HANSER

Leseprobe

zu

RFID-Handbuch

von Klaus Finkenzeller

Print-ISBN: 978-3-446-44885-8 E-Book-ISBN: 978-3-446-47972-2

Weitere Informationen und Bestellungen unter

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446448858

sowie im Buchhandel

© Carl Hanser Verlag, München

Inhaltsverzeichnis

Vorw	ort zur 8.	AuflageXVII
Verw	endete Ab	kürzungenXIX
1	Einführ	ung 1
1.1	Automat	ische Identifikationssysteme
	1.1.1	Barcode-Systeme
	1.1.2	Optical Character Recognition4
	1.1.3	Biometrische Verfahren5
	1.1.3.1	Sprachidentifizierung5
	1.1.3.2	Fingerabdruckverfahren (Daktyloskopie)6
	1.1.4	Chipkarten6
	1.1.4.1	Speicherkarten8
	1.1.4.2	Mikroprozessorkarten8
	1.1.5	RFID-Systeme9
1.2	Vergleich	h verschiedener ID-Systeme9
1.3	Bestandt	eile eines RFID-Systems
2	Unterscl	neidungsmerkmale von RFID-Systemen
2.1	Grundsät	zliche Unterscheidungsmerkmale
2.2	Bauform	en von Transpondern16
	2.2.1	Disks und Münzen
	2.2.2	Glasgehäuse
	2.2.3	Plastikgehäuse
	2.2.4	Werkzeug- und Gasflaschenidentifikation
	2.2.5	Schlüssel und Schlüsselanhänger
	2.2.6	Uhren
	2.2.7	Bauform ID-1, kontaktlose Chipkarten
	2.2.8	Smart Label
	2.2.9	Coil-on-Chip
	2.2.10	Weitere Bauformen
2.3	Frequenz	z, Reichweite und Kopplung
2.4	Aktive u	nd passive Transponder
2.5	Informat	ionsverarbeitung im Transponder
2.6	Auswahl	kriterien für RFID-Systeme
	2.6.1	Arbeitsfrequenz
	2.6.2	Reichweite
	2.6.3	Sicherheitsanforderungen
	2.6.4	Speicherkapazität
3		gende Funktionsweise
3.1	1-bit-Tra	nsponder

VI Inhaltsverzeichnis

	3.1.1	Radiofrequenz	34
	3.1.2	Mikrowelle	37
	3.1.3	Frequenzteiler	39
	3.1.4	Elektro-Magnetisch	40
	3.1.5	Akustomagnetisch	43
3.2	Voll- und	d Halbduplexverfahren	45
	3.2.1	Induktive Kopplung	47
	3.2.1.1	Energieversorgung passiver Transponder	47
	3.2.1.2	Datenübertragung Transponder > Lesegerät	49
	3.2.2	Elektromagnetische Backscatter-Kopplung	58
	3.2.2.1	Energieversorgung der Transponder	58
	3.2.2.2	Datenübertragung Transponder > Leser: Modulierter Rückstrahlquerschnitt .	60
	3.2.3	Close coupling	61
	3.2.3.1	Energieversorgung der Transponder	61
	3.2.3.2	Datenübertragung Transponder > Leser	62
	3.2.3.3	Close-Coupling-Chipkarten	62
	3.2.4	Elektrische Kopplung	65
	3.2.4.1	Energieversorgung passiver Transponder	65
	3.2.4.2	Datenübertragung Transponder > Lesegerät	66
3.3	Sequentielle Verfahren		
	3.3.1	Induktive Kopplung	67
	3.3.1.1	Spannungsversorgung des Transponders	67
	3.3.1.2	Vergleich zwischen FDX-/HDX- und SEQ-Systemen	68
	3.3.1.3	Datenübertragung Transponder > Leser	70
	3.3.2	Oberflächenwellen-Transponder	71
3.4	Near Fie	ld Communication (NFC)	73
	3.4.1	Active Mode	74
	3.4.2	Passive Mode	75
4	Physikal	lische Grundlagen für RFID-Systeme	77
4.1	Magnetis	sches Feld	78
	4.1.1	Magnetische Feldstärke H	78
	4.1.1.1	Feldstärkeverlauf H(x) bei Leiterschleifen	79
	4.1.1.2	Optimierter Antennendurchmesser	81
	4.1.2	Magnetischer Fluss und magnetische Flussdichte	83
	4.1.3	Induktivität L	83
	4.1.3.1	Induktivität einer Leiterschleife	84
	4.1.4	Gegeninduktivität M	84
	4.1.5	Kopplungsfaktor k	86
	4.1.6	Induktionsgesetz	88
	4.1.7	Resonanz	90
	4.1.8	Praktischer Betrieb des Transponders	95
	4.1.8.1	Spannungsversorgung des Transponders	95

	4.1.8.2	Spannungsregelung	95
	4.1.9	Ansprechfeldstärke Hmin	97
	4.1.9.1	"Energiereichweite" von Transpondersystemen	100
	4.1.9.2	Ansprechbereich von Lesegeräten	102
	4.1.10	Gesamtsystem Transponder – Lesegerät	103
	4.1.10.1	Transformierte Transponderimpedanz ZT'	105
	4.1.10.2	Einflussgrößen von ZT'	108
	4.1.10.3	Lastmodulation	115
	4.1.11	Messung von Systemparametern	122
	4.1.11.1	Messung des Kopplungsfaktors k	122
	4.1.11.2	Messung von Transponderresonanzfrequenz und Gütefaktor	123
	4.1.12	Magnetische Werkstoffe	132
	4.1.12.1	Eigenschaften magnetischer Werkstoffe und Ferrite	132
	4.1.12.2	Ferritantennen in LF-Transpondern	133
	4.1.12.3	Ferritabschirmung in metallischer Umgebung	134
	4.1.12.4	Einbau von Transpondern in Metall	135
4.2	Elektroma	agnetische Wellen	137
	4.2.1	Entstehung elektromagnetischer Wellen	137
	4.2.1.1	Übergang vom Nah- zum Fernfeld bei Leiterschleifen	138
	4.2.2	Strahlungsdichte S	139
	4.2.3	Feldwellenwiderstand und Feldstärke E	140
	4.2.4	Polarisation elektromagnetischer Wellen	141
	4.2.4.1	Reflexion elektromagnetischer Wellen	142
	4.2.5	Antennen	144
	4.2.5.1	Gewinn und Richtwirkung	144
	4.2.5.2	EIRP und ERP	146
	4.2.5.3	Eingangsimpedanz	146
	4.2.5.4	Wirksame Fläche und Rückstreuquerschnitt	147
	4.2.5.5	Effektive Länge	150
	4.2.5.6	Dipolantenne	151
	4.2.5.7	Yagi-Uda-Antenne	153
	4.2.5.8	Patch- oder Mikrostripantennen	153
	4.2.5.9	Schlitzantennen	156
	4.2.6	Praktischer Betrieb von Mikrowellentranspondern	156
	4.2.6.1	Ersatzschaltbilder des Transponders	157
	4.2.6.2	Spannungsversorgung passiver Transponder	158
	4.2.6.3	Spannungsversorgung aktiver Transponder	166
	4.2.6.4	Reflexion und Auslöschung	167
	4.2.6.5	Ansprechempfindlichkeit des Transponders	168
	4.2.6.6	Modulierter Rückstreuquerschnitt	168
	4.2.6.7	Lesereichweite	171
4.3	Oberfläch	enwellen	174
	4.3.1	Entstehung einer Oberflächenwelle	174

VIII Inhaltsverzeichnis

	4.3.2	Reflexion einer Oberflächenwelle	176
	4.3.3	Funktionsschema von OFW-Transpondern	177
	4.3.4	Der Sensoreffekt	179
	4.3.4.1	Reflektive Verzögerungsleitung	181
	4.3.4.2	Resonante Sensoren	182
	4.3.4.3	Impedanzsensoren	184
	4.3.5	Geschaltete Sensoren	184
5	Frequen	zbereiche und Funkzulassungsvorschriften	187
5.1	_	ete Frequenzbereiche	
	5.1.1	Frequenzbereich 9 135 kHz	
	5.1.2	Frequenzbereich 6,78 MHz (ISM)	189
	5.1.3	Frequenzbereich 13,56 MHz (ISM, SRD)	
	5.1.4	Frequenzbereich 27,125 MHz (ISM)	
	5.1.5	Frequenzbereich 40,680 MHz (ISM)	191
	5.1.6	Frequenzbereich 433,920 MHz (ISM)	
	5.1.7	UHF-Frequenzbereich	192
	5.1.7.1	Frequenzbereich 865,0 MHz 868 MHz (SRD) in Europa	192
	5.1.7.2	Frequenzbereich 915 921 MHz (SRD) in Europa	192
	5.1.7.3	Frequenzbereich 915,0 MHz	192
	5.1.8	Frequenzbereich 2,45 GHz (ISM, SRD)	193
	5.1.9	Frequenzbereich 5,8 GHz (ISM, SRD)	193
	5.1.10	Frequenzbereich 24,125 GHz (ISM)	193
	5.1.11	Auswahl der Frequenz für induktiv gekoppelte RFID-Systeme	194
5.2	Internation	onale Fernmeldeunion (ITU)	196
5.3	Europäis	che Zulassungsvorschriften	198
	5.3.1	CEPT/ERC REC 70-03	199
	5.3.1.1	Annex 1: Non-specific Short Range Devices	200
	5.3.1.2	Annex 4: Railway applications	201
	5.3.1.3	Annex 5: Road Transport & Traffic Telematics	202
	5.3.1.4	Annex 9: Inductive applications	203
	5.3.1.5	Annex 11: RFID applications	205
	5.3.2	Standardisierte Messverfahren	207
	5.3.2.1	Übergreifende Standards	207
	5.3.2.2	Anwendungsspezifische Messvorschriften	209
5.4	National	e Zulassungsvorschriften in Europa	209
	5.4.1	Bundesrepublik Deutschland	
	5.4.1.1	Induktive Funkanwendungen	210
	5.4.1.2	RFID-Systeme im UHF-Bereich	212
5.5		e Zulassungsvorschriften USA	
5.6	Vergleich	h nationaler Regulierungsvorschriften	
	5.6.1	Umrechnung bei 13,56 MHz	
	5.6.2	Umrechnung auf UHF	217

6	Codieru	ng und Modulation	219
6.1	Codierur	ng im Basisband	220
6.2	Digitale	Modulationsverfahren	222
	6.2.1	Amplitudentastung (ASK)	223
	6.2.2	2-FSK	225
	6.2.3	2-PSK	226
	6.2.4	Modulationsverfahren mit Hilfsträger	227
7	Datenin	tegrität	229
7.1	Fehlererl	kennende und -korrigierende Codes	229
	7.1.1	Das Prinzip der Codekonstruktion	231
	7.1.2	Eigenschaften von Codes	233
	7.1.3	Einfache Codes – die Paritätsprüfung	235
	7.1.4	Zyklische Codes	236
	7.1.4.1	CRC-Verfahren	237
	7.1.4.2	Hardware-Implementierung von CRC	240
	7.1.4.3	CRC-Verfahren bei RFID-Systemen	241
	7.1.5	Lineare Codes	242
	7.1.5.1	Hammingcode	243
	7.1.5.2	Hammingcode-Implementierung in ISO/IEC 14443	245
7.2	Vielfach	zugriffsverfahren – Antikollision	250
	7.2.1	Raummultiplex – SDMA	253
	7.2.2	Frequenzmultiplex – FDMA	254
	7.2.3	Zeitmultiplex – TDMA	255
	7.2.4	Beispiele für Antikollisionsverfahren	257
	7.2.4.1	ALOHA-Verfahren	257
	7.2.4.2	Slotted-ALOHA-Verfahren	259
	7.2.4.3	Binary-Search-Algorithmus	263
8	Sicherhe	eit von RFID-Systemen	273
8.1	Angriffe	auf RFID-Systeme	274
	8.1.1	Angriffe auf den Transponder	275
	8.1.1.1	Dauerhaftes Zerstören des Transponders	275
	8.1.1.2	Abschirmen oder Verstimmen des Transponders	276
	8.1.1.3	Emulieren und Klonen eines Transponders	276
	8.1.2	Angriffe über das HF-Interface	278
	8.1.2.1	Abhören der Kommunikation	278
	8.1.2.2	Störsender	297
	8.1.2.3	Lesen mit vergrößerter Lesereichweite	298
	8.1.2.4	Transponder mit vergrößerter Reichweite	305
	8.1.2.5	Denial-of-Service-Angriff durch Blocker Tags	310
	8.1.2.6	Relay-Attack	312
8.2	Abwehr	durch kryptografische Maßnahmen	315
	8.2.1	Kryptografische Funktionen und Merkmale kryptografischer Verfahren	317

X Inhaltsverzeichnis

	8.2.1.1	Hashfunktionen und MAC	318
	8.2.1.2	Blockchiffren	320
	8.2.1.3	Stromchiffren	326
	8.2.2	Kryptografische Protokolle	328
	8.2.2.1	Gegenseitige symmetrische Authentifizierung	329
	8.2.2.2	Authentifizierung mit abgeleiteten Schlüsseln	330
	8.2.2.3	Basic Access Control Protocol (BAC)	331
8.3	Technisc	he Richtlinien für sicheren RFID-Einsatz	334
9	Normun	g	337
9.1	Tierident	tifikation	337
	9.1.1	ISO/IEC 11784 – Codestruktur	337
	9.1.2	ISO/IEC 11785 – technisches Konzept	338
	9.1.2.1	Anforderungen	338
	9.1.2.2	Voll-/Halbduplex-System	340
	9.1.2.3	Sequentielles System	341
	9.1.3	ISO/IEC 14223 – "Advanced Transponders"	341
	9.1.3.1	Teil 1 – Air Interface	341
	9.1.3.2	Teil 2 – Code and Command Structure	
9.2	Kontaktl	ose Chipkarten	345
	9.2.1	ISO/IEC 10536 - Close-coupling-Chipkarten	346
	9.2.2	ISO/IEC 14443 – Proximity-coupling-Chipkarten	347
	9.2.2.1	Physikalische Eigenschaften	348
	9.2.2.2	Energieübertragung und Signalinterface	350
	9.2.2.3	Initialisierung, Antikollision und Protokollaktivierung	365
	9.2.2.4	Datenübertragungsprotokoll	377
	9.2.3	ISO/IEC 15693 – Vicinity-coupling-Chipkarten	381
	9.2.3.1	Physical characteristics	382
	9.2.3.2	Air interface and initialization	382
	9.2.3.3	Anticollision and transmission protocol	385
	9.2.4	ISO/IEC 10373 – Prüfmethoden für Chipkarten	393
	9.2.4.1	Part 6 – Testverfahren für Proximity-coupling-Chipkarten	394
	9.2.4.2	Part 7 – Testverfahren für Vicinity-coupling-Chipkarten	400
9.3	NFC-bez	zogene Standards und Spezifikationen	401
9.4	ISO/IEC	69873 – Datenträger für Werk- und Spanzeuge	402
9.5	ISO/IEC	10374 – Containeridentifikation	403
9.6	VDI 447	0 – Warensicherungssysteme	404
	9.6.1	Teil 1 – Kundenabnahmerichtlinien für Schleusensysteme	404
	9.6.1.1	Ermittlung der Fehlalarmquote	405
	9.6.1.2	Ermittlung der Detektionsrate	405
	9.6.1.3	Formblätter in VDI 4470	406
	9.6.2	Teil 2 – Kundenabnahmerichtlinien für Deaktivierungsanlagen	406
9.7	Güter- ur	nd Warenwirtschaft	407

