangt. Die große Bandlücke mehr als 3 eV und ein niedriger Verlustwiderstand erlaubt die Realisierung von Konvertern mit Spannungen bis zu 600 V und Leistungen bis zu 10 kW. Daher sind GaN-basierte Transistoren in DC/DC-Wandlern im Bereich von Elektrokleingeräten bis hin zur industriellen Stromversorgung sehr verbreitet.

Auch Legierungen von Elementen in der IV. Hauptgruppe werden in der Technologie für spezielle Anwendungen verwendet: Siliziumkarbid (SiC) beispielsweise weist je nach strukturellem Aufbau eine Bandlücke von 2.4 eV...3.3 eV auf und eignet sich daher zum Beispiel für die Realisierung von Hochtemperaturelektronik, welche Betriebstemperaturen von mehreren hundert Grad Celsius erlaubt. Die große Bandlücke ermöglicht auch hier das Schalten hoher Spannungen. SiC-basierte Transistoren zunehmend in der Leistungselektronik zum Schalten von Leistungen bis in den Bereich von mehr als 100 kW eingesetzt.

Im Zuge der Nanoelektronik werden vermehrt Elementhalbleiter mit Verbindungshalbleitern in sogenannten *Heterostrukturen* kombiniert. Die Abscheidung extrem dünner Schichten wechselnder Materialien in einer Dicke von nur wenigen Nanometern erlaubt das kontrollierte Auftreten quantenmechanischer Effekte, die man sich zur Steigerung der Leistungsfähigkeit von Bauelementen zunutze macht.

2.1.2 Atomarer Aufbau von Silizium

Bild 2.3 zeigt für Silizium das vollständige *Atommodell nach Bohr*¹ und eine vereinfachte Darstellung. Im Bohr'schen Atommodell werden die Elektronen auf unterschiedliche Energieniveaus, die sogenannten stationären Zustände oder Schalen gesetzt. Wenn man die Schalen durchnummeriert (1...7), erhält man die Hauptquantenzahl *n*. Die Schalen können immer nur mit einer bestimmten Anzahl Elektronen besetzt werden; die maximale Anzahl beträgt $2 \cdot n^2$. Eine innere Schale muss immer erst voll besetzt sein, bevor die nächsthöhere Schale besetzt werden kann.

Bild 2.3 Atommodell nach Bohr für Silizium: a) vollständig mit allen Schalen, b) vereinfachte Darstellung, nur die äußere Schale der Valenzelektronen ist dargestellt, c) vereinfachte Darstellung der Elektronenpaarbindung zweier benachbarter Siliziumatome (Austausch eines Valenzelektrons)

Ein Elektron kann von einer Schale in eine andere springen. Dieser als Quantensprung bezeichnete Vorgang lässt sich mit der klassischen Mechanik und Elektrodynamik nicht erklären. Beim Quantensprung zwischen stationären Zuständen mit verschiedener Energie kann elektromagnetische Strahlung in Form eines Photons emittiert oder absorbiert werden. Die Energie des Photons entspricht der Energiedifferenz zwischen den beiden Zuständen. Alternativ kann auch eine Umwandlung in Wärmeenergie erfolgen.

Mit seiner Kernladungszahl 14 besitzt ein Siliziumatom 14 Elektronen auf den Schalen (vgl. Bild 2.3a). Entsprechend der IV. Hauptgruppe des Periodensystems befinden sich auf der äußersten besetzten Schale vier sogenannte *Valenzelektronen*. Nur diese können unter Zuführung geringer Energie das Atom verlassen. Für die elektrischen Eigenschaften des Halbleiters sind diese Valenzelektronen maßgeblich, daher verwenden wir nachfolgend eine vereinfachte Darstellung des Siliziumatoms. Es reicht die Betrachtung der vier Valenzelektronen zusammen mit einem vierfach positiv geladenen Kern, damit das gesamte Atom elektrisch neutral bleibt (Bild 2.3b).