Inhaltsverzeichnis XI

	9.7.1	ISO/IEC 18000 Reihe	407
	9.7.1.1	Datennormen	407
	9.7.1.2	Luftschnittstellennormen	410
	9.7.1.3	Testnormen	413
	9.7.2	GTAG Initiative	417
	9.7.3	EPCglobal Network	417
	9.7.3.1	Generation 2	419
	9.7.3.2	Normen und Spezifikationen	420
	9.7.3.3	Der Electronic Product Code (EPC)	423
	9.7.3.4	Transponderklassen	426
	9.7.3.5	Einführung in das EPC-Netzwerk	427
	9.7.4	EPCglobal UHF AI Gen 2 / ISO/IEC 18000-6 Type C /	
	ISO/IEC	18000-63 429	
	9.7.4.1	Kommunikationsprinzip	429
	9.7.4.2	Kommunikation vom Lesegerät zum Transponder	430
	9.7.4.3	Kommunikation vom Transponder zum Lesegerät	432
	9.7.4.4	Dense Reader Mode, Signalspektrum und Funkzulassungen	435
	9.7.4.5	Speicher	
	9.7.4.6	Session Flags	438
	9.7.4.7	Kommandos	440
	9.7.4.8	Ablauf der Kommunikation	446
	9.7.4.9	Unterschiede zwischen GS1 EPC Gen 2 UHF und ISO/IEC 18000-63	449
	9.7.4.10	Zusätzliches in ISO/IEC 18000-63 Type C	450
9.8	Das RFID	0-Emblem	451
9.9	Europäisc	che Normen zum Schutz der Privatsphäre	454
9.10	RAIN RF	ID	455
10	Architek	tur elektronischer Datenträger	457
10.1	Transpon	der mit Speicherfunktion	458
	10.1.1	HF-Interface	458
	10.1.1.1	Schaltungsbeispiel – Lastmodulation mit Hilfsträger	459
	10.1.1.2	Schaltungsbeispiel – HF-Interface für ISO-14443 Transponder	460
	10.1.1.3	Simulation eines ISO/IEC14443-kompatiblen HF-Frontends	463
	10.1.2	Adress- und Sicherheitslogik	465
	10.1.2.1	State-Machine	466
	10.1.3	Speicherarchitektur	467
	10.1.3.1	Read-only-Transponder	467
	10.1.3.2	Beschreibbare Transponder	468
	10.1.3.3	Transponder mit Kryptofunktion	468
	10.1.3.4	Segmentierte Speicher	471
	10.1.3.5	MIFARE®-Applikationsverzeichnis	473
	10.1.3.6	Dual-port-EEPROM	476
10.2	Mikropro	zessoren	479

XII Inhaltsverzeichnis

	10.2.1	Dual-Interface Karte	481
	10.2.1.1	MIFARE plus	483
	10.2.1.2	Moderne Konzepte für die Dual Interface Card	484
10.3	Near Field	d Communication NFC	486
	10.3.1	NFC-Tag Types	488
	10.3.1.1	NFC-Tag Type-1	488
	10.3.1.2	NFC-Tag Type-2	489
	10.3.1.3	NFC-Tag Type-3	490
	10.3.1.4	NFC-Tag Type-4	491
	10.3.1.5	NFC-Tag Type-5	492
	10.3.2	NDEF-Datenstruktur	492
	10.3.3	Integration in Mobiltelefone und Geräte	495
	10.3.3.1	Secure-NFC	496
	10.3.4	NFC-based Wireless-Charging (NFC-WLC)	502
	10.3.4.1	Funktionsweise	503
	10.3.4.2	Selektion der Übertragungsleistung	505
	10.3.4.3	Fremdobjekterkennung	505
	10.3.4.4	Ladeschaltung	506
10.4	Speichertechnologie		507
	10.4.1	RAM	507
	10.4.2	EEPROM	508
	10.4.3	FRAM	509
	10.4.4	Leistungsvergleich FRAM – EEPROM	511
10.5	Messung	physikalischer Größen	512
	10.5.1	Transponder mit Sensorfunktionen	512
	10.5.2	Messungen mit Mikrowellentranspondern	513
	10.5.3	Sensoreffekt bei Oberflächenwellen-Transpondern	514
11	Lesegerä	te	517
11.1	_	s in einer Applikation	
11.2		enten eines Lesegeräts	
11.2	11.2.1	HF-Interface	
	11.2.1.1	Induktiv gekoppeltes System, FDX/HDX	
	11.2.1.2	Mikrowellen-System – Halbduplex	
	11.2.1.3	Sequentielle Systeme – SEQ	
	11.2.1.4	Mikrowellen-System für OFW-Transponder	
	11.2.2	Steuerung	
11.3		e Leser-ICs	
11.5	11.3.1	Integriertes HF-Interface	
	11.3.1	Single Chip Reader IC	
11.4		s von Antennen für induktiv gekoppelte Systeme	
	11.4.1	Anschaltung mit Stromanpassung	
	11.4.2	Speisung über Koaxialkabel	
	· · · · -	1 0	

Inhaltsverzeichnis XIII

	11.4.3	Einfluss des Gütefaktors Q	546
11.5	Ausführungsformen von Lesegeräten		
	11.5.1	OEM-Lesegeräte	547
	11.5.2	Lesegeräte für den industriellen Einsatz	548
	11.5.3	Portable Lesegeräte	548
12	Messtech	nnik für RFID-Systeme	551
12.1	HF-Mess	technik für Proximity-Systeme	551
	12.1.1	Kontaktbasierte Messungen	552
	12.1.1.1	Messung der Transponderchip-Impedanz	552
	12.1.2	Kontaktlos-Messungen	556
	12.1.2.1	Konzept zur Messung von Proximity-Karten	556
	12.1.2.2	Aufbau zur Messung von Proximity-Transpondern	558
	12.1.2.3	Aufbau zur Messung von Proximity-Lesegeräten	562
	12.1.2.4	Charakterisierung und Evaluierung	563
	12.1.3	Ausgewählte Messungen an Proximity-Smartcards	564
	12.1.3.1	Messung der Rückwirkung, Card Loading Effect	564
	12.1.3.2	Messung der Ansprechfeldstärke	565
	12.1.3.3	Messung der Modulation	567
	12.1.3.4	Messung der Zeiten in der sequentiellen Kommunikation	569
	12.1.3.5	Messung der Karten-Rückmodulation	571
	12.1.3.6	Messung ungewollter Störungen (EMD)	573
	12.1.3.7	Prüfung der maximal verkraftbaren Feldstärke	
		(maximum alternating field) 574	
	12.1.3.8	Zusammenfassung der Transponder-Antennenklassen	575
	12.1.4	Ausgewählte Messungen an Proximity-Readern	576
	12.1.4.1	Messung der Feldstärke des Lesegeräts	576
	12.1.4.2	Messung der Modulationseigenschaften	578
	12.1.4.3	Messung der Empfindlichkeit auf Lastmodulation	579
	12.1.4.4	Messung der EMD	582
12.2	HF-Mess	technik für UHF-Systeme	582
	12.2.1	Prolog	582
	12.2.1.1	Unterschiede zwischen LF, HF und UHF	582
	12.2.1.2	Allgemeiner Ansatz für den Testablauf	583
	12.2.1.3	Einflussgrößen und Störungen	583
	12.2.2	Signalstrecke und Umgebungseinflüsse	584
	12.2.3	Testverfahren	585
	12.2.3.1	Testverfahren für die Systemleistung – ISO18046-1	585
	12.2.3.2	ISO/IEC 18046-2 – Testverfahren für das RFID-Lesegerät	588
	12.2.3.3	Testverfahren für UHF-Tags/Transponder ISO18046-3	589
	12.2.4	UHF-Messtechnik – Gerätetechnik	590
	12.2.4.1	Standardgeräte	591
	12.2.4.2	Spezialgeräte für UHF-Messtechnik	592

12.2.5	Praktische RFID-Messtechnik im Labor	593
12.2.5.1	Fallbeispiel: Transponder	593
12.2.5.2	Fallbeispiel: Population von Transpondern	597
12.2.6	Fazit	598
Herstellu	ng von Transpondern und kontaktlosen Chipkarten	601
Herstellur	ng des integrierten Schaltkreises (Chip)	602
13.1.1	Das Halbleitermaterial	602
13.1.2	Herstellung eines integrierten Schaltkreises	604
13.1.2.1	Vorbereitung des Ausgangsmaterials	604
13.1.2.2	Züchten des Kristalls	604
13.1.2.3	Herstellung der Scheiben (Wafer)	605
13.1.2.4	Aufbringung der integrierten Schaltungsstruktur	606
13.1.3	Test der integrierten Schaltkreise	607
13.1.4	Sägen des Wafer	608
13.1.5	Mögliche Lieferformen	609
13.1.6	Weitere Verpackung	609
Antennen	herstellung	610
13.2.1	Wickeltechnik mit Kern	610
13.2.2	Wickeltechnik mit Luftspule	610
13.2.3	Verlegetechnik	612
13.2.4	Siebdrucktechnik	613
13.2.5	Ätztechnik	614
13.2.6	Stanztechnik	615
Kontaktie	erverfahren	615
13.3.1	Kontaktierverfahren für Halbleiterchips im Gehäuse	615
13.3.1.1	Vorbereitung – Montage des Chips im Gehäuse	616
13.3.1.2	Löttechnik	616
13.3.1.3	Klebe- und Schneid-Klemm-Technik	617
13.3.2	Kontaktierverfahren für unverpackte Halbleiterchip	618
13.3.2.1		
13.3.2.2	Flip-Chip-Montage	619
13.3.2.3	Verbindungstechnik Schweißen	621
Spezielle	Bauformen	623
13.4.1	Glastransponder	623
13.4.2	Plastiktransponder	625
13.4.3	Fertigung von Inlays	626
13.4.4	Kontaktlose Chipkarten	627
13.4.4.1	-	
13.4.4.2	_	
13.4.5	Etiketten	629
13.4.5.1	Herstellung	629
13.4.5.2	Drucktechnik in der Etikettenfertigung	
	12.2.5.1 12.2.5.2 12.2.6 Herstellut 13.1.1 13.1.2 13.1.2.1 13.1.2.2 13.1.2.3 13.1.2.4 13.1.5 13.1.6 Antennen 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.2.6 Kontaktie 13.3.1 13.3.1.1 13.3.1.2 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1 13.3.2.1	12.2.5.1 Fallbeispiel: Transponder 12.2.5.2 Fallbeispiel: Population von Transpondern 12.2.6 Fazit

13.5	Test in de	r Fertigung	632
	13.5.1	Prozessparameter	632
	13.5.1.1	Abschertest (Shear Test)	632
	13.5.1.2	Rollentest für Inlay und Etiketten	632
	13.5.2	Messung der HF-Parameter	633
	13.5.2.1	Anforderungen an den Test	633
	13.5.2.2	Test von LF- und HF-Transpondern	634
	13.5.2.3	Test von UHF-Transpondern	634
	13.5.2.4	Behandlung der Schlechtteile	636
	13.5.3	Test der Produkteigenschaften	636
	13.5.3.1	Allgemeine Zuverlässigkeitsprüfungen	637
13.6	Antennen	design für RFID-Systeme	637
	13.6.1	Eigenschaften von Schleifenantennen	637
	13.6.1.1	Impedanz der Antenne	639
	13.6.1.2	Resonanzfrequenz und Güte	642
	13.6.1.3	Messung der Werte des Antennen-Ersatzschaltbilds	643
	13.6.1.4	Abhängigkeiten des Antennen-Ersatzschaltbilds	644
	13.6.2	Design von Loop-Antennen für Kontaktlos-Karten	647
	13.6.2.1	Konzept zum Design	647
	13.6.2.2	Induktivität	648
	13.6.2.3	Wirkwiderstand	649
	13.6.2.4	Kapazität	650
	13.6.2.5	Einfluss des Antennen-Resonanzkreises auf die Performance	651
14	Anwendu	ıngsbeispiele	655
14.1	Kontaktlo	se Chipkarten	655
14.2	Öffentlich	ner Nahverkehr	656
	14.2.1	Ausgangssituation	657
	14.2.2	Anforderungen	657
	14.2.2.1	Transaktionszeit	657
	14.2.2.2	Witterungsbeständigkeit, Lebensdauer, Bedienkomfort	658
	14.2.3	Vorteile durch den Einsatz von RFID-Systemen	659
	14.2.4	Tarifmodelle mit elektronischer Abrechnung	
	14.2.5	Historische Projektbeispiele und Feldversuche	660
	14.2.5.1	Korea – Seoul	660
	14.2.5.2	Fahrsmart-Projekt – Lüneburg, Oldenburg	662
	14.2.5.3	FlexPass – Landkreis Konstanz	663
	14.2.6	(((eTicket Deutschland	665
14.3		(((eTicket Deutschlandser Zahlungsverkehr	
14.3			666
14.3	Kontaktlo	ser Zahlungsverkehr	666 669
14.3	Kontaktlo	ser Zahlungsverkehr	
14.3	Kontaktlo 14.3.1 14.3.2	ser Zahlungsverkehr MasterCard® Pay Pass ExpressPay von American Express®	

14.4	NFC-Anwendungen		
14.5	Elektronis	cher Reisepass und nationale eID-Karten (eMRTD)	678
14.6	Ski-Ticket	ing	685
14.7	Zutrittskor	ntrolle	687
	14.7.1	Online-Systeme	688
	14.7.2	Offline-Systeme	693
14.8	Verkehrss	ysteme	697
	14.8.1	Eurobalise S21	697
	14.8.2	Internationaler Containerverkehr	699
14.9	Tieridentif	ikation	700
	14.9.1	Länderspezifische Kodierung	702
	14.9.2	Spezielle Transponderbauformen	704
	14.9.2.1	Halsbandtransponder	705
	14.9.2.2	Transponderohrmarken	705
	14.9.2.3	Injizierbare Glastransponder	706
	14.9.2.4	Transponderbolus	708
	14.9.2.5	Fußband	709
	14.9.3	RFID im Brieftauben-Preisflug	710
14.10	Elektronis	che Wegfahrsperre	712
	14.10.1	Funktionsweise der Wegfahrsperre	712
	14.10.2	Eine Erfolgsgeschichte	715
	14.10.3	Zweite Generation – Keyless Entry	716
14.11	Behälterid	entifikation	717
	14.11.1	Gasflaschen und Chemikalienbehälter	717
	14.11.2	Abfallentsorgung	719
14.12	Sportliche	Veranstaltungen	720
14.13	Industrieau	utomation	723
	14.13.1	Werkzeugidentifikation	723
	14.13.2	Industrielle Fertigung	726
	14.13.2.1	Zentrale Steuerung	727
	14.13.2.2	Dezentrale Steuerung	728
	14.13.2.3	Vorteile durch den Einsatz von RFID-Systemen	729
	14.13.2.4	Auswahl geeigneter RFID-Systeme	729
	14.13.2.5	Projektbeispiel	731
14.14	Mediziniso	che Anwendungen	731
14.15	RFID im I	Einzelhandel	733
15	Anhang		737
15.1	U	en	
15.2		erbände	
15.3		ellen für Normen und Vorschriften	
15.4			
16	Register		761

Vorwort zur 8. Auflage

Dieses Buch richtet sich an die verschiedensten Leser. Zunächst an Ingenieure und Studenten, die zum ersten Mal mit der RFID-Technologie konfrontiert werden. Für sie gibt es einige grundlegende Kapitel über die Funktionsweise und die physikalischen sowie datentechnischen Grundlagen der RFID-Technik. Darüber hinaus richtet sich das Buch an den Praktiker, der sich als Anwender möglichst umfassend und konzentriert einen Überblick über die verschiedensten RFID-Technologien, die gesetzlichen Randbedingungen oder die Einsatzmöglichkeiten verschaffen möchte bzw. muss.

Zwar existiert eine schier unüberschaubare Fülle von Einzelbeiträgen in der Literatur zu diesem Themenbereich, aber alle diese "verteilten" Informationen im Bedarfsfalle zusammenzutragen, ist sehr mühsam und zeitaufwendig, wie auch die Recherchen zu jeder Auflage dieses Buchs aufs Neue beweisen. Dieses Buch soll daher auch eine Lücke im Literaturangebot über RFID-Systeme schließen. Wie groß der Bedarf an technisch fundierter Literatur in diesem Fachbereich tatsächlich ist, zeigt die erfreuliche Tatsache, dass das vorliegende Buch mittlerweile in sieben Sprachen¹ erschienen ist.

Anhand der vielen Bilder und Zeichnungen will dieses Buch eine im wahrsten Sinn des Wortes anschauliche Darstellung der RFID-Technologie geben. Einen besonderen Schwerpunkt stellen dabei die physikalischen Grundlagen dar, welche aus diesem Grunde auch das mit Abstand umfangreichste Kapitel bilden. Besonderer Wert wurde aber auch auf das Verständnis der grundlegenden Konzepte der Datenträger und Lesegeräte sowie der relevanten Normen und funktechnischen Regulierungsvorschriften gelegt. In den letzten Jahren rückt auch die Sicherheit von RFID-Systemen immer mehr in den Vordergrund. Angriffsmöglichkeiten und Abwehrmaßnahmen nehmen daher auch in diesem Buch einen immer größeren Platz ein.

Dieses Buch erschien zum ersten Mal im März 1998, also vor über 25 Jahren. Zum damaligen Zeitpunkt waren der RFID-Hype, den wir in den Jahren nach 2000 erlebt haben, aber auch die technologische Entwicklung auf dem Gebiet der RFID-Technologie in den folgenden 25 Jahren nicht ansatzweise absehbar. Mittlerweile ist die RFID-Technologie gut ausgereift und Innovationen finden sich vor allem in neuen Anwendungen oder einer Vernetzung der Lesegeräte und Transponder im Internet der Dinge. Erfreulich dabei ist es, dass die zugrunde liegenden Konzepte und physikalischen Grundlagen all diese Jahre erhalten geblieben und sind eine gute Voraussetzung für das Verständnis der neueren Entwicklungen waren und sind.

Ein ganz besonderes Ereignis war für mich die Verleihung des Fraunhofer Smart-Card-Preises 2008, der jährlich für besondere Verdienste in der Chipkartentechnologie vergeben wird und damals sowohl an das ebenso bekannte Chipkartenhandbuch meiner beiden Kollegen Rankl und Effing als auch an das RFID-Handbuch ging. Die Preisverleihung fand anlässlich

Derzeit ist das Buch in folgenden Sprachen erhältlich: Deutsch, Englisch, Japanisch, Chinesisch, Koreanisch, Russisch und in chinesischer Langschrift (für Taiwan).

XVIII Vorwort

des 18. Smart-Card-Workshops des Fraunhofer Instituts für Sichere Informationstechnologien (SIT) am 5. Februar 2008 in Darmstadt statt. Zu diesem Zeitpunkt war das RFID-Handbuch bereits zehn Jahre erfolgreich etabliert.

Die 1998 in deutscher Sprache erschienene erste Auflage hatte einen Umfang von gerade mal 280 Seiten. War RFID damals noch eine Nischentechnologie und in der Öffentlichkeit kaum näher bekannt, so hat sich dieses Bild mittlerweile sehr gewandelt. RFID und das darauf basierende NFC sind zu einem festen Begriff geworden und durch Anwendungen wie den elektronischen Reisepass, den kontaktlosen Kredit- und EC-Karten oder den elektronischen Produktcode (EPC) sind RFID und NFC heute der breiten Öffentlichkeit als Technologien bekannt.

Auf Grund der komplexen Vielfalt der RFID-Systeme sowie der immer schnelleren technischen Weiterentwicklung dieser Systeme wurde es im Laufe der Jahre immer schwieriger, das Thema als Einzelautor in der notwendigen Tiefe zu bearbeiten. Um auch in Zukunft die RFID-Technologie möglichst umfassend und kompetent in einem Buch zusammenfassen zu können, wurde ab der 6. Auflage ein neuer Weg eingeschlagen. Einige der Kapitel wurden von Co-Autoren übernommen und über mehrere Auflagen weitergeführt. An der vorliegenden Auflage haben Michael E. Wernle (Meshed Systems, München) und Josef Preishuber-Pflügl (innobir e. U., Klagenfurt), aktiv mitgearbeitet.

An dieser Stelle möchte ich mich auch noch bei allen Firmen bedanken, die mit zahlreichen technischen Datenblättern, Vortragsmanuskripten, Zeichnungen und Fotografien zum Gelingen des Werkes beigetragen haben.

München, im Sommer 2023

Klaus Finkenzeller

3.2 Voll- und Halbduplexverfahren

Im Gegensatz zu den 1-bit-Transpondern, welche meist durch die Anwendung einfacher physikalischer Effekte (Anschwingvorgänge, Anregung von harmonischen Verfahren mit Hilfe der unlinearen Kennlinien von Dioden oder an der unlinearen Hysteresekurve von Metallen) realisiert werden, verwenden die in diesem und dem folgenden Kapitel beschriebenen Transponder einen elektronischen Mikrochip als Datenträger. Auf diesem Datenträger können Datenmengen von wenigen Bytes bis hin zu einigen MByte gespeichert werden. Um die Datenträger auszulesen oder zu beschreiben, müssen Daten vom Lesegerät an den Transponder und auch zurück vom Transponder an das Lesegerät übertragen werden können. Hierbei kommen zwei grundsätzlich unterschiedliche Verfahren zum Einsatz: Voll- und Halbduplexverfahren, die in diesem Kapitel beschrieben sind, sowie sequentielle Systeme, die im nachfolgenden Kapitel beschrieben werden.

Findet die Datenübertragung von Transponder in Richtung Lesegerät zeitversetzt mit der Datenübertragung vom Lesegerät zum Transponder statt, so bezeichnet man dies als *Halbduplexverfahren* (HDX). Bei Frequenzen unter 30 MHz wird zur Datenübertragung vom Transponder zum Lesegerät am häufigsten das Verfahren der Lastmodulation mit und ohne Hilfsträger eingesetzt, welches auch schaltungs-technisch sehr einfach zu realisieren ist. Damit eng verwandt ist das aus der Radartechnik bekannte Verfahren des modulierten Rückstrahlquerschnitts, welches auf Frequenzen über 100 MHz zum Einsatz kommt. Lastmodulation und modulierter Rückstrahlquerschnitt beeinflussen unmittelbar das durch das Lesegerät erzeugte magnetische oder elektromagnetische Feld, und werden deshalb auch zu den "harmonischen" Verfahren gezählt.

Findet die Datenübertragung vom Transponder in Richtung Lesegerät (Uplink) zeitgleich mit der Datenübertragung vom Lesegerät zum Transponder (Downlink) statt, so bezeichnet man dies als *Vollduplexverfahren* (FDX). Dabei kommen Verfahren zum Einsatz, bei denen die Daten des Transponders auf Teilfrequenzen des Lesegeräts, also einer *subharmonischen*, oder auf einer davon völlig unabhängigen, also *anharmonischen* Frequenz zum Lesegerät übertragen werden.

Zur Datenübertragung vom Lesegerät zum Transponder (Downlink) werden bei Voll- und Halbduplexsystemen unabhängig von der Arbeitsfrequenz oder dem Kopplungsverfahren alle bekannten Verfahren der digitalen Modulation eingesetzt. Man unterscheidet zwischen drei grundsätzlichen Verfahren:

- ASK: Amplitude Shift Keying
- FSK: Frequency Shift Keying
- *PSK*: Phase Shift Keying

Wegen der einfachen Demodulationsmöglichkeit und der damit verbundenen einfacheren Schaltungstechnik im Transponder, verwendet die überwiegende Mehrheit der Systeme eine ASK-Modulation zur Datenübertragung an den Transponder.

FSK ist theoretisch möglich, dem Autor ist derzeit jedoch kein RFID-System bekannt, bei welchem FSK auf der Downlink kommerziell eingesetzt würde.

Auch PSK gewinnt erst in jüngster Zeit an Bedeutung. So wurde in der Standardisierung für *ISO/IEC 14443* in 2011 ein Projekt gestartet, um mit PSK-Modulationsverfahren in Zukunft Bitraten von 10 MBit/s und höher auf dem Downlinkkanal zu ermöglichen. ASK wird bei ISO/IEC 14443 für Bitraten von 106 kBit/s bis hin zu 6,78 MBit/s eingesetzt.

Das wichtigste gemeinsame Merkmal der Voll- und Halbduplexsysteme besteht darin, dass die Energieübertragung vom Lesegerät zum Transponder kontinuierlich, also unabhängig von der Datenübertragungsrichtung stattfindet. Im Gegensatz dazu findet bei den sequentiellen Systemen (SEQ) die Energieübertragung vom Transponder zum Lesegerät immer nur für eine begrenzte Zeitspanne statt (Pulsbetrieb \rightarrow gepulste Systeme). Die Datenübertragung vom Transponder zum Lesegerät wird in den Pausen zwischen der Energieversorgung des Transponders durchgeführt.

Leider konnte man sich in der Literatur über RFID-Systeme nie auf eine einheitliche Nomenklatur für diese Systemvarianten einigen. Vielmehr ist eine verwirrende und uneinheitliche Zuordnung einzelner Systeme zu Voll- und Halbduplexsystemen üblich. So werden gepulste Systeme häufig als Halbduplexsysteme bezeichnet – dies ist aus Sicht der Datenübertragung zunächst richtig –, alle ungepulsten Systeme werden aber gleichzeitig fälschlicherweise den Vollduplexsystemen zugeordnet. In diesem Buch werden deshalb gepulste Systeme – zur Unterscheidung von anderen Verfahren und entgegen der üblichen RFID-Literatur(!) – als sequentielle Systeme (SEQ) bezeichnet.

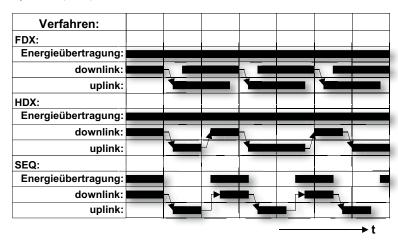


Abb. 3.12 Darstellung der zeitlichen Abläufe bei Voll-, Halbduplex- und sequentiellen Systemen. Die Datenübertragung vom Lesegerät zum Transponder wird in der Abbildung als downlink, die Datenübertragung vom Transponder zum Lesegerät als uplink bezeichnet.

3.2.1 Induktive Kopplung

3.2.1.1 Energieversorgung passiver Transponder

Ein induktiv gekoppelter Transponder besteht aus einem elektronischen Datenträger, meist einem einzelnen Mikrochip, sowie einer großflächigen Spule oder Leiterschleife, welche als Antenne dient.

Induktiv gekoppelte Transponder werden fast ausschließlich passiv betrieben. Dies bedeutet, dass die gesamte zum Betrieb des Mikrochips notwendige Energie durch das Lesegerät zur Verfügung gestellt werden muss. Von der Antennenspule des Lesegeräts wird dazu ein starkes hochfrequentes, elektromagnetisches Feld erzeugt, welches den Querschnitt der Spulenfläche und den Raum um die Spule durchdringt. Da die Wellenlänge der verwendeten Frequenzbereiche (< 135 kHz: 2400 m, 13,56 MHz: 22,1 m) um ein Vielfaches größer ist als die Entfernung zwischen Leser-Antenne und Transponder, darf das elektromagnetische Feld im Abstand des Transponders zur Antenne mathematisch noch als einfaches magnetisches Wechselfeld behandelt werden (Weiteres dazu kann dem Kapitel 4.2.1.1 "Übergang vom Nah- zum Fernfeld bei Leiterschleifen", S. 138 entnommen werden).

Ein geringer Teil des von der Antenne des Lesegeräts erzeugten magnetisches Feldes durchdringt dabei auch die Antennenspule des Transponders, der sich in einiger Entfernung zur Spule des Lesegeräts befindet. Durch Induktion wird dadurch an der Antennenspule des Transponders eine Spannung U_i erzeugt. Die induzierte Spannung wird gleichgerichtet und dient der Energieversorgung des Datenträgers (Mikrochip).

Der Antennenspule des Lesegeräts wird ein Kondensator C_r parallelgeschaltet, dessen Kapazität so gewählt wird, dass zusammen mit der Spuleninduktivität der Antennenspule ein Parallelschwingkreis gebildet wird, dessen Resonanzfrequenz der Sendefrequenz des Lesegeräts entspricht. Durch den Effekt der Resonanzüberhöhung im Parallelschwingkreis können in der Antennenspule des Lesegeräts sehr hohe Ströme erreicht werden, womit die notwendigen Feldstärken auch zum Betrieb entfernter Transponder erzeugt werden können.

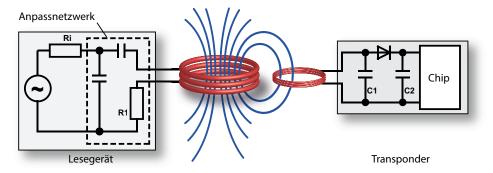


Abb. 3.13 Spannungsversorgung eines induktiv gekoppelten Transponders aus der Energie des magnetischen Wechselfeldes, das vom Lesegerät erzeugt wird.

Die Antennenspule des Transponders bildet zusammen mit dem Kondensator C1 ebenfalls einen Schwingkreis, welcher in etwa auf die Sendefrequenz des Lesegeräts abgestimmt wird. Durch Resonanzüberhöhung im Parallelschwingkreis erreicht die Spannung U_i an der Transponderspule ein Maximum.

Die Anordnung der beiden Spulen kann auch als Transformator interpretiert werden (*transformatorische Kopplung*), wobei zwischen den beiden Windungen nur eine sehr schwache Kopplung besteht. Der Wirkungsgrad der Leistungsübertragung zwischen der Antennenspule des Lesegeräts und dem Transponder ist proportional der Arbeitsfrequenz f, der Windungszahl n der Transponderspule, der umschlossenen Fläche A der Transponderspule, dem Winkel der beiden Spulen zueinander sowie der Entfernung zwischen den beiden Spulen.

Abb. 3.14 Verschiedene Bauformen induktiv gekoppelter Transponder. Dargestellt sind Transponder-Halbzeuge, also Transponder vor dem Einspritzen in ein Kunststoffgehäuse.

(Foto: AmaTech GmbH & Co. KG, Pfronten)

Mit zunehmender Frequenz f nimmt die benötigte Spuleninduktivität der Transponderspule und damit auch die Windungszahl "n" ab (135 kHz: typisch 100 ... 1000 Windungen, 13,56 MHz: typisch 3 ... 10 Windungen). Da die im Transponder induzierte Spannung jedoch proportional der Frequenz f ist (siehe hierzu Kapitel 4.1.7 "Resonanz", S. 90), wirkt sich die geringere Windungszahl bei höheren Frequenzen in der Praxis auf den Wirkungsgrad der Leistungsübertragung kaum aus.

Abb. 3.15 Lesegerät für induktiv gekoppelte Transponder im Frequenzbereich < 135 kHz mit integrierter Antenne. (Foto: easy-key System, micron, Halbergmoos)

3.2.1.2 Datenübertragung Transponder > Lesegerät

3.2.1.2.1 Lastmodulation

Wie bereits gezeigt, besteht bei induktiv gekoppelten Systemen eine *transformatorische Kopplung* zwischen der primären Spule im Lesegerät und der sekundären Spule im Transponder. Dies gilt, solange der Abstand zwischen den Spulen nicht größer als $(\lambda/2\pi)$ 0,16 λ wird, sodass sich der Transponder im *Nahfeld* der Sendeantenne befindet (eine nähere Erklärung zur Definition des Nah- und Fernfeldes siehe Kapitel 4.2.1.1 "Übergang vom Nah- zum Fernfeld bei Leiterschleifen", S. 138).

Wird ein resonanter Transponder (d. h. die Eigenresonanzfrequenz des Transponders entspricht der Sendefrequenz des Lesegeräts) in das magnetische Wechselfeld der Antenne des Lesegeräts gebracht, so entzieht dieser dem magnetischen Feld Energie. Die dadurch hervorgerufene Rückwirkung des Transponders auf die Antenne des Lesegeräts kann als *transformierte Impedanz* Z_T in der Antennenspule des Lesegeräts dargestellt werden. Das Ein- und Ausschalten eines *Lastwiderstands* an der Antenne des Transponders bewirkt eine Veränderung der Impedanz Z_T und damit Spannungsänderungen an der Antenne des Lesegeräts (siehe Kapitel 4.1.10.3 "Lastmodulation", S. 115). Dies entspricht in der Wirkung einer Amplitudenmodulation der Spannung U_L an der Antennenspule des Lesegeräts durch den entfernten Transponder. Steuert man das An- und Ausschalten des Lastwiderstands durch

Daten, so können diese Daten vom Transponder zum Lesegerät übertragen werden. Diese Form der Datenübertragung wird als *Lastmodulation* bezeichnet.