Mit seinen vier Valenzelektronen kann das Siliziumatom mit vier benachbarten Atomen eine Elektronenpaarbindung eingehen (Bild 2.3c).

¹ Niels Bohr (1885–1962), dänischer Physiker, gelang 1922 durch Annahme eines Schalenmodells eine Erklärung für den Aufbau des Periodensystems der Elemente. Er erhielt 1922 für seine Forschungen über die Atomstruktur sowie die von den Atomen ausgehende Strahlung den Nobelpreis für Physik.

2.1.3 Kristallgitter

In Halbleitern wird die Energie zum Aufbau der Kristallgitter durch die Bindungsenergie der Valenzelektronen aufgebracht. Silizium und Germanium kristallisieren aus der Schmelze im sogenannten *Diamantgitter*. Bild 2.4 verdeutlicht dies und zeigt schematisch eine Elementarzelle des Kristallgitters. Die Abmessungen einer Elementarzelle bezeichnen wir mit der *Gitterkonstanten a*₀. Für Silizium beträgt $a_0 = 0.543$ nm, wobei eine Zelle acht Siliziumatome enthält. Das Kristallgitter besteht aus zwei kubisch-flächenzentrierten Gittern, wobei das zweite um 1/4 der Würfeldiagonalen in der Diagonalrichtung gegenüber dem ersten Gitter verschoben ist.

Bild 2.4 Elementarzelle eines Silizium-Kristalls (Diamantgitter)

Die Verbindungshalbleiter Galliumarsenid und Galliumphosphid kristallieren im *Zinkblende-gitter*. Es entspricht dem Diamantgitter, bei dem das erste kubisch-flächenzentrierte Gitter aus Galliumatomen, das zweite Gitter aus Arsenatomen besteht.

Die Eigenschaften eines Halbleiters hängen von der Kristallstruktur ab. Innerhalb eines Materials sind verschiedene Größen abhängig von der Richtung im Kristall. Zur Definition verschiedener Ebenen und Richtungen in Kristallgittern wurden die *Miller'schen Indizes* eingeführt. Sie können in folgenden Schritten bestimmt werden (vgl. Bild 2.5):

- 1. Man zeichnet die kubische Elementarzelle in ein kartesisches Koordinatensystem ein. Die drei Kanten des Würfels müssen auf den Achsen *x*, *y*, *z* liegen.
- 2. Die Schnittpunkte der Kristallebene mit den Achsen *x*, *y*, *z* werden in Einheiten der Gitterkonstanten ausgedrückt.
- 3. Anschließend wird der Kehrwert der erhaltenen Zahlen gebildet. Die Komponenten werden mit einem gemeinsamen Faktor multipliziert, sodass sich die drei kleinsten ganzen Zahlen *h*, *k*, *l* ergeben, welche im gleichen Verhältnis stehen wie die ursprünglichen Kehrwerte.
- 4. Das Ergebnis wird in runde Klammern gesetzt: (*h k l*).
- 5. Negative Indizes werden durch Querbalken über dem Index dargestellt (z. B. $(1 \ \overline{1} \ 0))$.

Beispiel 2.1 Bestimmung der Miller'schen Indizes

Zur Bestimmung der Miller'schen Indizes der in Bild 2.5 gezeigten Ebene gehen wir wie folgt vor:

Bild 2.5 Beispiel einer Kristallebene mit Darstellung der Elementarzelle im Koordinatensystem

Die Achsenabschnitte der Ebene betragen:

x-Achse: 1, y-Achse: 2, z-Achse: 3

- Wir bilden den Kehrwert und erhalten:
 - $\left(\frac{1}{1} \quad \frac{1}{2} \quad \frac{1}{3}\right)$
- Wir erweitern mit dem Faktor 6, damit alle Zahlen ganzzahlig werden. Die gesuchten Miller-Indizes der Kristallebene lauten daher:

(632)

Beispiele für Kristallebenen, welche in der Halbleitertechnologie häufig verwendet werden, zeigt Bild 2.6.