In der Praxis zeigt sich, dass der Phasenwinkel der transformierten Impedanz vom Phasenwinkel des Stromes in der Transponderantenne, und damit von der genauen Resonanzfrequenz des Transponderschwingkreises abhängt. Je nach Phasenwinkel der transformierten Impedanz kann eine Lastmodulation eine "positive" oder "negative" Amplitudenmodulation, eine reine Phasenmodulation, oder eine Mischung davon, an der Antennenspule des Lesegeräts erzeugen. Hinzu kommt, dass vereinzelt auch kapazitive Lastmodulation, also die Umschaltung der Resonanzfrequenz des Transponders, verwendet wird.

Zur Rückgewinnung der Daten im Lesegerät wird eine an der Antenne des Lesegeräts abgegriffene Spannung gleichgerichtet. Dies entspricht der Demodulation eines amplitudenmodulierten Signals. Ein Schaltungsbeispiel hierfür kann dem Kapitel 11.3.1 "Integriertes HF-Interface", S. 527 entnommen werden.

Verlässt der Transponder das Nahfeld, also den Bereich $< \lambda/2\pi$ (0,16 λ), so geht mit dem Übergang in das Fernfeld auch die transformatorische Kopplung zwischen der Antenne des Lesegeräts und der Antenne des Transponders verloren. Eine Lastmodulation ist im Fernfeld daher nicht mehr möglich. Dies bedeutet jedoch nicht, dass eine Datenübertragung vom Transponder zum Lesegerät grundsätzlich nicht mehr möglich wäre. Mit dem Übergang ins Fernfeld beginnt der Mechanismus der Backscatter-Kopplung (siehe Kapitel 3.2.2 "Elektromagnetische Backscatter-Kopplung", S. 58) wirksam zu werden. In der Praxis scheitert eine Datenübertragung zum Lesegerät jedoch in der Regel an dem kleinen Wirkungsgrad der Transponderantennen (d. h. dem geringen Antennengewinn) im Fernfeld.

3.2.1.2.2 Lastmodulation mit Hilfsträger

Auf Grund der geringen Kopplung zwischen Leseantenne und Transponder-Antenne sind die das Nutzsignal darstellenden Spannungsschwankungen an der Antenne des Lesegeräts um Größenordnungen kleiner als die Ausgangsspannung des Lesegeräts. Bei einem 13,56 MHz-System kann in der Praxis, bei einer Antennenspannung von ca. 100V (Spannungsüberhöhung durch Resonanz!) mit einem Nutzsignal von etwa 10 mV gerechnet werden (= 80 dB Nutz/,,Störsignal"-Verhältnis). Da diese geringen Spannungsänderungen nur mit einem sehr großen schaltungstechnischen Aufwand zu detektieren sind, macht man sich die durch die Amplitudenmodulation der Antennenspannung entstehenden Modulationsseitenbänder zunutze:

Wird nämlich der zusätzliche Lastwiderstand im Transponder mit sehr hoher Taktfrequenz f_H ein- und ausgeschaltet, so entstehen zwei Spektrallinien im Abstand $\pm f_H$ um die Sendefrequenz des Lesegeräts, die nun leicht detektiert werden können (es muss jedoch $f_H < f_{LESER}$ sein). Im Sprachgebrauch der Funktechnik wird die zusätzlich eingeführte Taktfrequenz als Hilfsträger (Subcarrier) bezeichnet.

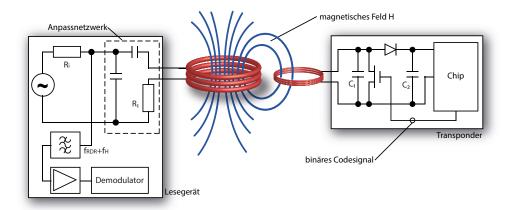


Abb. 3.16 Erzeugung der Lastmodulation im Transponder durch Umschalten des Drain-Source-Widerstandes eines FET auf dem Chip. Das abgebildete Lesegerät ist für die Detektion eines Hilfsträgers ausgelegt.

Um nun Daten an das Lesegerät zu übertragen, wird der *Hilfsträger* selbst im Takt des Datenflusses moduliert. Der Lastwiderstand im *Lastmodulator* wird nun im Takt des modulierten Hilfsträgers ein- und ausgeschaltet. Als Modulationsverfahren für den Hilfsträger werden ASK- (z. B. ISO/IEC 14443 Typ A: On-Off keying), FSK- (z. B. ISO/IEC 15693: Umtastung zwischen den beiden Hilfsträgerfrequenzen 424 kHz und 485 kHz) oder PSK-Modulation (z. B. ISO/IEC 14443 Typ B: 2-PSK oder BPSK) eingesetzt.

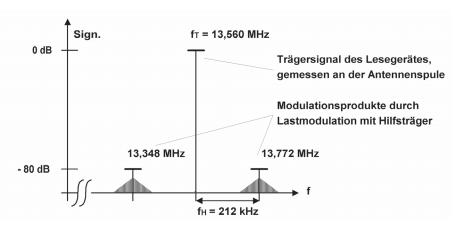


Abb. 3.17 Durch Lastmodulation mit Hilfsträger entstehen zwei Seitenbänder im Abstand der Hilfsträgerfrequenz f_H um die Sendefrequenz des Lesegeräts. Die eigentliche Information steckt in den Seitenbändern der beiden Hilfsträgerseitenbänder, welche durch die Modulation des Hilfsträgers selbst entstehen.

Durch Lastmodulation mit Hilfsträger entstehen an der Antenne des Lesegeräts zwei Modulationsseitenbänder im Abstand der Hilfsträgerfrequenz um die Arbeitsfrequenz f_{LESER} . Diese Modulationsseitenbänder können durch eine Bandpassfilterung auf einer der beiden Frequenzen $f_{LESER} \pm f_H$ vom wesentlich stärkeren Signal des Lesegeräts getrennt werden.

Nach anschließender Verstärkung ist das Hilfsträgersignal dann sehr einfach zu demodulieren.

Lastmodulation mit Hilfsträger wird fast ausschließlich im Frequenzbereich 13,56 MHz eingesetzt. Typische Hilfsträgerfrequenzen sind 212 kHz, 424 kHz (z.B. ISO/IEC 15693) und 848 kHz (z.B. ISO/IEC 14443).

3.2.1.2.3 Schaltungsbeispiel – Lastmodulation mit Hilfsträger

Ein Beispiel für die schaltungstechnische Realisierung eines Transponders mit Lastmodulation mit Hilfsträger ist in Abbildung 3.18 gezeigt. Die Schaltung ist für eine Arbeitsfrequenz von 13,56 MHz ausgelegt und erzeugt einen Hilfsträger von 106 kHz.

Die an der Antennenspule L_1 durch das magnetische Wechselfeld des Lesegeräts induzierte Spannung wird mit dem Brückengleichrichter ($D_1 \dots D_4$) gleichgerichtet und steht nach zusätzlicher Glättung (C_1) der Schaltung als Versorgungsspannung zur Verfügung. Mit dem Parallelregler (ZD 5V6) wird das unbegrenzte Ansteigen der Versorgungsspannung bei Annäherung des Transponders an die Leserantenne verhindert.

Über den Vorwiderstand (R_1) gelangt ein Teil der hochfrequenten Antennenspannung (13,56 MHz) an den Takteingang (CLK) des Frequenzteilers (IC1) und dient dem Transponder als Basis zur Erzeugung eines internen Taktsignals. Nach einer Teilung durch 2^7 (=128) steht an Ausgang Q7 ein Hilfsträger-Taktsignal von 106 kHz zur Verfügung. Das Hilfsträger-Taktsignal wird, gesteuert durch einen seriellen Datenfluss am Dateneingang (DATA), auf den Schalter (T_1) gegeben. Liegt am Dateneingang (DATA) ein logisches HIGH-Signal, so wird das Hilfsträger-Taktsignal auf den Schalter (T_1) gegeben. Der Lastwiderstand (R_2) wird dann im Takt der Hilfsträgerfrequenz an- und abgeschaltet.

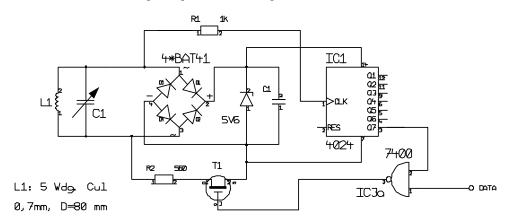


Abb. 3.18 Schaltungsbeispiel f
ür die Erzeugung einer Lastmodulation mit Hilfstr
äger in einem induktiv gekoppelten Transponder.

Durch die Beschaltung des UND-Gatters (IC3) mit einem beliebigen anderen Ausgang (Q1 .. Q6) des Teilers kann auch eine höhere Hilfsträgerfrequenz (Q6: 212 kHz, Q5: 484 kHz, Q4: 848 kHz, .. Q2: 6,78 MHz) gewählt werden.

Optional lässt sich bei der abgebildeten Schaltung der Transponderschwingkreis mit der Kapazität C₁ auf 13,56 MHz in Resonanz bringen. Die Reichweite dieses "Minimaltransponders" kann damit deutlich vergrößert werden.

3.2.1.2.4 Aktive Lastmodulation

Die begrenzenden Faktoren eines induktiv gekoppelten RFID-Systems hinsichtlich der Kommunikationsreichweite liegen einerseits in der Energiereichweite des Lesegeräts, also der Fähigkeit, einen Transponder im Leseabstand mit ausreichend Energie zum Betrieb zu versorgen, sowie anderseits in der Fähigkeit, Daten per Lastmodulation vom Transponder an das Lesegerät zurückzusenden. In beiden Fällen wird eine ausreichend große magnetische Gegenkopplung (mutual magnetic coupling M) zwischen der Antenne des Lesegeräts und der Antenne des Transponders benötigt.

Die physikalischen Parameter eines induktiv gekoppelten RFID-Systems sind zum Beispiel in *ISO/IEC 14443* so definiert, dass sich bei hohen Bitraten (106 .. 868 kBit/s), hohemEnergieverbrauch des Transponderchips (Mikroprozessor mit Smart Card-Betriebssystem) und der Chipkarten-Bauform ID1 eine typische Lesereichweite von 10 cm oder weniger ergibt.

Werden an Stelle der Chipkarten-Bauform ID1 sehr kleine Transponder mit Antennen im Formfaktor einer *SIM-Karte* oder einer *micro-SD Karte* eingesetzt, so sinkt die magnetische Gegenkopplung, und damit die erreichbare Lesereichweite drastisch ab. Soll ein solch kleiner Transponder beispielsweise in ein Mobiltelefon oder in ein PDA eingesetzt werden, um diese mit einem kontaktlosen Interface auszustatten, so führt die kleine Lesereichweite von evtl. nur wenigen Zentimetern schnell zu einem Problem, insbesondere wenn der Transponder bei zusätzlich auftretender Abschirmung (z.B. durch den Akku) schließlich nicht mehr in der Lage ist, die Reichweite zu einem außerhalb befindlichen Lesegerät zu überbrücken.

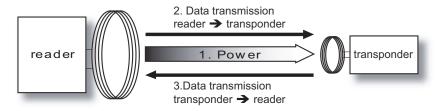


Abb. 3.19 Die die Kommunikationsreichweite begrenzenden Faktoren eines passiven, induktiv gekopplten RFID-Systems.

Um auch mit Transpondern mit sehr kleiner Antennengeometrie akzeptable Lesereichweiten zu erzielen, müssen die eben beschriebenen begrenzenden Faktoren beseitigt werden. Im Falle der Energiereichweite ist das Problem einer zu geringen magnetischen Gegenkopplung einfach zu lösen. Hierzu ist es lediglich notwendig, den Transponder aus einer lokalen Energiequelle (Batterie) mit Strom zu versorgen. Wird der Tansponder in der Bauform einer SIM-Karte oder einer micro-SD Karte in einem Mobiltelefon betrieben, so kann die Energie über einen Anschlusspin direkt im Mobiltelefon zur Verfügung gestellt werden.

Um einen passiven Transponderchip mit Energie zu versorgen, müsste eine Spannung von wenigstens 3 V in der Transponderantenne induziert werden. Bei einem batteriegestützten Transponder hingegen wird die in der Antenne induzierte Spannung nicht mehr zur Energieversorgung des Transponderchips verwendet, sondern nur noch dazu, Daten und Kommandos vom Lesegerät zu übertragen. Hierzu reicht aber bereits eine Spannung mit erheblich geringerem Pegel von wenigstens einigen mV aus, da diese einfach verstärkt werden kann. Auf diese Weise kann das Signal des Lesegeräts auch mit kleinsten Transponderantennen und Metallabschirmung auf deutlich größere Entfernung detektiert werden.

Etwas komplexer ist die Optimierung der Datenübertragung vom Transponder zurück zu einem Lesegerät. Die üblicherweise verwendete (passive) Lastmodulation scheidet auch bei einem Transponder mit externer Energieversorgung (aktiver Transponder) aus, da sich ohne eine Verbesserung der magnetischen Kopplung nur eine unwesentliche Verbesserung gegenüber einem passiven (batterielosen) Transponder ergibt. Eine Vergrößerung der magnetischen Kopplung ist aber nur durch die Verringerung des Abstands zwischen den Antennen oder durch eine Vergrößerung der Antennenfläche des Transponders möglich.

Eine Alternative besteht darin, auf anderem Wege ein Signal zu erzeugen, welches im Frequenzspektrum dem Signal einer *passiven Lastmodulation* gleicht, und dieses aktiv (d.h. unter Aufwendung von eigener Energie) an das Lesegerät zu senden. Ein solches Verfahren wird als *aktive Lastmodulation* (active load modulation) bezeichnet. Betrachten wir das durch eine (passive) Lastmodulation an der Antenne des Lesegeräts auftretende Frequenzspektrum, so sind zum Beispiel bei ISO/IEC 14443 neben dem Trägersignal (13,56 MHz) im Abstand der *Hilfsträgerfrequenz* (848 kHz) zwei weitere Spektrallinien (14,408 MHz und 12,712 MHz) zu erkennen, um die sich jeweils zwei Modulationsseitenbänder ausbilden. Die Nutzdaten sind dabei ausschließlich in den Modulationsseitenbändern um die Hilfsträgerlinien enthalten.

Um Daten von einem aktiven Transponder an ein Lesegerät zu senden, würde es ausreichen, die beiden Hilfsträger-Spektrallinien mit den datentragenden Seitenbändern zu erzeugen und an ein Lesegerät zu senden. Das Trägersignal muss dabei nicht übertragen werden; dieses wird vom Lesegerät ohnehin permanent ausgesendet. Ein solches Signal wird als Zweiseitenband- oder "Dual-Side-Band" (DSB)-Modulation bezeichnet.

Eine Grundschaltung der Nachrichtentechnik, mit der eine solche DSB-Modulation erzeugt werden kann, ist der *Ringmodulator*. Der Ringmodulator wird mit einer Referenzfrequenz fc = 13,56 MHz und dem modulierten Hilfsträger gespeist. Das Ausgangssignal des Ringmodulators ist dann bereits das benötigte DSB-Signal. Dieses wird in einem Verstärker im Pegel angehoben und über die Antenne abgestrahlt.

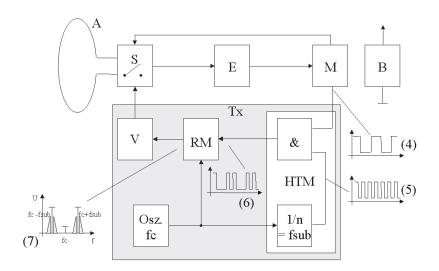


Abb. 3.20 Blockschaltbild eines Transponders mit aktiver Lastmodulation (RM: Ringmodulator, HTM: modulierter Hilfsträger, V: Verstärker, M: Microcontroller, E: Empfangsverstärker, B: Energieversorgung (Batterie).

Da es sich bei den in einem Transponderchip verfügbaren Signalen nicht um analoge, sondern um binäre Signale handelt, können die benötigten Modulationsseitenbänder noch wesentlich einfacher durch eine Amplitudenmodulation erzeugt werden. Eine Amplitudenmodulation entsteht bei analogen Signalen wie bekannt durch die Multiplikation zweier Sinusschwingungen unterschiedlicher Frequenz:

$$U_{\text{mod}} = U_1 \cdot \sin(\omega_1 \cdot t) \cdot U_2 \cdot \sin(\omega_2 \cdot t)$$
 [3.1]

Eine Multiplikation von Binärsignalen, also eine (2-)*ASK-Modulation* kann durch eine einfache UND-Verknüpfung realisiert werden.

Der passive Lastmodulator am Beispiel eines ISO/IEC 14443 Typ A-Transponders wird mit einem durch einen Manchestercode modulierten Hilfsträgersignal angesteuert. Diese Ansteuerung führt beim aktiven Transponder mit ASK-Modulator zu einem Signal, welches aus jeweils vier Träger-Bursts pro Bit besteht und genau die gewünschten Modulationsseitenbänder erzeugt, wie sie in Abbildung 3.17 dargestellt sind. Lediglich der 13,56 MHz-Träger kann durch die ASK-Modulation nicht unterdrückt werden, was aber die Datenübertragung vom Transponder zum Lesegerät nicht weiter beeinflusst.

Der Einfluss der Antennengröße eines aktiven Transponders auf die Lesereichweite wurde in [fink-0211] empirisch ermittelt. Die Messungen wurden dabei mit einem handelsüblichen Lesegerät nach ISO/IEC 14443 durchgeführt.

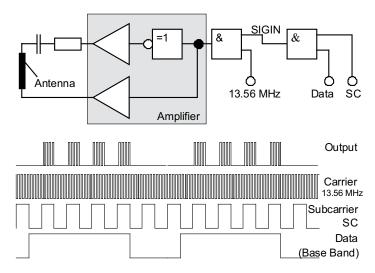


Abb. 3.21 Erzeugung einer aktiven Lastmodulation für ISO/IEC 14443 Typ A.

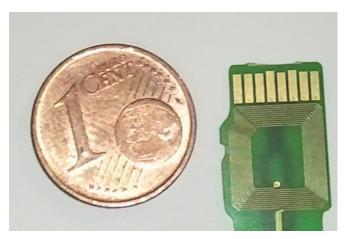


Abb. 3.22 Größenvergleich zwischen einer Transponderantenne in micro-SD Bauform und einer 1 Cent Euro-Münze.

Eine typische passive kontaktlose Chipkarte im ID1 Format kann hier mit dem exemplarisch verwendeten Lesegerät über eine Entfernung von etwa 7 cm ausgelesen werden. Ein NFC-fähiges Mobiltelefon wurde in der NFC-Betriebsart "card emulation" über eine Entfernung von etwa 4 cm ausgelesen. Wird die Antennenfläche des Transponders auf 130 mm², was der typischen Fläche einer micro-SD-Karte entspricht, verkleinert, so sinkt die Lesereichweite eines passiven Transponders auf unter einen Zentimeter. Der Transponder muss auf das Lesegerät gelegt werden, und kann unter Umständen gar nicht mehr gelesen werden. Wird solch ein kleiner Transponder in einem Gerät verbaut, zum Beispiel einem Mobiltelefon, so wird durch die zusätzliche Metallabschirmung ein Auslesen fast unmöglich gemacht. Unter Verwendung aktiver Lastmodulation ist es hingegen möglich, den kleinen Transponder auf

eine Entfernung von sogar 10 cm auszulesen – weit mehr, als die Lesereichweite einer passiven kontaktlosen Chipkarte im ID1-Format auf demselben Lesegerät. Selbst im eingebauten Zustand in einem Mobiltelefon können noch einige Zentimeter Lesereichweite erreicht werden. Aktive Lastmodulation eignet sich daher vor allem für sehr kleine Transponder in Form von Speicherkarten, Schlüsselanhängern oder ähnlichen Bauformen, bei denen die Energieversorgung des Transponders durch eine Batterie sichergestellt werden kann [fink-0211], [fink-0411].

3.2.1.2.5 Subharmonische Verfahren

Unter der Subharmonischen einer sinusförmigen Spannung A mit definierter Frequenz f_A versteht man eine sinusförmige Spannung B, deren Frequenz f_B durch ganzzahlige Teilung aus der Frequenz f_A abgeleitet ist. Die Subharmonischen der Frequenz f_A sind also die Frequenzen $f_A/2$, $f_A/3$, $f_A/4$...

Bei den subharmonischen Übertragungsverfahren erhält man aus der im Transponder abgegriffenen Leser-Sendefreqenz f_A durch digitale Teilung eine zweite, meist um den Faktor zwei niedrigere Frequenz f_B . Zur Datenübertragung an das Lesegerät wird das Ausgangssignal f_B des Teilers mit dem Datenstrom des Transponders moduliert. Hierbei kann eine ASK-(On-Off-Keying im Takt der Daten) oder eine BPSK-Modulation (Umschaltung zwischen f_B und einem invertierten Signal \overline{f}_B im Takt der Daten) zum Einsatz kommen. Über einen Ausgangstreiber wird das modulierte Signal dann wieder in die Antenne des Transponders eingespeist.

Eine häufig verwendete Arbeitsfrequenz für subharmonische Systeme ist 128 kHz. Hieraus ergibt sich eine Transponder-Antwortfrequenz von 64 kHz.

Die Antenne der Transponder besteht aus einer Spule mit Mittenanzapfung, wobei an einem Ende die Spannungsversorgung abgegriffen wird. Am zweiten Anschluss der Spule wird das Rücksignal des Transponders eingespeist.

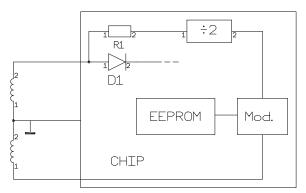


Abb. 3.23 Prinzipschaltung eines Transponders mit subharmonischer Rückfrequenz. Das empfangene Taktsignal wird durch zwei geteilt, mit den Daten moduliert und in eine Anzapfung der Transponderspule eingespeist.

3.2.2 Elektromagnetische Backscatter-Kopplung

3.2.2.1 Energieversorgung der Transponder

RFID-Systeme, die deutlich mehr als 1 m zwischen Lesegerät und Transponder überbrücken, werden als *Long-range-Systeme* bezeichnet. Diese werden auf den *UHF-Frequenzen* 868 MHz (Europa) und 915 MHz (USA) sowie auf den *Mikrowellenfrequenzen* 2,5 GHz und 5,8 GHz betrieben. Die kurzen Wellenlängen dieser Frequenzbereiche ermöglichen die Konstruktion von Antennen mit weitaus kleineren Abmessungen und besserem Wirkungsgrad, als dies auf Frequenzbereichen unter 30 MHz möglich wäre.

Um die zum Betrieb eines Transponders verfügbare Energie abschätzen zu können, berechnen wir zunächst die *Freiraumdämpfung* a_F in Abhängigkeit der Entfernung r zwischen dem Transponder und der Antenne des Lesegeräts, dem Gewinn G_T und G_R der Transponder- und Leserantenne sowie der Sendefrequenz f des Lesegeräts:

$$a_F = -147,6 + 20\log(r) + 20\log(f) - 10\log(G_T) - 10\log(G_R)$$
 [3.2]

Tabelle 3.6: Freiraumdämpfung a_F bei unterschiedlichen Frequenzen und Entfernungen. Als Gewinn der Transponderantenne wurde 1,64 (Dipol), als Gewinn der Leserantenne 1 (isotroper Strahler) angenommen.

Abstand r	868 MHz	915 MHz	2,45 GHz
0,3 m	18,6 dB	19,0 dB	27,6 dB
1 m	29,0 dB	29,5 dB	38,0 dB
3 m	38,6 dB	39,0 dB	47,6 dB
10 m	49,0 dB	49,5 dB	58,0 dB

Die Freiraumdämpfung ist ein Maß für das Verhältnis zwischen der von einem Leseregrät in den "freien Raum" ausgesendeten und der vom Transponder empfangenen HF-Leistung.

Im folgenden Beispiel nehmen wir eine Leistungsaufnahme des Transponderchips von 5 μ W an [friedrich], auch wenn sich mit heutiger Low-power-Halbleiterechnologie kleinere Werte realisieren lassen. Der Wirkungsgrad eines integrierten Gleichrichters kann im UHF- und Mikrowellenbereich mit 5 ... 25% angenommen werden [tanneberger]. Bei einem Wirkungsgrad von 10% benötigen wir damit zum Betrieb des Transponderchips eine Empfangsleistung von $P_e = 50~\mu$ W am Anschluss der Transponderantenne. Dies bedeutet, dass bei einer Strahlungsleistung des Lesegeräts von $P_s = 0.5~W$ EIRP die Freiraumdämpfung einen Wert von 40 dB ($P_s/P_e = 10000/1$) nicht überschreiten darf, um an der Transponderantenne noch eine ausreichend große Leistung zum Betrieb des Transponders zu erhalten. Ein Blick auf Tabelle 3.6 zeigt, dass damit bei einer Sendefrequenz von 868 MHz immerhin eine *Reichweite* (Energiereichweite) von etwas über 3 m realisierbar wäre, bei 2,45 GHz könnte immerhin noch etwas über 1 m erreicht werden. Mit den heute in Europa für 868 MHz zugelassenen 2 W ERP (dies entspricht 3,28 W EIRP) wäre entsprechend der (gegenüber

0,5 W EIRP) um 8,16 dB höheren Sendeleistung eine maximale Freiraumdämpfung von 48,16 dB zulässig. Damit ließe sich mit den im Beispiel angenommenen Werten eine Energiereichweite von sogar 9 m erzielen. Bei einer größeren Leistungsaufnahme des Transponderchips würde sich die erzielbare Reichweite wieder entsprechend reduzieren. Entscheidend für den Betrieb des Transponderchips ist neben einer ausreichenden Empfangsleistung P_e allerdings auch, dass nach Impedanzanpassung zwischen Antenne und Transponderchip eine ausreichend große Spannung U_e am Gleichrichter und Spannungsvervielfacher des Transponderchips anliegt, um daraus eine für den Chip ausreichend hohe Versorgungsspannung erzeugen zu können. Nach dem Ohmschen Gesetz ($U_e = \sqrt{P_e \cdot |Z_e|}$) ist dabei eine möglichst hochohmige Eingangsimpedanz des Transponderchips und damit auch der Ausgangsimpedanz der Antennen bzw. des Anpassnetzwerkes erstrebenswert.

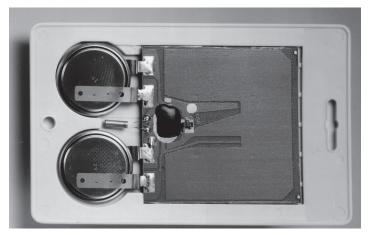


Abb. 3.24 Aktiver Transponder für den Frequenzbereich 2,45 GHz. Der Datenträger wird durch zwei Lithiumbatterien mit Energie versorgt. Die Mikrowellen-Antenne des Transponders ist als u-förmige Fläche auf der Leiterkarte zu erkennen. (Photo: Pepperl & Fuchs, Mannheim)

Um große Reichweiten bis zu 15 m zu erreichen oder aber auch Transponderchips mit einer größeren Leistungsaufnahme noch mit einer akzeptablen Reichweite betreiben zu können, verfügen Backscatter-Transponder häufig über eine Stützbatterie zur Energieversorgung des Transponderchips. Um die Batterie nicht unnötig zu belasten, verfügen die Mikrochips in der Regel über einen stromsparenden "power-down"- bzw. "stand-by"-Modus. Verlässt der Transponder das Feld eines Lesegeräts, so schaltet der Chip automatisch in den stromsparenden "power-down"-Mode. Die Stromaufnahme beträgt dann maximal noch einige µA. Erst durch ein ausreichend starkes Signal in Lesereichweite eines Lesegeräts wird der Chip erneut aktiv und nimmt den normalen Betrieb wieder auf. Die Batterie aktiver Transponder stellt jedoch in keinem Falle Energie zur Datenübertragung zwischen Transponder und Lesegerät zur Verfügung, sondern dient ausschließlich der Versorgung des Mikrochips. Zur Datenübertragung zwischen Transponder und Lesegerät wird ausschließlich die Energie des elektromagnetischen Feldes eingesetzt, welches vom Lesegerät ausgesendet wird.

3.2.2.2 Datenübertragung Transponder > Leser: Modulierter Rückstrahlquerschnitt

Aus der *RADAR-Technik* ist bekannt, dass elektromagnetische Wellen von Materie, deren Ausdehnung größer als etwa die halbe Wellenlänge der Welle ist, reflektiert werden. Die Wirksamkeit, mit der ein Objekt elektromagnetische Wellen reflektiert, wird durch dessen *Rückstrahlquerschnitt* beschrieben. Einen besonders großen Rückstrahlquerschnitt weisen Objekte auf, die zu der eintreffenden Wellenfront in Resonanz sind, wie dies zum Beispiel bei Antennen für die jeweilige Frequenz der Fall ist.

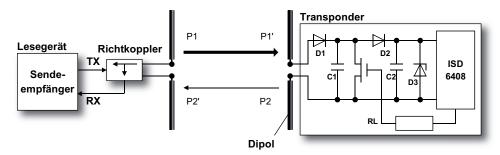


Abb. 3.25 Funktionsweise eines Backscatter-Transponders. Durch Umschalten des FET auf dem Chip wird die Impedanz des Chips "moduliert" [isd].

Von der Antenne des Lesegeräts wird eine Leistung P₁ abgestrahlt, wovon ein geringer Teil (Freiraumdämpfung) die Antenne des Transponders erreicht. Die am Transponder ankommende Leistung P₁' steht als HF-Spannung an den Anschlüssen der Antenne zur Verfügung und kann nach Gleichrichtung durch die Dioden D₁ und D₂ als Schaltspannung zur De-/Aktivierung des stromsparenden "power-down"-Modus verwendet werden. Als Dioden werden hier *low-barrier-Schottky-Dioden* verwendet, welche eine besonders niedrige Schwellenspannung aufweisen. Für kurze Reichweiten kann die gewonnene Spannung auch zur Energieversorgung ausreichend sein.

Ein Teil der ankommenden Leistung P_1 ' wird von der Antenne reflektiert und als Leistung P_2 zurückgesendet. Die *Reflexionseigenschaften* (= Rückstrahlquerschnitt) der Antenne können durch Ändern der an die Antenne angeschlossenen Last beeinflusst werden. Um Daten vom Transponder zum Lesegerät zu übertragen, wird ein der Antenne parallelgeschalteter zusätzlicher Lastwiderstand R_L im Takte des zu übertragenden Datenstroms ein- und ausgeschaltet. Die vom Transponder reflektierte (= rückgestrahlte) Leistung P_2 kann so in ihrer Amplitude moduliert werden (\rightarrow modulierter Rückstrahlquerschnitt, engl. *modulated backscatter*).

Die vom Transponder reflektierte Leistung P₂ wird in den freien Raum abgestrahlt. Ein geringer Teil davon (Freiraumdämpfung) wird von der Antenne des Lesegeräts aufgenommen. Das reflektierte Signal läuft daher in der Antennenleitung des Lesegeräts in "Rückwärtsrichtung" und kann unter Verwendung eines *Richtkopplers* ausgekoppelt und auf den Empfängereingang eines Lesegeräts geführt werden. Das um Zehnerpotenzen stär-

kere "vorwärtslaufende" Signal des Senders wird durch den Richtkoppler dabei weitestgehend unterdrückt.