Kristallrichtungen werden durch die Gruppe kleinster Zahlen ausgedrückt, welche dasselbe Verhältnis zueinander haben wie die Komponenten eines Vektors in der gewünschten Richtung. Zur Bezeichnung der Richtung werden diese Zahlen in eckige Klammern gesetzt.

In kubischen Kristallen ist die Gitterkonstante in den drei Richtungen gleich. Daher stehen hier die Richtungen $[h \ k \ l]$ senkrecht auf der Ebene $(h \ k \ l)$ mit den gleichen Indizes. Die Richtung entspricht also dem Normalenvektor der zugehörigen Kristallebene.

Sind anstatt einer spezifischen Netzebene alle symmetrisch äquivalenten Ebenen gemeint, so wird die Notation {*h k l*} verwendet. Beispielsweise bezeichnet man im kubischen Kristallsystem mit {1 0 0} die äquivalenten Ebenen (1 0 0), ($\overline{1}$ 0 0), (0 1 0), (0 $\overline{1}$ 0), (0 0 1), (0 0 $\overline{1}$), was den sechs Oberflächen eines Würfels entspricht. Die Notation (*h k l*) bezeichnet alle zum Vektor [*h k l*] symmetrisch äquivalenten Richtungen. Die Angabe (1 1 1) steht daher für alle Raumdiagonalen.

In der Siliziumtechnologie wird vorwiegend (100)-orientiertes Material verwendet. Das heißt, dass die Oberfläche des Wafers der (100)-Ebene entspricht.

Index

Absorption, 54 Absorptionskoeffizient, 204 Ätzmaske, 136 Ätzprozess - anisotrop, 136 - isotrop, 136 - nasschemisch, 137 - Plasma-, 137 - reaktiver Ionen- (RIE), 138 - Sputtern, 138 - trocken, 137 Akkumulation, 308 Akkumulationskanal, 187 aktiv-normaler Betrieb, 165 Aktivgebiete, 144 Akzeptoren, 29, 79 ambipolarer Betrieb, 315, 322, 324, 331 ASIC, 126 Atommodell nach Bohr, 22, 50, 54 Aufdampfen, 130 Auger-Prozesse, 75 Ausgangsleitwert - Bipolartransistor, 173 - MOSFET, 194 Austrittsarbeit, 78, 79

back gate, 274
Bändermodell, 65, 76
Bipolartransistor, 165
Diode in Flussrichtung, 149
Diode in Sperrrichtung, 153
Double-Gate-MOSFET, 276
Esaki-Tunneldiode, 157
Flash-Speicherzelle, 237
Heteroübergang, 91
JLT, 308
MOSFET, 180, 250
pin-Fotodiode, 205
pn-Übergang, 82, 85

- Resonante Tunneldiode (RTD), 159 - RFET, 318 - SB-MOSFET, 313 - Schottky-Diode, 161 - Schottky-Übergang, 87 - TFET, 321, 323 - Tunnelprozesse, 114 Bahnwiderstand, 264 Bahnzonen, 33 ballistischer Transport, 110, 267, 284 Bandabstand, 67, 79 Bandlücke, 66, 68, 79 Bandstruktur, 19, 67 Bandübergang - direkt, 74 - indirekt, 74 Barrierenhöhe - effektive, 91 intrinsische, 89 Basis, 165 Belichtung - Kontakt-, 133 - Projektions-, 133 - Proximity-, 133 - Step-and-Repeat-, 133 Besetzungsinversion, 202 Beweglichkeit, 106, 252 **Bipolartransistor**, 165 - äußerer Transistor, 175 - aktiv-normaler Betrieb, 165 - Ausgangsleitwert, 173 - Bändermodell, 165 - Buried-Laver, 175 - Early-Effekt, 168, 173 - Early-Spannung, 169 - Ebers-Moll-Modell, 172 - funktioneller Teil, 175 - Gummel-Poon-Modell, 173 - innerer Transistor, 175 - Inversbetrieb, 165, 171