Das Verhältnis zwischen der vom Lesegerät ausgesendeten und der vom Transponder zurückkommenden Leistung (P₁/P₂') kann anhand der Radargleichung abgeschätzt werden (siehe hierzu auch Kapitel 4.2.5.4 "Wirksame Fläche und Rückstreuquerschnitt", S. 147).

3.2.3 Close coupling

3.2.3.1 Energieversorgung der Transponder

Close-coupling-Systeme sind für Reichweiten von 0,1 cm bis maximal 1 cm konzipiert. Die Transponder werden deshalb zum Betrieb in ein Lesegerät eingesteckt oder auf eine markierte Oberfläche gebracht ("touch & go").

Das Einstecken oder Auflegen des Transponders in/auf das Lesegerät ermöglicht die gezielte Platzierung der Transponderspule im *Luftspalt* eines Ringkerns oder U-Kerns. Die funktionelle Anordnung von Transponderspule und Leserspule entspricht dann der eines Transformators. Es entspricht hierbei die Leserspule der Primärwicklung und die Transponderspule der Sekundärwicklung eines Transformators. Durch einen hochfrequenten Wechselstrom in der Primärwicklung wird ein hochfrequentes magnetisches Feld in Kern und Luftspalt der Anordnung erzeugt, das auch die Transponderspule durchströmt. Dadurch wird eine Wechselspannung gleicher Frequenz in der Transponderspule induziert. Durch Gleichrichtung dieser Spannung kann eine Versorgungsspannung für den Chip erzeugt werden.

Da die in der Transponderspule induzierte Spannung U proportional zur Frequenz f des Erregerstromes ist, wird zur Energieübertragung eine möglichst hohe Frequenz gewählt. In der Praxis kommen dabei Frequenzen im Bereich von 1 ... 10 MHz zum Einsatz. Um die Verluste im Kern des Transformators gering zu halten, muss bei diesen Frequenzen geeignetes Ferritmaterial als Kernmaterial verwendet werden.

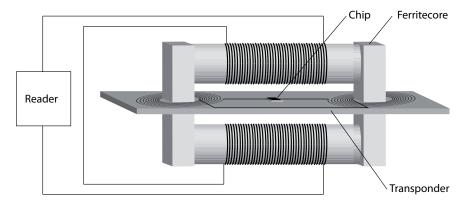


Abb. 3.26 Close coupling Transponder in einem Einsteckleser mit magnetischen Koppelspulen.

Aufgrund des im Gegensatz zu induktiv gekoppelten oder Mikrowellen-Systemen sehr guten Wirkungsgrads der Leistungsübertragung vom Lesegerät zum Transponder eignen sich Clo-

se-coupling-Systeme außerordentlich gut für den Betrieb von Chips mit hohem Energiebedarf. Anfang der 90er-Jahre wurden *Close-coupling-Systeme* für kontaktlose Chipkarten mit Mikroprozessor und Chipkarten-Betriebssystem (Smart Card OS) eingesetzt. Die mechanischen und elektrischen Parameter kontaktloser *Close-coupling-Chipkarten* wurden hierzu in einer eigenen Norm, der *ISO/IEC 10536*, spezifiziert. Für den Energieverbrauch der Mikroprozessoren mussten nach dem damaligen Stand der Technik einige 10 mW Leistung bereitgestellt werden [sickert]. Ab Mitte der 90er-Jahre wurden die Close-Coupling-Chipkarten allerdings zunehmend durch induktiv gekoppelte Proximity-Karten (ISO/IEC 14443) verdrängt. Seitdem Ende der 90er-Jahre Proximity-Karten auch mit Mikroprozessor verfügbar wurden, haben Close- coupling-Karten ihre Bedeutung jedoch gänzlich verloren und werden daher heute für neue Anwendungen nicht mehr eingesetzt.

3.2.3.2 Datenübertragung Transponder > Leser

Zur magnetisch gekoppelten Datenübertragung vom Transponder zum Lesegerät wird auch bei Close-coupling-Systemen Lastmodulation mit Hilfsträger verwendet. Für Close-coupling-Chipkarten sind Hilfsträgerfrequenz und -modulation in ISO/IEC 10536 festgelegt.

Aufgrund der geringen Entfernung zwischen Lesegerät und Transponder kann bei den Close-coupling-Systemen auch *kapazitive Kopplung* zur Datenübertragung verwendet werden. Hierbei werden Plattenkondensatoren aus zueinander isolierten Koppelflächen gebildet, die im Transponder und Lesegerät so angeordnet werden, dass sie bei einem eingesteckten Transponder genau parallel zueinander platziert sind.

Auch dieses Verfahren findet bei Close-coupling-Chipkarten Verwendung. Die mechanischen und elektrischen Eigenschaften dieser Karten sind in *ISO/IEC 10536* definiert.

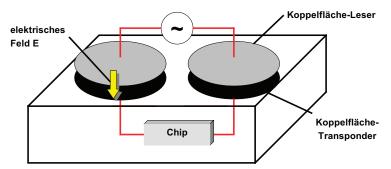


Abb. 3.27 Die kapazitive Kopplung bei Close-coupling-Systemen erfolgt zwischen zwei parallelen, in geringem Abstand zueinander angeordneten Metallflächen.

3.2.3.3 Close-Coupling-Chipkarten

Die vor allem in den 90er-Jahren eingesetzen Close-coupling-Chipkarten wurden mittlerweile vollständig von anderen Systemen verdrängt. Die in ISO/IEC 10536 spezifizierten Ei-

genschaften sind aber zumindest aus technischer und technikhistorischer Sicht interessant, weshalb sie hier kurz vorgestellt werden sollen.

Bei den Close-coupling-Chipkarten kamen sowohl *induktive* (H1 ... 4) als auch *kapazitive Koppelelemente* (E1 ... 4) zum Einsatz. Die Anordnung der Koppelelemente wurde so gewählt, dass eine Close-coupling-Chipkarte in einem Einsteckleser in allen vier Lagen betrieben werden konnte.

Die Energieversorgung der Close-coupling-Chipkarte erfolgt über die vier induktiven Koppelelemente H1 ... H4. Das induktive Wechselfeld soll eine Frequenz von 4,9152 MHz aufweisen. Die Koppelelemente H1, H2 werden als Spulen, jedoch mit umgekehrtem Wickelsinn ausgeführt, sodass bei gleichzeitiger Speisung der Koppelelemente eine Phasendifferenz von 180° zwischen den dazugehörenden magnetischen Feldern F1 und F2 bestehen muss (z. B. durch U-Kern im Lesegerät). Analoges gilt für die Koppelelemente H3 und H4.

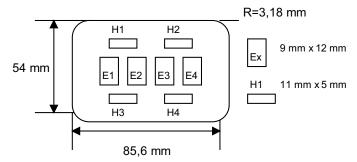


Abb. 3.28 Lage der kapazitiven (E1 – E4) und induktiven Koppelelemente (H1 – H4) einer Close-coupling-Chipkarte.

Abb. 3.29 Halb geöffnetes Lesegerät für Close-coupling-Chipkarten nach ISO/IEC 10536. In der Mitte des Einsteckschlitzes sind vier kapazitive Koppelflächen zu erkennen, umgeben von vier induktiven Koppelelementen (Spulen). (Foto: Denso Corporation, Japan – Aichi-ken)

Die Lesegeräte müssen so ausgelegt sein, dass mit jedem der magnetischen Felder F1 ... F4 eine Leistung von 150 mW an die kontaktlose Karte abgegeben werden kann. Über alle vier Felder zusammen dürfen von der Karte jedoch nicht mehr als 200 mW aufgenommen werden.

Tabelle 3.7: Einstecklage 1 (Zustand A: ungetastet, Zustand A': getastet).

A	A'
ФF	$1\Phi^{*}F1 = \Phi F1 - 90^{\circ}$
$\Phi F3 = \Phi F1 + 90^{\circ}$	Φ 'F3 = Φ F3 + 90°

Tabelle 3.8: Einstecklage 2 (Zustand A: ungetastet, Zustand A': getastet).

A	A'
F1	$\Phi\text{'}F1 = \Phi\text{'}F1 + 90^{\circ}$
$\Phi F3 = \Phi F1 - 90^{\circ}$	Φ 'F3 = Φ 'F3 – 90°

Zur Datenübertragung zwischen Karte und Lesegerät können wahlweise die induktiven oder kapazitiven Koppelelemente verwendet werden. Während einer laufenden Kommunikation darf jedoch nicht mehr zwischen den Kopplungsarten gewechselt werden.

Induktiv: Zur Übertragung von Daten über die Koppelfelder H1 ... H4 wird hier Lastmodulation mit Hilfsträger eingesetzt. Die Hilfsträgerfrequenz beträgt 307,2 kHz, die Modulation des Hilfsträgers erfolgt mit 180° PSK. Das Lesegerät ist so auszulegen, dass ein Lastwechsel von 10% der Grundlast an mindestens einem der Felder F1 ... F4 als Lastmodulationssignal erkannt werden kann. Der minimale Lastwechsel einer Karte ist mit 1 mW spezifiziert.

Kapazitiv: Hierzu werden paarweise die Koppelfelder E1, E2 oder E3, E4 eingesetzt. In beiden Fällen werden die paarweisen Koppelfelder durch ein Differenzsignal angesteuert. Die Spannungsdifferenz $U_{diff} = U_{E1} - U_{E2}$ soll so bemessen werden, dass an den Koppelflächen E1' und E2' des Lesegeräts ein Spannungspegel von mindestens 0,33 V zur Verfügung steht. Die Datenübertragung erfolgt durch *NRZ-Codierung* im Basisband (d. h. ohne Hilfsträger). Die Datenrate nach Reset beträgt 9600 bit/s; während des Betriebs kann jedoch auf eine höhere Datenrate umgeschaltet werden.

Zur Datenübertragung in Richtung Karte wird durch die Norm der induktive Kanal präferiert. Als Modulationsverfahren wird eine 90° PSK der Felder F1 ... F4 eingesetzt, wobei die Phasenlage aller Felder synchron umgetastet wird. Je nach Lage der Karte im Einsteckleser sind bei Modulation folgende Phasenbeziehungen zwischen den Koppelfeldern möglich.

Die Datenübertragung erfolgt durch NRZ-Codierung im Basisband (d. h. ohne Hilfsträger). Die Datenrate nach Reset beträgt 9600 bit/s; während des Betriebs kann jedoch auf eine höhere Datenrate umgeschaltet werden.

16 Register

	Allocation Code 703
1999/5/EG 207, 209	ALOHA-Verfahren 255, 257
1-bit-Transponder 34	Alufolie 276
2-FSK 226	American Express 670
2-FSK-Modulation 71	amorphes Metall 40, 43, 135
4-Kanalplan 437	Amplitude 219
•	Amplitudenmodulation 117, 222
	Anechoic Chamber 585
A/D-Wandler 512	Angreifer 497
Abfallentsorgung 719	Angriff 31
Abfrageimpuls 177	Angriffsversuch 315
Abhören 278	Anharmonische 45
Abhörreichweite 297	Animal Identification 337
Abschertest 632	anisotroper Klebstoff 620
Abschirmen des Transponders 276	Anpassschaltung 542
Absorberfolie 646	Anpassung 166
Absorberkammer 585	Leistung 68
Absorptionsrate 30, 196	Spannung 69
Abtastpuls 71	Strom 69
Access Kommandos 444	Ansprechbereich 102, 156
Access-Register 469, 477	Ansprechfeldstärke 82, 97, 168, 565
ACK Kommando 444	Antenne 144
Acquirer 668	Dipol 71, 637
Activation Energy 585, 589, 594	Draht 615
Activation Sensitivity 585	E-Feld 637
AddRoundKey 324	geätzt 615
Administration-Code 475	gedruckt 615
Adresslogik 465	H-Feld 637
Advanced Encryption Standard 321	Schleifenantenne 637
Advanced Mode 342	Antennengewinn 302
Advanced Transponder 341	Antennengruppe 303
AES 321	Antennengüte 643, 650
AFC 656	Antennenradius 81
AFI 455	Antennenspule 540
AIM 741	Antennenstrom 104
Aktivator 34	Anticollision Frame 367
aktive Lastmodulation 54, 305	Antikollisionsalgorithmus 119, 310, 529
aktiver Transponder 15, 25, 95, 305	Antikollisionsverfahren 29, 252
Aktivierungsenergie 585, 589	Antwortpuls, Phasenlage 178, 515
Aktivierungsfeld 338	Anzugsbolzen 402, 723
Akustomagnetisches Sicherungssystem 44	APDU 491
Ali Baba 315	aperture, scatter~ 143
ALLFA-Ticket 665	Application Code (MAD) 474

Applikation 474	Being Reader 401
Applikationssoftware 496, 517, 525	Beschleunigungsmessung 514
Applikationsverzeichnis 474	Betriebsfrequenz 103
MAD 474	Betriebsspannung 95
Arbeitspunkt 555	Betriebssystem 8, 479
Arbiträrsignalgenerator 560, 567	auf Chipkarte 484
Armbanduhr 670	Biegungsmessung 514
Artikelsicherung 34	Binary-Search-Tree-Algorithmus 266, 311
elektromagnetisches Verfahren 40	Binary-Search-Verfahren 256
Frequenzteiler-Verfahren 39	Biometrie 5
Mikrowellensysteme 37	Bitcodierung 263
RF-Verfahren 34	Bitrate 531
Artikelsicherungssystem 27	Blindwiderstand 640
ASK 45	Blockchiffre 320
ASK-Modulation 222, 520	Blockertag 311
Asynchronous Balanced Mode 402	Blockieren des Lesegerätes 278
Ätztechnik 22, 614	Blockschaltbild Lesegerät 532
Auslöschung 167	Blockstruktur 468
Ausschwingen 127	Bluetooth 73
Ausspähen 275	Bodenantenne 721
Ausstanzen 636	Bolus 708
AuthComm Kommando 445	Bondpads 606
Authenticate Kommando 445	Broadcast 250
Authentifizierung 29, 31, 329, 469, 713	Brückengleichrichter 293
Authentizität 316	=
Auto-ID-Center 419	Brückenkapazität 650 BSI 334
-	
Automatic fare collection 656	Bump 618
Autoschlüssel 17	Bundesamt für Sicherheit in der
AWG 560, 561, 567	Informationstechnik 334
	Bundesnetzagentur 210
D 11 1 610 605	Bürgerverband 274
Backlack 610, 625	Busy-Signal 687
Backscatter 60	
Backscattermodulator 458	G.1777760 (61)
Backscattersignal 297	CALYPSO 664
Backscatter-System 25, 142, 156	Capture-Effekt 260
Backscatter-Transponder 208	Card-Emulation-Mode 76, 501
Bandbreite 126, 194	Card Loading Effect 564
Barcode 2, 425	carrier 222
Barcodeleser 409	Carrier-circuit 219
Basic Access Control Protocol 331	CBC 326
Basisbandsignal 219, 520, 529	CBC-MAC 319
Batterie 26, 166	CDMA 251
batteriegestützter Transponder 54	CEN/TR 16669 454
Behälteridentifikation 718	CEN/TR 16670 454
Being Card 401	CEN/TR 16671 454

CEN/TR 16672 454	Crypto Suite 445
CEN/TR 16673 454	Crypto Suite Identifier 445
CEN/TR 16674 454	CSI 445
CEN/TR 16684 454	Czochralski Verfahren 604
CEN/TS 16685 454	
CEN TC225 454	
CEPT 198, 199, 209	DAC 561
CERP 198	DATA0 689
CETIM 704	DATA1 689
CE-Zeichen 209	Data Compactor 408
Chaining 530	Datenblock 408
Chaining-Verfahren 324	Datenobjekt 409
Challenge Kommando 445	Datenschutz 451
Channel 219	Datensicherheit 451
Charakterisierung 553, 563	Datenträger 11
Chiffre	<u> </u>
	Datenübertragung 115, 219
one-time-pad 326	DBP-Code 220
sequentiell 317	Deaktivator 35
Vernam 326	Deaktivierungsanlage 406
Chiffrieren 317	Deaktivierungsquote 407
Chip 11	Debit-System 667
Chip-Impedanzmessung 553	Dechiffrieren 317
Chipkarte 6	Deckfolie 627
close-coupling 346	Dehnungsmessung 514
mit Mikroprozessor 8	Demodulation 219, 222, 458, 462
Chipkartenbetriebssystem 484	Demodulator 219
CIN 455	Denial of Service 275
cipher block chaining 326	Angriff 310
Close-coupling 656	Dense-Reader-Mode 420, 435
Close-coupling-Chipkarte 346	DES 321, 486
Close-coupling-System 24, 61	Detektionsrate 34, 404
CNC-Technik 723	Dethloff, Jürgen 655
Code, EAN 2	Deutsche Bahn A. G. 676
Codemultiplexverfahren 251	Device under Test 556
Codierung im Basisband 219	DFT 562, 570
coil-on-chip 23	Die Bonder 616
Company Identification Number 455	Diebstahlsicherung 14, 34, 203, 207
Company Prefix 424	Dielektrikum 276
Competent Authority 702	dielektrischer Spalt 135
Contactless Interface Unit 484	Differential Bi-Phase Code 220
Contact Pads 606	Differential-Code 220
Container 403	Digital-Analog-Konversion 561
Identifikation 403	Dimple 36
Coprozessor 29	DIN 742
CRC 237, 344, 485	Diode, Schottky-Diode 60
Credential 694	Dipolantenne 38, 71, 137, 144, 151, 637
Cicaciniai 077	Dipolaticinic 30, /1, 13/, 144, 131, 03/

Dirac-Impuls 127	elektrische Kopplung 24, 65
Dirac-Messung 127	elektrische Länge 651
Direktor 153	elektrisches Wirbelfeld 88
Discovery Sevices 418	Elektrode 65
diskrete Fourier-Transformation 562	elektromagnetisches Feld 24
Disktransponder 16	elektromagnetisches Störfeld 30
DoD 423	elektromagnetische Verfahren 40
Doppler-Effekt 513	elektromagnetische Welle 139, 142, 542
Dotieren 603	Entstehung 137
Dotierungsprofil 38	elektronischer Datenträger 457
Drahtbonden 616	elektronischer Produktkode 418
Dreiecksknorpel 708	elektronischer Reisepass 331
Druckmessung 514	elektronische Wegfahrsperre 712
Drucktechnik 630	EMD 573, 582
DSB 54	Empfängerempfindlichkeit 171
DSB-Modulation 430	Empfängerzweig 520
Dual-Interface-Card 29, 481	Empfangsleistung 147
Dual-Port-EEPROM 476	Empfangsreichweite 307
Dual-Side-Band 54	Empfangssignal 219
	Empfangssignalaufbereitung 527
	Empfangszweig 520
EAN 419	EMV-Spezifikation 667
EAN-Code 2, 274	EN 16570 454
EAS 14, 34, 203	EN 16571 454
EAS-System 27	EN 300 220 208
ECB 325	EN 300 330 194
ECTRA 199	EN 300 440 208
EEPROM 730	EN 300 674 209
Lebensdauer 509	EN 300 761 209
Schreibzeit 511	EN 301 091 209
E-Feld Antenne 637	EN 302 208 209
effective aperture 147	end-of-burst detector 70
effective height 150	Energiereichweite 53, 100, 299, 300, 523
Eindringtiefe 196, 645	Energieversorgung 15, 458
Eingangsimpedanz	EN ISO/IEC 29160 454
Antenne 146	Entschlüsseln 317
Transponder 157	Entschlüsselung 486
Eingangskapazität 157	EPC 418, 423, 446
Eingangsspannung, HF- 98	EPCglobal Inc 419
Eintor-Resonator 182	EPCglobal Middleware 418
EIRP 145	EPCglobal Network 417
Eisenbahnverkehr 201	EPCglobal Specifications 420
Electromagnetic Distortion 573, 582	EPC Information Services 417
electronic code book 325	EPCIS 417
elektrisches Feld 24, 65, 137	EPC Memory 437
elektrische Kompensation 558	ERC 199
	— •//

ERC Recommendation 70-03 199	FeliCa 401, 672
ERO 199, 209	Fernfeld 138, 194, 634, 638
ERP 146	Ferrit 18
Ersatzschaltbild 552	Ferritantenne 133
Schottky-Diode 158	Ferritfolie 646
ESB 552	gesintert 646
ETCS 697	Ferritschalenkern 18
Etikett 34	Ferritstab 135
ETSI 198, 205, 207 Anschrift 743	ferromagnetisches Metall 43 field threshold 589
ETSI EN 300 220 207	File Kommando 446
	Filter Value 424
ETSI EN 300 330 207	
ETSI EN 300 440 207	FIPS-197 321
ETSI EN 302 208 206	Flächenwiderstand 613
ETSI TR 102 436 209	Flexodruck 631
EU-Mandat M/436 451	FlexPass 663, 665
Eurobalise 201, 698	Flip Chip 619, 620
European Radio Office 199	Floating-Gate 508
Evaluierung 563	FM0 Modulation 432
ExpressPay 670	FOD 503
Extended Bit Vector 444	FRAM 509
ExxonMobil 670	Schreibzeit 511
	Frame Delay Time 306, 569
	Freiraumdämpfung 58, 139
Fahrsmart 662, 665	frequency shift keying 225
Fahrzeugidentifikation 201, 202	Frequenz 219
FCC Part 15 213	anharmonische 45
FCC-Vorschrift 214	harmonische 37, 45
FDMA 251, 254	Sende- 15
FDT 306, 569, 580	subharmonische 40, 45
FDX 13, 45	Frequenzauswahl 194
FDX-B Transponder 342	Frequenzband 199
Fehlalarmquote 404	Frequenzbereich 187, 189
Feld	13,56 MHz 190
elektrisch 65	135 kHz 189
magnetisch 78	2,45 GHz 142, 193
Feldeinwirkung 276	24,125 GHz 193
Feldlinie 79	27,125 MHz 190
magnetische 102	40,680 MHz 191
Feldstärke 168, 559	433,920 MHz 191
die zur Zerstörung des Transponders	5,8 GHz 193
führt 590	6,78 MHz 189
magnetische 78	865,0 MHz 192
Maximum 81	868 MHz 192
Verlauf der 80	915 MHz 142, 192
Feldwellenwiderstand 140	ISM 189

Frequenzmodulation 222 Antennengüte 643 Frequenzmultiplexverfahren 251, 254 Messung 128 Frequenzplanung 197 Gütefaktor 93, 114, 119, 121, 182, 546 FSK 45, 222 Messung 126 FSK-Modulation 520 Full-Blocker 311 Füllbytes 324 Haftfestigkeit 632 Halbduplexverfahren 13, 45 Function-Cluster 474 Funkanlage 187 Halbleiterschaltung 39 Funkdienst 187 Halbwellendipol 151 Funkfrequenzspektrum Halsbandtransponder 705 Nutzung 197 Handelspartner 417 Fußband-Transponder 709 Händlerbank 668 Harmonische 37, 294 harmonische Frequenz 45 GaAs 602 Hartetikette 34, 39 Gallium-Arsenid 602 hartmagnetisches Metall 43 geätzte Antenne 615 Hashfunktion 318 gedruckte Antenne 615 kryptografisch 318 Hauptstrahlrichtung 145, 153 Gegeninduktion 89 Gegeninduktivität 84, 85, 105 HCE 495 gegenseitige Authentifizierung 329, 469 HCI 501 geinkt 607 HDLC Protokoll 500 gemapt 607 HDX 13, 45 Gen 2 Protokoll 419, 429 Header 424 Generation 2 419 Helmholtz-Anordnung 559, 571 Generatorspule 35 HF-Eingangsspannung 98 gepulste Systeme 46 H-Feld 208 gerichtete (Strahlungs-)Keule 30 H-Feld Antenne 637 geschlossenes System 273 HF-Interface 293, 306, 458, 518 **GIAI 426** High-end-System 29 GID 423 High-end-Transponder 458 Glastransponder 16, 135, 701, 706 Hilbert-Algorithmus 562, 568 Herstellen 623 Hilfsträger 50, 51, 64, 227, 459, 520 Glaukom 731 Hilfsträgerfrequenz 54, 227 Golden Device 558 307,2 kHz 64 GRAI 423 Hologramm 632 Graphitbeschichtung 66 Homologationscode 704 Grötrupp, Helmut 655 Host Based Card Emulation 495 Gruppenantenne 155 Host-Control-Interface 501 GS1 429 Humanmedizin 731 GS1 EPC Gen 2 UHF 449 Hysteresekurve 40, 132 GS1EPCl Standards 421 GSM 205 GTAG Initiative 417 IAC 455

ICAR 702, 703

Güte 642

ICARE 664	ISO/IEC 17366 452
Identifikationscode für Tiere 337	ISO/IEC 17367 452
Identifikationssystem 727	ISO/IEC 18000 410
Identifikation von Tieren 337, 338	ISO/IEC 18000-6 429, 656
IIC-Bus 476	ISO/IEC 18000-63 429, 449, 455
Impedanzanalysator 123	ISO/IEC 18001 412
Impedanzanpassung 158, 166	ISO/IEC 18046 414, 585, 588
Impedanzfunktion 642	ISO/IEC 18047 413
Induktionsgesetz 88	ISO/IEC 18092 401, 672
Induktionsspannung 88	ISO/IEC 19823 414
induktive Funkanlage 24, 203	ISO/IEC 21481 401, 672
induktive Funkamage 24, 203	ISO/IEC 24710 412
induktive Kopplung 24, 77, 138, 194	ISO/IEC 29160 454
Induktivität 84, 640	ISO/IEC 29167 412, 445
Gegeninduktion 89	ISO/IEC 7810 627
Gegeninduktivität 84	ISO/IEC 8824-1 409
Industrieautomation 29	ISO/IEC 9798-2 329
Informationsquelle 219	ISO/IEC 9834-1 409
Infrarot 73	ISO 10536 62
Injektion 708	ISO 3166 702
Injektionsnadel 707	ISO 6346 403
Injizierbare Transponder 706	ISO 69871 402
ink dot 607	ISO 69872 402
Inletfolie 627	ISO 69873 18, 403
integrierter Schaltkreis 604	ISO-Container 403
Integrität 316	isotroper Strahler 140, 144
Interdigitalwandler 71, 175	isotrop leitfähiger Klebstoff 620
Intermodulationsprodukt 301	Issuer 668
Internationale Fernmeldeunion 196	Item Management 407
Inventur 734	Item Reference 424
ISM-Frequenzbereiche 187	ITU 196
ISO 742	ITU-R 197
	11U-K 197
ISO/IEC 10373-6 552	
ISO/IEC 10374 403	T 4 1 400
ISO/IEC 10536 346, 656	Java-Applets 496
ISO/IEC 11784 702	JIS X 6319-4 401, 490
Identifikationscode 341	
ISO/IEC 14443 46, 53, 305, 350, 401, 656,	
667	Kalibrierspule 559
ISO/IEC 15693 401, 492, 656	Kanalcodierung 229
ISO/IEC 15961 407	Kanalraster 199
ISO/IEC 15962 407	Kapazitätsdiode 38
ISO/IEC 15963 407	kapazitives Koppelelement 63
ISO/IEC 17363 452	kapazitive Kopplung 24, 62, 65
ISO/IEC 17364 452	kapazitive Lastmodulation 117
ISO/IEC 17365 452	Kennzeichnung von Produkten 274

KeyUpdate Kommando 445	Kryptografie 481
Kfz-Diebstahl 712	Koprozessor 481, 485
Klarschriftleser 4	kryptografische Hashfunktion 318
Klartext 316	kryptografisches Protokoll 328
Klassenkonzept 576	kryptografischer Schlüssel 329
Klebeetiketten 23	Krypto-Unit 465
Klebstoff	kugelförmiger Strahler 140
anisotrop 620	Kunstlinse 732
isotrop leitfähig 620	Kurzstreckenfunk 188
Koaxialleitung 542	Kurzstreckenfunkgerät 27
Kollisionsintervall 259	Kurzwellenfrequenz 189
Kommando	Traizweiteinrequenz 109
Access 444	
ACK 444	Label 23
NAK 444	Ladekondensator 67
Query 443	Laminieren 628
QueryAdjust 443	Landing Plane 558
QueryRep 444	Langasit 516
Kommunikationsprotokoll 495	Langwelle 189
Kommunikationsreichweite 26, 53	Langyagi-Antenne 303
Kommunikationssystem 219	Lastmodulation 50, 64, 66, 76, 115, 340,
•	527
Konfigurationsregister 469 Konformität 413	aktiv 305
Konformitätsnorm 413	aktive 54
Konstatieren 710	
	kapazitive 117 ohmsche 117
kontaktbehaftete Chipkarte 481	
Kontaktierung 617	reelle 117
Kontaktierverfahren 615	Lastmodulationsreichweite 299
kontaktlose Chipkarte 20, 24, 627	Lastmodulator 51, 121, 458, 495
kontaktlose Uhr 20	Lastwiderstand 49, 113, 157, 227
KONTIKI 741	Leadframe 617
Koppeldämpfung 521	Leistungsanpassung 68
Koppelelement 11	Leistungsmessung 591
induktiv 63	Leistungspegel 199
kapazitiv 63	Leiterschleife 103, 138
Kopplung	Leiterschleifenantennen 104
elektrisch 24, 65	Leitfähigkeit
induktiv 24, 77, 138	spezifisch 644
kapazitiv 24, 62, 65	Lesegerät 11, 103, 219, 517
magnetisch 24	für Klarschrift 4
Kopplungsfaktor 86, 110	Lesereichweite 25, 66, 81, 99, 103, 305
Kreditkarte 655	vergrößern 278, 298
Kreditkartenfunktion 496	Lichtgeschwindigkeit 137
Kreditkartenorganisation 669	Lieferkette 417, 424
Kreisdämpfung 93	lineare Detektion 160
Kristallgitter 174	line code 220

Lithiumniobat 71, 174 Entfernung 513 Lithiumtantalat 71, 174 Geschwindigkeit 513 Logical-Link-Control-Protokoll 402 physikalische Größen 514 Logistikprozess 418 Temperatur 514	
Logical-Link-Control-Protokoll 402 physikalische Größen 514 Logistikprozess 418 Temperatur 514	
Logistikprozess 418 Temperatur 514	
Long-range-System 25, 58 Metall	
low-barrier-Schottky 60 amorphes 40, 43	
low-cost-Transponder 195 hartmagnetisches 43	
low-end-System 27 Metalldeckel 135	
LPRA 742 Metallfolie 66	
LTE 205 Metalloberfläche 18, 88, 134, 135	, 717, 724
Luftspalt 61 Rückstreuquerschnitt 143	
MFRC-522 530	
micro-SD Karte 53	
MAC 319 Middleware 496	
MAD 474 MIFARE 483, 530, 672	
Administration-Code 475 MIFARE-Transponder 473	
Application-Code 474 Mifare Ultralight 490	
Function-Cluster 474 Mikrochip 11, 39, 90	
Magnetfeld 137 Betriebsspannung 95	
magnetische Erregung 559 Spannungsversorgung 90	
magnetisches Feld 24, 78, 137 Stromaufnahme 113	
magnetische Feldlinie 102 Mikroprozessor 479	
magnetische Feldstärke 78 Betriebssystem 479	
magnetischer Fluss 83 Chipkarte 8, 484	
magnetische Kopplung 24 Mikrospule 732	
magnetisches Wechselfeld 79 Mikrostrip-Antenne 153	
Magnetisierungskennlinie 132 Mikrowelle 25, 37	
Magnetostriktion 43 Mikrowellenfrequenz 58	
Manchester-Code 220, 263 Mikrowellensystem 521	
Manipulation 329 Miller-Code 220	
maschinenlesbare Zeile 331 modified 220	
Massenfertigung 726 Millersubcarrier 433	
MasterCard 669 MIME 494	
Masterschlüssel 330 Minimale Lese- oder Schreibfeldst	ärke 590
Master-Slave-Prinzip 517 Mitgliedstaaten 198	
Materialfluss 727 MixColumn 323	
Matrix Run 647 Mobile Oil 670	
Mauterfassung 202 Mobiltelefon 481	
Maximale Feldstärke 590 Modem 219	
maximum operating electromagnetic modified miller code 220	
field 590 modulated backscatter 60, 169	
Megabump 621 Modulation 172, 219, 222, 580	
mehrstufige Modulation 227 2-FSK 71	
Messung ASK 520	
Beschleunigung 514 DSB 54, 430	
Druck 514 FM0 432	