 Kleinsignalersatzschaltbild, 173 linearer Arbeitsbereich, 165 neutrale Basiszone, 167 - quasistatisch, 174 - Rückwärtsbetrieb, 165, 171 Sättigungsbereich, 165, 171 - Standard-Buried-Collector-Prozess, 174 - Steilheit, 173 Stromverstärkung - in Basisschaltung, 169 - in Emitterschaltung, 169 - Transitzeit, 167 - Transkonduktanz, 173 - Vorwärtsbetrieb, 170, 171 bird's beak, 139 Bitline, 232, 233 Bohr'sches Atommodell, 22, 50, 54 Boltzmann-Konstante, 31, 77 Boltzmann-Näherung, 97 Boltzmann-Verteilung, 78 bound states, 66 Brillouin-Zone, 68 built-in voltage, 256 Bulk, 177 Bulk-Current-Mode, 308 Bulk-MOSFET, 199, 243 Buried-Layer, 175 Buried-Oxide, 270

Cache, Prozessor-Cache-Speicher, 234 **CFET**, 298 Channel-Stop-Implantation, 267 Chemical-Vapor-Deposition (CVD), 128 classical turning points, 56 CMOS - Aktivgebiete, 144 - Inverter, 224 - Leistungsaufnahme, 230, 303 - NAND, 229 - NOR, 229 - selbstjustiert, 144, 246 - Technologie, 142, 177, 223 CMP: chemical mechanical polishing, 127, 270 Complementary FET, 298 Complementary MOS, 142, 223

Control-Gate, 235, 320 Crystal Viewer Tool, 26 current crowding, 264 CV-Messung, 186 CVD, 128 – Low-Pressure, 128 – Plasma-Enhanced, 128

dangling bonds, 332 De-Broglie-Welle, 40 density of states, 94 depletion region, 32, 33, 187, 308 depletion type, 184 Depletion-Mode, 308 Diamantgitter, 23 DIBL: Drain-Induced-Barrier-Lowering, 261 Dichalkogenid, 25, 331 Diffusion, 141 - erschöpfliche Quelle, 141 unerschöpfliche Quelle, 141 Diffusionskapazität, 155 Diffusionskonstante, 111 Diffusionslänge, 148 Diffusionsmaske, 141 Diffusionsspannung, 152 Diffusionsstrom, 83, 111 Dirac-Punkt, 331 direkter Halbleiter, 69, 74, 75 Donatoren, 28, 79 DOS, 94 Dotierung, 79, 141, 282 Double-Gate (DG) MOSFET, 275 Drain, 177 Dreieckbarriere, 59 Driftgeschwindigkeit, 105 Driftsättigungsgeschwindigkeit, 108, 253 Driftstrom, 83, 105 Driftzone, 252 Dualismus, 40 Dunkelstrom, 205 Durchbruchfeldstärke, 154

Early-Effekt, 168, 173 Early-Spannung, 169 Ebers-Moll-Modell, 172 Effective-Mass-Approximation, 71, 72

effektive Masse, 71 leichte Löcher, 73 - longitudinale, 72 - schwere Löcher, 73 - transversale, 72 effektive Zustandsdichte, 97 Eigenenergie, 45, 48, 54 Eigenleitung, 27 Einstein-Beziehung, 111 elastisches Tunneln, 116 Elektronenaffinität, 76 Elementarzelle, 23 Elementhalbleiter, 21 Emission, 55 - induzierte, 202 - spontane, 202 - stimulierte, 202 - thermische, 313 Emitter, 165 Energiebänder, 66 Energiebandschema, 76 energy gap, 67 enhancement type, 184 entarteter Halbleiter, 81 Epitaxie, 91, 130 Exponentialansatz, 46 Extreme-UV (EUV), 136