FSK 520	NFCIP-2 401
PR-ASK 430	NFC-Target 74
PSK 520	NFC-V 401, 492
SSB-ASK 430	NFC-WI Interface 306
Zweiseitenband 54	
-	NFC Wired Interface 501
Modulationseigenschaften 559, 562, 567	NFC-WLC 502
Modulationseingang 526	nichtlinearer Widerstand 37
Modulationskondensator 118	Normen, Bezugsquelle 742
Modulationsparameter 568	NRZ-Code 64, 220, 263
Modulationsprodukt 223	NTAG 490
Modulationsseitenband 297	NTC 512
Modulationswiderstand 116, 460	Nullkopplung 578
Modulator 219	Nummer, Serien 712
modulierter Rückstrahlquerschnitt 142, 169	
Montageuntergrund 595	
Motorelektronik 714	Oberflächenwelle 71, 174
multi-access 250	Oberflächenwellen-Bauelement 71
Multiplexer 687	Oberflächenwellen-Transponder 25, 523
Multi-shot-Gerät 707	Oberwelle
Mutual Authentication 329	Abhören 293
my-d 490	Object Naming Service 417
	OCR-System 5
	OEM-Lesegerät 547
Nahfeld 49, 138, 194, 309, 634, 638	Öffentlicher Personen(nah)verkehr 656
NAK Kommando 444	Offlineschloss 693
nationale Regulierungsvorschrift 209	Offsetdruck 631
NDEF 401, 492	OFW 71
Record-Header 492	Ohrmarke 705
TNF-Definition 492	Ohrmarken 705
NDEF-Datensatz 492	On-chip-Oszillator 527
NDEF-Message 492	on-chip trimm capacitor 67
NDEF-Record 492	one-time-pad 326
Near Field Communication 671	On-Off keying 223
	ONS 417
Netzwerkanalysator 123 NF-Bereich 40	Operated Range Test 586
	Operated Volume Test 586
NFC 73, 671	Operating Volume 558, 562
active-mode 671	ÖPNV 741
passive-mode 671	Orientierungstest 590
NFC-A 401	OSDP 689, 690
NFC-B 401	Control Panel 692
NFC Data Exchange Format 401, 492	Peripheral Device 692
NFC-Device 671	OSS-Standard Offline 694
NFC-F 401	Oszillator 171, 520
NFC-Forum 401, 492	on-chip 527
NFC-Initiator 74	OTA-Dienst 674
NFCIP-1 401	Overlayfolie 627
	•

Padding 324	Polarisationsrichtung 168
Parabolspiegel 304	Polarisationsverlust 141
Parallelregler 97	Polling-Verfahren 256
Parallelresonanz 642	Polstelle 642
Parallelresonanzkreis 91	Polyethylen-Folie 34
Parallelschwingkreis 90	Polymer-Absorberfolie 646
Paritätsbit 235	Polymer-Dickfilmpaste 613
Paritätsprüfung 235	Population Analysis 597
Partitition 424	Populationstest 597
Passierungsschicht 606	POS 486, 667
passive Lastmodulation 54	POS-Terminal 667
passiver Transponder 15, 25, 47, 95, 458	power-down-mode 485
Passwort 469	power management unit 482
Patch-Antenne 153	Power-ON-Logik 465
PayPass 669	Poyntigscher Strahlungsvektor S 140
PCD 558	PR-ASK-Modulation 430
PCD Antenne 558	
PCD Standard Frame 368	Privacy Impact Assessment 335
Peer to Peer Kommunikation 401	Privatsphäre 274
Performanz 413	Schutz der 454
Performanznorm 414	Produktionsprozess 726
Permanentmagnet 41	Produktkennzeichnung 274
Permeabilität 132, 646	Programmierung, Lesegerät 531
Permeabilitätskonstante 559	Protokollrahmen 529
Personen(nah)verkehr 656	Proximity-coupling 656
PGP 320	Proximity-Effekt 645
Phase 219	Pseudozufallsfolge 327
Phasenlage 515	PSK 45, 64, 222
Phasenmodulation 117, 222	PSK-Modulation 520
Phasenrauschen 171	Public-Key Verfahren 320
Phasenumtastung 226	Pulse Intervall Encoding 431
Phase Shift Keying 226	puls pause coding 220
Photolithographie 606	Pulsradar 524
PIA 335	Pulsweite 531
PICC 348	
PIE 431	
Piezoeffekt 174	quadratische Detektion 160
piezoelektrischer Effekt 71	Qualitätsmerkmale 393
piezoelektrischer Kristall 174	Quarz 174
Planarantenne 153	QueryAdjust Kommando 443
Plastikgehäuse 17	Query Kommando 443
Plastikpackage (PP) 17	QueryRep Kommando 444
Point-of-Sale 667	Query Rommando 444
Polarisation 141	
horizontal 141	R&TTE-Directive 209
linear 141	
vertikal 141	R&TTE-Homepage 210 R&TTE-Richtlinie 207
zirkular 141, 155	K&IIE-KICHHIHE 20/

Radar, Rückstreuquerschnitt 143	Resonanzschwingung 34
radar cross section 143	Resonator 182
RADAR-Technik 60, 142	RFID-Lesegerät
Rahmenantenne 36	Testverfahren 588
RAIN 733	RFID-Ohrmarken 706
AFI 455	RFID-Sign 451
CIN 455	RFID-System 1, 11, 29
IAC 455	RFID-Transponder 11
RCI 455	RF-Verfahren 34
Reader Communication Interface 455	Richtantenne 153, 297
UII 455	Richtkoppler 60, 521
RAIN Alliance Inc. 455	Rijndael-Algorithmus 321
RAIN-RFID-Lesegeräten 735	Ringmodulator 54
Raummultiplexverfahren 251, 253	road toll systems 202
Rauschen 171, 299	Roboter 731, 735
Rayleigh-Welle 174	Rollentest 632
RCI 455	RS485 691
RCS 143	RSA 486
reader-emulation-mode 76	RTD-Spezifikation 494
Read-only-Transponder 27, 458, 467	RTTT 193
REC 70-03 199	Rückstrahlquerschnitt 60, 142
Receiver 219	moduliert 169
Record Type Definition 494	Rückstreuquerschnitt 143, 147, 168
Reference PICC 557, 562	•
Referenzkarte 557, 562	
reflective delay line 178	S2C-Interface 501
reflektive Verzögerungsleitung 178	Sägen des Wafer 608
Reflektor 71, 153, 177	SAM 331
Reflexion 168	SAW 71
Reflexionseigenschaft 60, 142	scatter aperture 143, 147
Reflexionsmessung 553	Schieberegister 240
Register 531 Regulierung 198	Schleifenantenne 208, 637
Regulierungsvorschrift 199	Schleifendipol 151
Bezugsquellen 743	Schlüssel 317
Reichweite 25, 30, 58, 66, 81, 103, 178,	applikationseigener 472
195, 253, 298	applikationsspezifischer 472
Abhörreichweite 297	geheimer 469
Reichweitengrenze 139	hierarchischer 470
Relay-Attack	Masterschlüssel 330
abwehren 331	Schlüsselanhänger 670
Remote-coupling-System 24	Schlüsselpaar 320
REQUEST-Kommando 256, 261	Schlüsselspeicher 470
Reserved Memory 437	Schottky-Detektor 158, 168
Resonanzfrequenz 90, 107, 108, 123,	Schottky-Diode 60, 158
555, 642	Sperrschichtkapazität 158
Messung 128	Sperrschichtwiderstand 158

Schreibzeit 511	Sicherungsetikett 34
Schweißen 621	Sicherungsmittel 34
Schwingkreisspule 39	Siebdruck 22, 631
Scutulum 708	Siebdrucktechnik 613
SDMA 251, 253	SIGIN 501
SecureComm Kommando 445	sigma-modulation 169
Secure Element 497, 501, 674	Signaldarstellung 219
Secure-Memory-Card 497	Signaldekodierung 219
segmentierte Transponder 408, 471	Signalkodierung 219, 526
Seitenband 172, 223	Signallaufzeit 513
Seitenbandamplitude 562, 571	Signalprocessing 219
Selbstinduktion 89	SIGOUT 501
SELECT-Kommando 261	Silberleitpaste 66
semi-passiver Transponder 26	Silizium 602
Sendefrequenz 15, 108	SIM-Karte 53, 497
Sendeleistung erhöhen 300	Simple NDEF Exchange Protocol 402
Senderzweig 520	Single Chip Reader IC 529
sensitivity degradation 590	Single-shot-Gerät 707
Sensordaten 512	Single Wire Protokoll 499
Sensorspule 35	Ski-Lift 685
Seoul 660	Skin-Effekt 644
SEQ 67	Slot 261
sequentielle Chiffre 317	Slotted-ALOHA 430
sequentieller Transponder 14	Slotted-ALOHA-Verfahren 259, 311
sequentielle Verfahren 14, 67	Smart Label 22, 25
Seriennummer 27, 261, 265, 311, 467, 507,	SNEP 402
712	Softwareanwendung 517
Serienresonanz 642	Sonotrode 612
Serienresonanzkreis 103, 540	Spannungsanpassung 69
Session Flag 438	Spannungsteiler, kapazitiv 65
SGLN 423	Spannungsverdoppler 161
SGTIN 423, 424	Spannungsversorgung 90, 158
SHA-1 332	des Chips 26
shared Code 703	Shuntregler 97
Shear Test 632	Spanzeugidentifikation 402
ShiftRow 323	Species Code 704
Short Frame 367	Speedpass 670
Short Range Device 27, 188, 199, 200	Speicher, segmentiert 471
Regulierung 199	Speicherbereich 277
Shuntregler 96, 97, 121	Speicherblock 344
Shuntwiderstand 95	Speicherkapazität 32
Sicherheitsanforderung 31	Speicherkarte 8
Chipkarte 481	Speichersegmentierung, variabel 472
Sicherheitslogik 465	Spektrumanalysator 591
Sicherheitssystem 315	spezifische Leitfähigkeit 644
Sicherung	Spitzenwertgleichrichtung 160
siehe Artikelsicherung	sprizenwertgierennentung 100

split-phase encoding 220	Technische Richtlinie RFID 334
spread-spectrum 251	Telemetriesender 27, 207, 512
Sprühventil 636	Temperaturmessung 514
Spulentreiber 527	Temperatursensor 182, 512, 513
SRAM 730	Thermokompressionsbonden 620
SRD 27, 188, 199	Thermosonic Bonden 616
SSB-ASK-Modulation 430	Three Pass Mutual Authentication 329
SSCC 423	Threshold Level 585, 634
Standard Frame 368, 372	threshold level 589, 594
Start-up time 569	Ticketing 29
State-Machine 29, 458, 466, 483	TID Memory 437
Steilkegelschaft 402, 723	Tiegelziehverfahren 604
Störreflexion 178	Tierartencode 704
Störsender 278, 297	Tieridentifikation 29, 337, 338, 700
Strahlungsdiagramm 145	Herstellercode 702
Strahlungsdichte 140, 142	Herstellernachweis 704
Strahlungsleistung 140	Ländercode 702
Strahlungswiderstand 146, 151, 154, 160	Tieridentifikationsnummer 702
streamcipher 317	Topaz 488
Stromanpassung 69	touch & go 61
Stromaufnahme 113	Touch & Travel 676
Stromfestigkeit 650	Touchpoint 676
Stromsparmodus 485	TR 03126 335
Stromverschlüsselung 317	Trafic Telematics 193
Subcarrier	Träger 219, 222
siehe Hilfsträger	Trägerperiode 569
Subharmonisch 40, 45	Trägerschwingung 223
Substitutionsmethode 557, 562, 564	Transaktionszeit 481
Supply chain 417, 734	transformatorische Kopplung 48, 49, 138
survival electromagnetic field 590	transformierte Impedanz 49
symmetrische Algorithmen 320	transformierte Transponderimpedanz 105,
Synchronisation	108, 115
mehrere Lesegeräte 339	Transmitter 219
Synchronisationsleitung 340	Transponder 11, 219, 552
Systembetreiber 273	1-bit 34
	aktiver 15, 25, 305
	Disk∼ 16
T/R 22-04 208	Glas∼ 16
T/R 60-01 208	passiver 15, 25, 47, 95, 458
Takt 465	semi-passiver 26
tamper-proof 632	zerstören 275
Tari 432	Transponderantenne 168
Tartan-Matte 722	Transponderimpedanz, transformierte 105
Tastgrad 172, 223	Transponderklon 277
Taubenring 710	Transponderohrmarke 701
TDMA 251, 255	Transponderresonanzfrequenz 123

Transponderschwingkreis 115, 119, 124,	
460	Verkürzungsfaktor 152
Transponderspule 624	Verlegetechnik 612
trimm capacitor, on-chip 67	Vernam-Chiffre 326
TR RFID 334	Verschlüsseln 317
TS 102 613 499	verschlüsselte Datenübertragung 317
TS Bonden 616	Verschlüsselung 31, 486
	Verschlüsselungsfunktion 327
	Verstimmung 276
U2270B 527	Vertraulichkeit 316
Überlagerung 167	Verwendungskontext 273
Übertragungsfehler 219	VHF-Bereich 191
Übertragungskanal 219	Vicinity coupling 656
Übertragungsmedium 219	System 25
Übertragungsprotokoll	Vielfachzugriff 250
ISO 14223 344	Visa Wave 670
UCC 419	Vollduplexverfahren 13, 45
UHF-Bereich 25	VSWR Brücke 591
UHF-Frequenzbereich 58, 191, 192	VS WIL STUDIES COIL
UID 367	
UII 446, 455	Wafer 605
UII Memory 437	Bumpen 618
Ultraschallbonden 616	Sägen 608
Unikatsnummern 507	sawn on foil 609
Unipolar-Code 220	Wafer Prober 607
unique number 28, 712	Wareneingang 418
Universal-Blocker 311	Wegfahrsperre 17, 526
Untraceable Kommando 446	Wellenlänge 138
UPC 2, 274	Welttelegraphenverein 196
Updater 694	Werkzeugidentifikation 402
US Bonden 616	
	Werkzeugmagazin 723 Wickelmaschine 624
User memory 437	
UV-Flexodruck 631	Wickeltechnik
	mit Kern 610
VID 4 5520 452	mit Luftspule 610
VDA 5520 452	Wicklungswiderstand 89
VDE 742	Widerstand, nichtlinear 37
VDI 742	Wiegand-Interface 689
VDI 4470 34, 404	Windungsabstand 651
VDV 665	Windungskapazität 651
VDV eTicket Service 665	Wirbelfeld 137
VDV ETS 665	Wirbelstrom 88
VDV-KA 665	Wirbelstromverlust 135
VDV-Kernapplikation 665	wirksame Fläche 147, 150
Verbraucherschutzorganisation 274	wirksame Höhe 150
Verkehrsangebot 257	wirksame Länge 150

Zweifrequenzumtastung 225

Zweiseitenband-Modulation 54

Wirkwiderstand 640 Zeitmultiplexverfahren 251, 255 Wismans System 704 Zeitschlitz 261 WLC 502 Zeitzeichensender 189 FOD 503 Zerstörung iFOD 505 durch Feldeinwirkung 276 WLC-Listener 503 eines Transponders 275 WLC-Poller 503 zirkulare Polarisation 141, 155 Wobbelsignal 36 Zufallszahl 329, 710 WUPA 367 Zugriffsrechte 470 Zündschloss 712 Zustandsautomat 14, 458 Yagi-Uda-Antenne 153 Zustandsdiagramm 466 Zutrittsberechtigung 687 Zutrittskontrolle 29 Zutrittskontrollsystem 687

Zahlungsverkehr 481 Zahlungsverkehrssystem 666 Zeiterfassungsterminal 694