Fallenzustände, 113, 326 Fermi-Dirac-Integral, 97 Fermi-Dirac-Statistik, 77 Fermi-Level, 79 Fermi-Level-Pinning, 317 Fermi-Niveau, 77 Fermi-Verteilung, 77, 78 FinFET, 289 - Bulk, 291 - SOI, 291 Flachbandspannung, 180, 182 Flachbandzustand, 180, 308 Floating-Gate, 235 Flussrichtung, 84 Forksheet-FET, 298 Fotodiode, 204 fotoelektrischer Effekt, 54 Fotoelement, 205

Fotoleiter, 204 Fotostrom, 204, 205 Fototransistor, 205 Fourier-Integral, 42 Fourier-Transformation, 41 Fowler-Nordheim-Tunneln, 113, 114 Fremdleitung, 28, 29 Füllfaktor, 207 Fully-Depleted-SOI-MOSFET (FDSOI), 274

GAA-FET (Gate-All-Around-FET), 289 Gamma-Funktion, 97 Gate, 177 Gate-Underlap, 317, 325 Gate-Voltage-Overdrive, 188 gebundene Zustände, 66 Generation, 73 Generationsrate, 73, 204 Gitter - Diamant-, 23 - kubisch-flächenzentriert, 23, 68 Zinkblende-, 23 Gitterkonstante, 23, 65 Gradual-Channel-Approximation, 188, 253 Graphen, 25 Gruppengeschwindigkeit, 41 Gummel-Poon-Modell, 173

Halbleiter, 20 – 2D-, 25 – degeneriert, 81, 202 – direkt, 69, 74, 75 – indirekt, 69, 74, 75 Halbleiterlaser, 202 heavy holes, 73 Heisenberg'sche Unschärferelation, 44 Heteroepitaxie, 130 Heterostrukturen, 53, 91, 130, 159, 202, 324 High-k-Materialien, 249, 259, 262, 306, 324 High-Mobility-Channel-FET, 306 Hochfeldzone, 179 Hot-Carriers, 239, 265

I-MOS, 305, 329 IFET, 305, 329 Image-Charge-Effect, 91 Immersionslithografie, 135 Impact Ionization, 154 Impact-Ionization-FET, 305, 329 Implantation, 142 Implantationsdosis, 142 Impulsraum, 68 indirekter Halbleiter, 69, 74, 75 inelastisches Tunneln, 116 Injektion - hohe, 152 - schwache, 148 Interbandübergang, 73 intrinsisch, 76 intrinsische Ladungsträgerdichte, 27 Inversbetrieb, 165, 171 Inversion, 187 - schwache, 255, 280 - starke, 182, 252, 253, 279 Inversion-Mode-MOSFET, 303 Inversionskanal, 177 Ionenimplantation, 142 Isolatoren, 20

junction capacitance, 154 Junctionless-MOSFET (JLT), 307

k-Raum, 68 Kanallängenmodulation, 189 Kanalleitwert - klassisch, 286 ballistisch, 286 Kathodenzerstäubung, 131 klassische Umkehrpunkte, 56 Kleinsignalersatzschaltbild - Bipolartransistor, 173 - MOSFET, 198 Kollektor, 165 komplexes Frequenzspektrum, 42 Kontinuitätsgleichung, 112 Kristallgitter, 23 kritischer Pfad, 228 kubisch-flächenzentriertes Gitter, 23, 68 Kurzkanaleffekte, 259 Kurzschlussstrom, 207

Landauer-Transmissionstheorie, 118 Laser, 202 Laserbedingungen, 202 Lasermoden, 202 Lawinendurchbruch, 31, 86 Lawineneffekt, 86 LDD: Lightly-Doped-Drain, 266 Lebensdauer, 75 Leckstrom, 262 LED, 200 Leerlaufspannung, 207 Leitungsband, 20, 67 Unterkante, 79 light holes, 73 light-emitting diode, 200 linearer Arbeitsbereich - Bipolartransistor, 165 MOSFET, 177 Lithografie, 132 - Elektronenstrahl-, 136 - optische, 133 - Röntgen-, 136 Local-Oxidation-of-Silicon (LOCOS), 139, 267 Löcher - leichte, 73 - schwere, 73 Logikpegel, 226 lokale Zustandsdichte, 315 Low-k-Materialien, 248 LPCVD, 128 lucky electron, 236 Lumineszenzdiode, 200

Majoritäten, 29 Masse – effektive, 71 – leichte Löcher, 73 – longitudinale, 72 – schwere Löcher, 73 – transversale, 72 Massenwirkungsgesetz, 30, 97 Materiewellen, 43 Matthiesen-Regel, 106 Memory – DRAM, 232 – Flash, 235

- non-volatile, 232, 236 Kanalleitwert: ballistisch, 286 - RAM, 231 - Kanalleitwert: klassisch, 286 - SRAM, 233, 327 Kleinsignalersatzschaltbild, 198 - volatile, 232, 234 - linearer Arbeitsbereich, 177 Metalle, 20 - Multiple-Gate, 275 Metallisierung - Nanosheet-, 297 - Aluminium, 132 - Negative-Capacitance (NC), 330 - Kupfer, 132 - Oberflächenpotenzial, 182 Meyer-Modell, 196 - Partially-Depleted (PDSOI), 273 Miller'sche Indizes, 23 - quasistatisch, 195 Miller-Kapazität, 246 - reconfigurable, 318 Minoritäten, 29 Sättigungsbereich, 179 Minoritätenkonzentration, 148 - Sättigungsspannung, 179 mittlere freie Weglänge, 106 Schottky-Barrier-, 312 mobility, 106 schwache Inversion, 255 bulk low-field, 252 - Schwellspannung, 180, 183, 192, 261 - surface, 252 Schwellspannungsimplantation, 184 Moore'sches Gesetz, 244 - selbstleitend, 184 MOS-Kapazität, 186 - selbstsperrend, 184 MOSFET, 176, 177, 184 Shichman-Hodges-Strommodell, 188 Akkumulationskanal, 187 - Silicon-On-Insulator (SOI), 270 Ausgangsleitwert, 194 - Skalierung, 244 back gate, 274 SOI-FinFET, 291 - Bändermodell, 180 - Source, 177 - Bulk-, 177, 199, 243 - starke Inversion, 182 - Bulk-FinFET, 291 - Steilheit, 192 - CMOS, 142, 223 - Substrateffekt, 184 Complementary, 298 - Substratfaktor, 183 depletion type, 184 - Subthreshold-Bereich, 255 DIBL: Drain-Induced-Barrier-Lowering, Subthreshold-Slope, 258 261 - Subthreshold-Swing, 258 - Double-Gate (DG), 275 - Transitzeit, 195 - Drain, 177 - Transkonduktanz, 192 - enhancement type, 184 Tunnel-FET (TFET), 320 - Flachbandspannung, 180, 182 - Ultra-Thin-Body (UTB), 270 - Forksheet-, 298 - Volumeninversion, 274 Fully-Depleted (FDSOI), 274 - VT roll-off, 261, 295 - Gate, 177 - Widerstandsbereich, 179 - Gate-Voltage-Overdrive, 188 Multi-Core-Prozessor, 231 Gradual-Channel-Approximation, 188, 253 - Hochfeldzone, 179 Multiple-Gate-MOSFET, 275 Impact-Ionization, 329 - Inversion, 187 Nanodraht, 53 Inversion-Mode, 303 Nanosheet-MOSFET, 297 - Inversionskanal, 177 - Junctionless-, 307 nanowire, 53 Kanallängenmodulation, 189 Nanowire-MOSFET, 290

Negative-Capacitance-MOSFET (NC-MOSFET), 306, 330 Negative-Capacitance-Tunnel-FET (NC-TFET), 306 Oberflächenpotenzial, 182, 256 Oberkante des Valenzbands, 79 Orbital, 54 Orbitalmodell, 54 Oxidation - bird's beak, 267 - feuchte, 138 - thermische, 138 - trockene, 138 - Vogelschnabel, 267 parasitärer Teil, 175 Partially-Depleted-SOI-MOSFET (PDSOI), 273 Pauli-Prinzip, 66 **PECVD**, 128 Phasenschiebermaske, 135 Phonon-Assisted-Tunneling, 113, 114, 116 Phononen, 55 Phosphorsilicatglas, 144 pin-Fotodiode, 205 Planartechnologie, 125 Planck'sches Wirkungsquantum, 40 pn-Diode, 81, 148 pn-Übergang, 30, 148 Poisson-Gleichung, 34 Polysilicon-Depletion-Effect, 249 Potenzialtopf, 46, 65 Power-Delay-Produkt, 303 Program-Gate, 319 punch through, 260 Quanten-Kaskaden-Laser, 202 Quantenstrukturen, 52 Quantenwirkungsgrad, 204 quantum dot, 53 quantum well, 46 quantum wire, 53 Quantum-Confinement, 50, 98, 159, 276

Quasi-Fermi-Niveau, 84

Raumladungszone, 32 RDF - Random-Dopant-Fluctuation, 267, 282.312 Rechteckbarriere, 57 Reconfigurable-FET (RFET), 318 Reflexion, 56 Reflexionskoeffizient, 56 Reflow-Prozess, 144 Rekombination, 73 nichtstrahlende, 75 strahlende, 74, 200 Rekombinationsrate, 73 Replacement-Metal-Gate (RMG), 249 Richardson-Konstante, 162, 267 Rückwärtsbetrieb, 165, 171 Sättigungsbereich - Bipolartransistor, 165, 171 MOSFET, 179 Sättigungsgeschwindigkeit, 108 Sättigungsspannung, 179 Sättigungsstrom – der pn-Diode, 150 - der Schottky-Diode, 162 Schalenmodell, 54 Schmalkanaleffekte, 267 Schottky barrier lowering, 91, 316 - Diode, 87, 161 Kontakt, 87 Schottky-Barrier-MOSFET, 312, 318 Schrödinger-Gleichung, 41, 45, 54 schwache Injektion, 148 Schwellspannung, 180, 183, 192, 261 Schwellspannungsimplantation, 184 Schwellstromdichte, 202 selbstjustiert, 144, 246 Shallow-Trench-Isolation (STI), 140, 224, 266, 268 Shichman-Hodges-Strommodell, 188 Shockley'sche Diodengleichung, 31, 150 Shockley-Read-Hall-Rekombination, 75 Silicon-On-Insulator (SOI), 270 Silizid, 312

quasistatisch, 174, 195

Simulationstools - 2DFET, 332 - Band Structure Lab, 69 - BJT Lab, 171 Carrier Statistics Lab, 98 - cNEGF, 288 - cTFET, 328 - MOSCap, 187 - MOSFET Simulation, 192 - NanoMOS, 272, 288 - Periodic Potential Lab, 66 - PN Junction Lab, 87, 156 - Quantum Dot Lab, 55 - RTD Simulation with NEGF, 160 Skalierung, 296 Smart-Cut-Prozess, 270 Solarzelle, 205, 207 Source, 177 Spacer, 264 Spaltfunktion, 42 Speicher - dynamisches RAM (DRAM), 232 - Flash, 235 - flüchtig, 232, 234 - nichtflüchtig, 232, 236 - RAM, 231 - statisches RAM (SRAM), 233, 327 Sperrrichtung, 86, 153 Sperrschichtkapazität, 154 Sperrstrom, 86 – am pn-Übergang, 150 – am Schottky-Übergang, 162 Sperrwirkung, 30 spezifische Leitfähigkeit, 107 Sputter-Ätzen, 138 Sputtern, 131 Square-Root-Approximation, 255 Standard-Buried-Collector-Prozess, 174 Steep-Slope-Switches, 305, 320, 329 Steilheit - Bipolartransistor, 173 - MOSFET, 192 Störabstand, 226 Stoßionisation, 154, 329 strained silicon, 248 Strompfad, 291

Stromverstärkung – in Basisschaltung, 169 – in Emitterschaltung, 169 Subbänder, 52, 98, 99, 278 subbands, 52, 98, 99, 278 Substrateffekt, 184 Substratfaktor, 183 Subthreshold-Bereich, 255 Subthreshold-Slope, 258, 262, 313, 326 Supply-Function, 120 surface conduction, 308 surface roughness scattering, 107, 253, 311 surface states, 182 switching energy, 303

TAT, 113, 326 thermische Emission, 161 thermisches Gleichgewicht, 81 Tiegelziehen nach Czochralski, 127 Transition-Metal-Dichalcogenide (TMD), 25, 331 Transitzeit - Bipolartransistor, 167 - MOSFET, 195 – pn-Übergang, 155 Transkonduktanz Bipolartransistor, 173 MOSFET, 192 Transmission, 56 Transmissionskoeffizient, 56 Trap-Assisted-Tunneling, 113, 114, 326 traps, 113, 326 trench capacitor, 128, 138 trianguläre WKB-Approximation, 59 Tsu-Esaki-Formel, 121 Tunnel-Feldeffekttransistor (TFET), 305, 320 Tunneldiode - Esaki-, 157 - resonante (RTD), 159 Tunneling-Generation-Rate (TGR), 323 Tunneln, Tunneleffekt, 52, 56 - Band-zu-Band, 115, 320 - direkt, 116 - elastisch, 116

- Fowler-Nordheim, 113, 114, 236

- indirekt, 116 - inelastisch, 116 - Landauer-Transmission, 118 - line tunneling, 324 - phonon-assisted, 113, 114, 116 - point tunneling, 324 - Potentialbarriere, 113 - Reconfigurable FET, 318 - Schottky-Barrier-FET, 315 - Source-Drain-, 286 - supply-function, 120 - trap-assisted, 113, 114, 326 - Tsu-Esaki-Formel, 121 Tunnelstrom, 163 Tunnelwahrscheinlichkeit, 56, 163 two-well process, 224

ultra-shallow source/drain, 262, 264 Ultra-Thin-Body (UTB), 270 unbound states, 66 ungebundene Zustände, 66 Unterkante des Leitungsbands, 79

Vakuum-Level, 79 Vakuumlevel, 76 Valenzband, 20 – Oberkante, 79 Van-der-Waals-Kraft, 25, 332 Veraschen, 138 Verbindungshalbleiter, 21 Verlustleistung – dynamische, 231 – statische, 230 Vogelschnabel, 139 volume conduction, 308 Vorwärtsbetrieb, 171 VT roll-off, 261, 295

Wahrscheinlichkeitsdichte, 44
Wasserstoffatom, 54
Welle-Teilchen-Dualismus, 40
Wellenpaket, 41
Wentzel-Kramers-Brillouin-Approximation (WKB), 59, 164, 323
Widerstandsbereich, 179
Wirkungsgrad

LED, 201
Solarzelle, 207

WKB-Approximation, 59

trianguläre, 59
Wordline, 232, 233
work function, 78, 79

Zener-Bereich, 31 Zener-Diode, 154 Zener-Effekt, 154 Zinkblendegitter, 23 Zonenziehverfahren, 127 Zustandsdichte, 78, 94 – lokal, 315 Zwischengitterplätze, 142